L-Shaped RST Routing

- Perform L-RST using node *b* as the root
 - First step: build a separable MST
 - Prim with $w(i,j) = (D(i,j), -|y(i) y(j)|, -\max\{x(i), x(j)\})$

First Iteration

We initially set our separable MST $T = \{b\}$. T contains three nearest neighbors: a, d, and f. These nodes can connect to T via the following edges (sorted based on their weights):

- \bullet (b,d) = (4,-3,-4)
- \bullet (b, f) = (4, -1, -7)
- \bullet (b,a) = (4,-1,-4)

Thus, we add (b, d) to T based on this lexicographical order.

Separable MST Construction

Separable MST Construction (cont)

Constructing a Rooted Tree

- Node *b* is the root node
 - Based on the separable MST (initial wirelength = 32)
 - Bottom-up traversal is performed on this tree during L-RST routing

Partial L-RST for Node C

- $\Phi_l(c)$: (c,d) is fixed to lower-L. Figure (a) shows $\Phi_l(c)$. We assign lower-L to (c,a) in order to maximize the overlap in T_c^S . Thus, $Z(\Phi_l(c)) = 1$.
- $\Phi_u(c)$: (c,d) is fixed to upper-L. Figure (b) shows $\Phi_u(c)$. The orientation of (c,a) is irrelevant because no overlap occurs in T_c^S . Thus, $Z(\Phi_u(c)) = 0$.

Partial L-RST for Node E

- $\Phi_l(e)$: (e, f) is fixed to lower-L. Figure (a) shows $\Phi_l(e)$. The orientation of (e, i) is irrelevant because no overlap occurs in T_e^S . Thus, $Z(\Phi_l(e)) = 0$.
- $\Phi_u(e)$: (e, f) is fixed to upper-L. Figure (b) shows $\Phi_u(e)$. We assign lower-L to (e, i) in order to maximize the overlap in T_e^S . Thus, $Z(\Phi_u(e)) = 1$.

Partial L-RST for Node G

- $\Phi_l(g)$: (g, f) is fixed to lower-L. Figure (a) shows $\Phi_l(g)$. The orientation of (g, h) is irrelevant because no overlap occurs in T_g^S . Thus, $Z(\Phi_l(g)) = 0$.
- $\Phi_u(g)$: (g, f) is fixed to upper-L. Figure (b) shows $\Phi_u(g)$. We assign upper-L to (g, h) in order to maximize the overlap in T_g^S . Thus, $Z(\Phi_u(g)) = 1$.

Partial L-RST for Node D

■ $\Phi_l(d)$: (d,b) is fixed to lower-L. Figure (a) shows $\Phi_l(d)$. There is no overlap in T_d^S , but we choose lower-L for (d,c) because $Z(\Phi_l(c)) > Z(\Phi_u(c))$ from Part (a). Thus,

$$Z(\Phi_l(d)) = Z(T_d^S) + \max\{Z(\Phi_l(c)), Z(\Phi_u(c))\}$$

= $0 + \max\{1, 0\} = 1$

Partial L-RST for Node D (cont)

■ $\Phi_u(d)$: (d,b) is fixed to upper-L. Figure (b) shows $\Phi_u(d)$. There is no overlap in T_d^S , but we choose lower-L for (d,c) because $Z(\Phi_l(c)) > Z(\Phi_u(c))$ from Part (a). Thus,

$$Z(\Phi_u(d)) = Z(T_d^S) + \max\{Z(\Phi_l(c)), Z(\Phi_u(c))\}$$

= 0 + \max\{1, 0\} = 1

Partial L-RST for Node F

■ $\Phi_l(f)$: (f, b) is fixed to lower-L. Since f has two children e and g, we consider the following 4 cases:

$$Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_l(g))$$

= 1 + 0 + 0 = 1

$$Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_u(g))$$

= 0 + 0 + 1 = 1

$$Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_l(g))$$

= 1 + 1 + 0 = 2 best case

$$Z(\Phi_l(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_u(g))$$

= 0 + 1 + 1 = 2

Partial L-RST for Node F (cont)

■ $\Phi_u(f)$: (f,b) is fixed to upper-L. We again consider the following 4 cases to compute the total amount of overlap in $\Phi_u(f)$:

$$Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_l(g))$$

= 1 + 0 + 0 = 1

$$Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_l(e)) + Z(\Phi_u(g))$$
$$= 1 + 0 + 1 = 2$$
 best case

$$Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_l(g))$$

= 0 + 1 + 0 = 1

$$Z(\Phi_u(f)) = Z(T_f^S) + Z(\Phi_u(e)) + Z(\Phi_u(g))$$

= 0 + 1 + 1 = 2

Processing the Root Node

b has two children d and f. Since b is the root node, we examine the following 4 cases and choose the best solution (no additional partial L-RST construction is necessary):

$$Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_l(d)) + Z(\Phi_l(f))$$

= 0 + 1 + 2 = 3

$$Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_l(d)) + Z(\Phi_u(f))$$

= 0 + 1 + 2 = 3

$$Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_u(d)) + Z(\Phi_l(f))$$

= 0 + 1 + 2 = 3

$$Z(\Phi(b)) = Z(T_b^S) + Z(\Phi_u(d)) + Z(\Phi_u(f))$$
$$= 1 + 1 + 2 = 4$$
 best case

Top-down Traversal

■ In order to obtain the final tree

Final Tree

- Wirelength reduction
 - Initial wirelength total overlap = 32 4 = 28

Stable Under Rerouting

- Steiner points are marked X
 - Wirelength does not reduce after rerouting

