L-Shaped RST Routing

- Perform L-RST using node *b* as the root
	- **Service Service** First step: build a separable MST
	- \mathbb{R}^3 Prim with $w(i,j) = (D(i,j), -|y(i) - y(j)|, -\max\{x(i), x(j)\})$

First Iteration

We initially set our separable MST $T = \{b\}$. T contains three nearest neighbors: a, d , and f. These nodes can connect to T via the following edges (sorted based on their weights):

- $(b, d) = (4, -3, -4)$
- $(b, f) = (4, -1, -7)$
- $(b, a) = (4, -1, -4)$

Thus, we add (b, d) to T based on this lexicographical order.

Separable MST Construction

Physical Design L-RST Algorithm (3/16)

Separable MST Construction (cont)

Practical Problems in VLSI

Physical Design L-RST Algorithm (4/16)

Constructing a Rooted Tree

- \blacksquare Node *b* is the root node
	- **Service Service** Based on the separable MST (initial wirelength $= 32$)
	- \mathbb{R}^3 Bottom-up traversal is performed on this tree during L-RST routing

Physical Design L-RST Algorithm (5/16)

Partial L-RST for Node C

- \bullet $\Phi_l(c)$: (c, d) is fixed to lower-L. Figure (a) shows $\Phi_l(c)$. We assign lower-L to (c, a) in order to maximize the overlap in T_c^S . Thus, $Z(\Phi_l(c))=1.$
- \bullet $\Phi_u(c)$: (c, d) is fixed to upper-L. Figure (b) shows $\Phi_u(c)$. The orientation of (c, a) is irrelevant because no overlap occurs in T_c^S . Thus, $Z(\Phi_u(c)) = 0$.

Partial L-RST for Node E

- \bullet $\Phi_l(e)$: (e, f) is fixed to lower-L. Figure (a) shows $\Phi_l(e)$. The orientation of (e, i) is irrelevant because no overlap occurs in T_e^S . Thus, $Z(\Phi_l(e)) = 0$.
- \bullet $\Phi_u(e)$: (e, f) is fixed to upper-L. Figure (b) shows $\Phi_u(e)$. We assign lower-L to (e, i) in order to maximize the overlap in T_e^S . Thus, $Z(\Phi_u(e)) = 1$.

Partial L-RST for Node G

- \bullet $\Phi_l(g)$: (g, f) is fixed to lower-L. Figure (a) shows $\Phi_l(g)$. The orientation of (g, h) is irrelevant because no overlap occurs in T_q^S . Thus, $Z(\Phi_l(g)) = 0$.
- \bullet $\Phi_u(g)$: (g, f) is fixed to upper-L. Figure (b) shows $\Phi_u(g)$. We assign upper-L to (g, h) in order to maximize the overlap in T_q^S . Thus, $Z(\Phi_u(g)) = 1$.

Partial L-RST for Node D

 \bullet $\Phi_l(d)$: (d, b) is fixed to lower-L. Figure (a) shows $\Phi_l(d)$. There is no overlap in T_d^S , but we choose lower-L for (d, c) because $Z(\Phi_l(c)) > Z(\Phi_u(c))$ from Part (a). Thus,

$$
Z(\Phi_l(d)) = Z(T_d^S) + \max\{Z(\Phi_l(c)), Z(\Phi_u(c))\}
$$

= 0 + \max\{1, 0\} = 1

Partial L-RST for Node D (cont)

 \bullet $\Phi_u(d)$: (d, b) is fixed to upper-L. Figure (b) shows $\Phi_u(d)$. There is no overlap in T_d^S , but we choose lower-L for (d, c) because $Z(\Phi_l(c)) > Z(\Phi_u(c))$ from Part (a). Thus,

$$
Z(\Phi_u(d)) = Z(T_d^S) + \max\{Z(\Phi_l(c)), Z(\Phi_u(c))\}
$$

= 0 + \max\{1, 0\} = 1

Partial L-RST for Node F

 \bullet $\Phi_l(f)$: (f, b) is fixed to lower-L. Since f has two children e and g, we consider the following 4 cases:

$$
Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_l(g))
$$

\n
$$
= 1 + 0 + 0 = 1
$$

\n
$$
Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_u(g))
$$

\n
$$
= 0 + 0 + 1 = 1
$$

\n
$$
Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_l(g))
$$

\n
$$
= 1 + 1 + 0 = 2 \text{ best case}
$$

\n
$$
Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_u(g))
$$

\n
$$
= 0 + 1 + 1 = 2
$$

Physical Design L-RST Algorithm (11/16)

Partial L-RST for Node F (cont)

 \bullet $\Phi_u(f)$: (f, b) is fixed to upper-L. We again consider the following 4 cases to compute the total amount of overlap in $\Phi_u(f)$:

$$
Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_l(g))
$$

\n
$$
= 1 + 0 + 0 = 1
$$

\n
$$
Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_u(g))
$$

\n
$$
= 1 + 0 + 1 = 2 \text{ best case}
$$

\n
$$
Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_l(g))
$$

\n
$$
= 0 + 1 + 0 = 1
$$

\n
$$
Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_u(g))
$$

\n
$$
= 0 + 1 + 1 = 2
$$

Processing the Root Node

b has two children d and f. Since b is the root node, we examine the following 4 cases and choose the best solution (no additional partial L-RST construction is necessary):

$$
Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_l(d)) + Z(\Phi_l(f))
$$

= 0 + 1 + 2 = 3

$$
Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_l(d)) + Z(\Phi_u(f))
$$

= 0 + 1 + 2 = 3

$$
Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_u(d)) + Z(\Phi_l(f))
$$

= 0 + 1 + 2 = 3

$$
Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_u(d)) + Z(\Phi_u(f))
$$

= 1 + 1 + 2 = 4 **best case**

Top-down Traversal

IF In order to obtain the final tree

Final Tree

- **Nirelength reduction**
	- $\mathcal{L}_{\mathcal{A}}$ Initial wirelength – total overlap = $32 - 4 = 28$

Stable Under Rerouting

- Steiner points are marked X
	- **Service Service** Wirelength does not reduce after rerouting

Practical Problems in VLSI

Physical Design L-RST Algorithm (16/16)