Mincut Placement

- Perform quadrature mincut onto 4 × 4 grid
 - Start with vertical cut first

\[
\begin{align*}
 n_1 &= \{e, f\} \\
 n_2 &= \{a, c, i\} \\
 n_3 &= \{b, f, g\} \\
 n_4 &= \{c, g, l\} \\
 n_5 &= \{d, l, h\} \\
 n_6 &= \{e, i, j\} \\
 n_7 &= \{f, j\} \\
 n_8 &= \{g, j, k\} \\
 n_9 &= \{l, o, p\} \\
 n_{10} &= \{h, p\} \\
 n_{11} &= \{i, m\} \\
 n_{12} &= \{j, m, n\} \\
 n_{13} &= \{k, n, o\}
\end{align*}
\]

undirected graph model w/ k-clique weighting
thin edges = weight 0.5, thick edges = weight 1
Cut 1 and 2

- First cut has min-cutsize of 3 (not unique)
 - Both cuts 1 and 2 divide the entire chip

(a) cut 1

(b) cut 2, 1st-level quadrants formed
Cut 3 and 4

- Each cut minimizes cutsize
 - Helps reduce overall wirelength
Cut 5 and 6

- 16 partitions generated by 6 cuts
 - HPBB wirelength = 27
Recursive Bisection

- Start with vertical cut
 - Perform terminal propagation with middle third window

(a) cut 1

(b) cut 2
Cut 3: Terminal Propagation

- Two terminals are propagated and are “pulling” nodes
 - Node k and o connect to n and j: p_1 propagated (outside window)
 - Node g connect to j, f and b: p_2 propagated (outside window)
 - Terminal p_1 pulls $k/o/g$ to top partition, and p_2 pulls g to bottom
Cut 4: Terminal Propagation

- One terminal propagated
 - Node n and j connect to $o/k/g$: p_1 propagated
 - Node i and j connect to $e/f/a$: no propagation (inside window)
 - Terminal p_1 pulls n and j to right partition
Cut 5: Terminal Propagation

- Three terminals propagated
 - Node i propagated to p_1, j to p_2, and g to p_3
 - Terminal p_1 pulls e and a to left partition
 - Terminal p_2 and p_3 pull $f/b/e$ to right partition
Cut 6: Terminal Propagation

- One terminal propagated
 - Node n and j are propagated to p_1
 - Terminal p_1 pulls o and k to left partition
Cut 7: Terminal Propagation

- Three terminals propagated
 - Node $j/f/b$ propagated to p_1, o/k to p_2, and h/p to p_3
 - Terminal p_1 and p_2 pull g and l to left partition
 - Terminal p_3 pull l and d to right partition
Cut 8 to 15

- 16 partitions generated by 15 cuts
 - HPBB wirelength = 23
Comparison

- Quadrature vs recursive bisection + terminal propagation
 - Number of cuts: 6 vs 15
 - Wirelength: 27 vs 23