J L-Shaped RST Routing

m Perform L-RST using node b as the root
" First step: build a separable MST

® Prim with w(i,)) = (D(1,)), —|y()) = y()I, — max {x(1), X(J)})
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J First Iteration

RENES

We initially set our separable MST 7" = {b}. T" contains three nearest
neighbors: a. d, and f. These nodes can connect to 7" via the following
edges (sorted based on their weights):

m (b, d)=(4,—3,—4)

- (b f) — (“l _l _?)

m (b.a)=(4.—1,—4)
Thus, we add (b. d) to 1" based on this lexicographical order.
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J Separable MST Construction

A 4
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J Separable MST Construction (cont)

A 4
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J Constructing a Rooted Tree

= Node b is the root node
" Based on the separable MST (initial wirelength = 32)

" Bottom-up traversal 1s performed on this tree during L-RST
routing
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J Partial L-RST for Node C

m Pi(c): (¢, d) is fixed to lower-L. Figure (a) shows ®;(c). We assign
lower-L to (¢, a) in order to maximize the overlap in 7°°. Thus,
Z(Pi(c)) = 1.

m $,(c): (c,d) 1s fixed to upper-L. Figure (b) shows &, (c). The
orientation of (c, a) is irrelevant because no overlap occurs in 7.
Thus, Z(®,(c)) = 0.

.............................................................
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J Partial L-RST for Node E

m di(e): (e, f) is fixed to lower-L. Figure (a) shows ®;(e). The ori-
entation of (e, i) is irrelevant because no overlap occurs in 77,
Thus, Z(®;(e)) = 0.

m O,(e): (e, f) is fixed to upper-L. Figure (b) shows &, (e). We
assign lower-L to (e, i) in order to maximize the overlap in 17,
Thus, Z(d,(e)) = 1.
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J Partial L-RST for Node G

m O)(g): (g,f) is fixed to lower-L. Figure (a) shows ®;(g). The
orientation of (g, /) is irrelevant because no overlap occurs in Tg’f’
Thus, Z(®;(g)) = 0.

m O,(g): (g.f) is fixed to upper-L. Figure (b) shows ®,(g). We
assign upper-L to (g, i) in order to maximize the overlap in Tf
Thus, Z(P,(g)) = 1.
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J Partial L-RST for Node D

m $;(d): (d,b) is fixed to lower-L. Figure (a) shows ®;(d). There
1S no overlap in T;’ but we choose lower-L for (d, c) because
Z(Di(c)) > Z(P,(c)) from Part (a). Thus,

2((d)) = Z(T5) + max{ Z(By(c)), Z(By(c)}
= O+ max{1,0} =1

.............................................................
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J Partial L-RST for Node D (cont)

m $,(d): (d,b) is fixed to upper-L. Figure (b) shows &, (d). There
is no overlap in Tf’ but we choose lower-L for (d,c) because
Z(Di(c)) > Z(Py(c)) from Part (a). Thus,

Z(@u(d)) = Z(T7)+max{Z(Di(c)), Z(Pu(c))}
= O+ max{1,0} =1

.............................................................
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J Partial L-RST for Node F

RENES

we consider the following 4 cases:

Z(Qy(f) = Z(I7) + Z(Pi(e)) + Z(Pi(g))

=14+404+0=1
Z(®(f)=Z(T7)+ Z(Pi(e)) + Z(Pu(g))
=04+0+1=1

Z(i(f)) = Z(15) + Z(ule)) + Z(Di1(g))
=14+ 1+4+0=2 Dbestcase

Z(Pi(f) = Z(17) + Z(Pule)) + Z(Pu(g))
=04+14+1=2

m $;(f): (f,D) is fixed to lower-L. Since [ has two children ¢ and g,
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J Partial L-RST for Node F (cont)

m O, (f): (f.D) is fixed to upper-L. We again consider the following

RENES

4 cases to compute the total amount of overlap in ¢, ( f):

Z(®u(f) = Z(T7) + Z(®1(e) + Z(P1(9))
=14+04+0=1

Z(Pu(f)) = Z(T7) + Z(Pi(e)) + Z(Pu(g))
=14+0+1=2 bestcase

Z(©u(f)=Z(I7)+ Z(Pyle) + Z(i(g))

=04+14+0=1
Z(®u(f)) = Z(17) + Z(Py(e)) + Z(Dy(9))
=0+14+1=2

------------------------------------
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J Processing the Root Node
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b has two children d and f. Since b is the root node, we examine the
following 4 cases and choose the best solution (no additional partial

L-RST construction is necessary):

Z(®(b)) = Z(TY) + Z(Dy(d)) + Z(Dy(f))

=0+14+2=23
Z(P(b)) = Z('}ff) + Z(Py(d)) + Z(Pulf))
=0+142=3
Z(®(b)) = Z(T7) + Z(y(d)) + Z(Dy(f))
=0+14+2=3

Z(®(b)) = Z(I5) 4+ Z(®u(d) + Z(Pu(f))
=14+14+2=4 bestcase
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J Top-down Traversal

m In order to obtain the final tree

L 4
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J Final Tree

RENES

m Wirelength reduction
" Initial wirelength — total overlap =32 — 4 =28

------------------------------------
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J Stable Under Rerouting

m Steiner points are marked X

" Wirelength does not reduce after rerouting

v
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