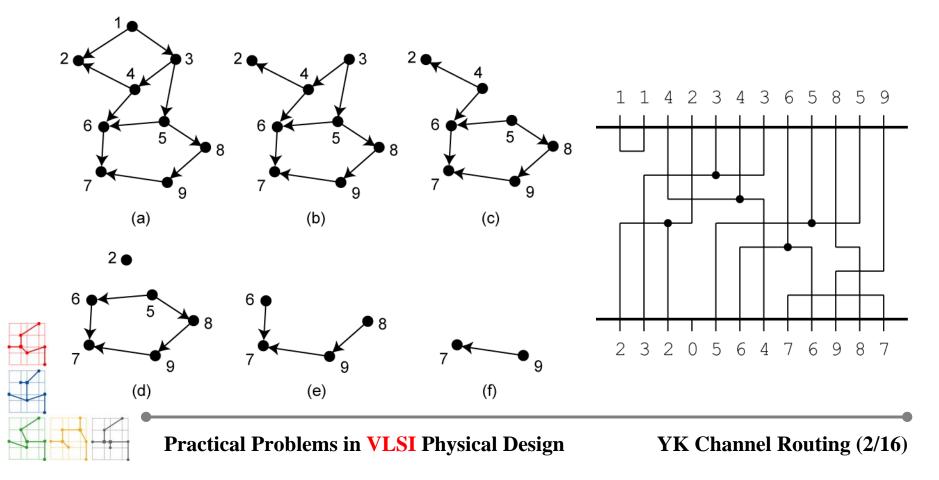

Yoshimura-Kuh Channel Routing

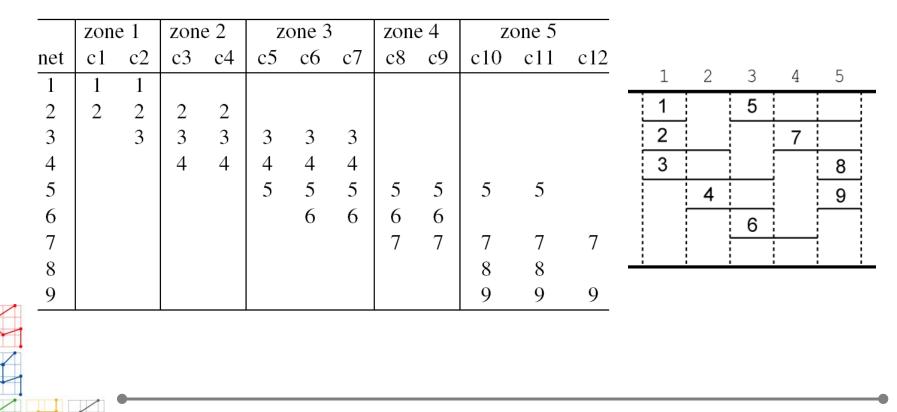
• Perform YK channel routing with K = 100

TOP = [1,1,4,2,3,4,3,6,5,8,5,9] BOT = [2,3,2,0,5,6,4,7,6,9,8,7]

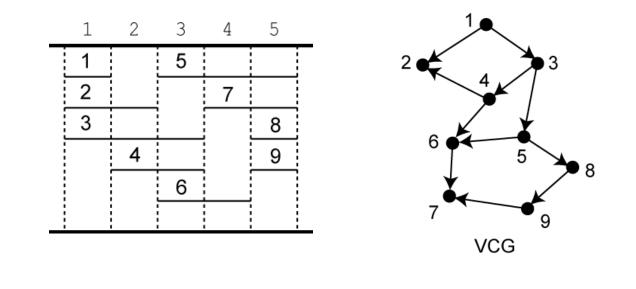


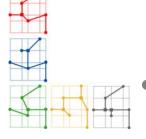
YK Channel Routing (1/16)

Constrained Left-Edge Algorithm


- First perform CLE on original problem (for comparison)
 - Assign VCG nodes with no incoming edge first
 - Use tracks top-to-bottom, left-to-right

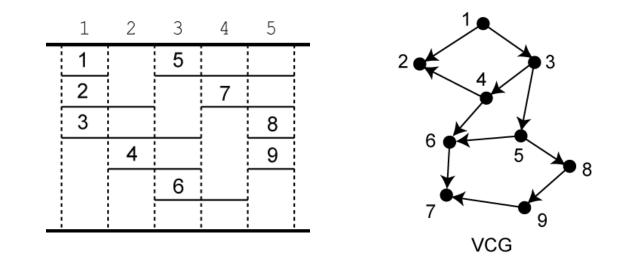
Zone Representation

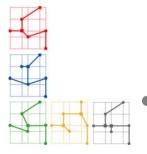

Horizontal span of the nets and their zones


TOP = [1,1,4,2,3,4,3,6,5,8,5,9]BOT = [2,3,2,0,5,6,4,7,6,9,8,7]

Net Merging: Zone 1 and 2

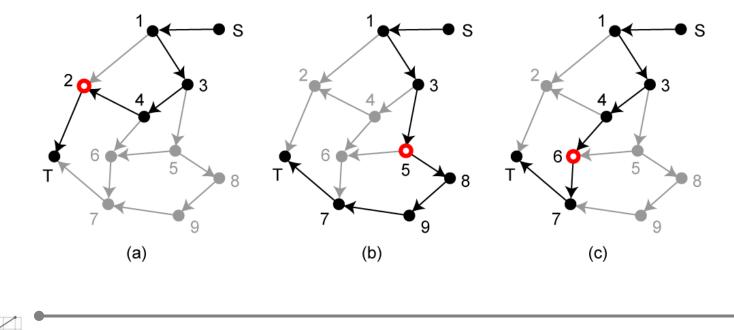
- We compute
 - $L = \{1\}$ and $R = \{4\}$
 - Net 1 and 4 are on the same path in VCG: no merging possible





YK Channel Routing (4/16)

Net Merging: Zone 2 and 3


- We compute
 - $L = \{1,2\}$ and $R = \{5,6\}$ (= net 1 inherited from last step)
 - Merge-able pairs: (2,5) and (2,6) (= not on the same path in VCG)

YK Channel Routing (5/16)

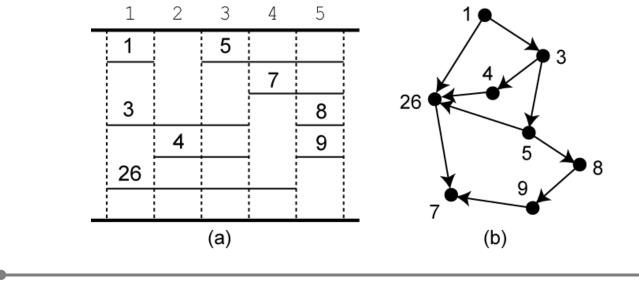
- Choose the "best" pair between (2,5) and (2,6)
 - We form $P = \{5,6\}$ and $Q = \{2\}$ and choose best from each set
 - We compute
 - u(2) = 4, d(2) = 1, u(5) = 3, d(5) = 4, u(6) = 4, d(6) = 2
 - Only 1 element in Q, so $m^* = \text{net } 2$ trivially

YK Channel Routing (6/16)

■ Now choose "best" from *P*

• We compute g(5,2) and g(6,2) using K = 100

 $h(5,2) = \max\{u(5), u(2)\} + \max\{d(5), d(2)\} - \max\{u(5) + d(5), u(2) + d(2)\} = 1$

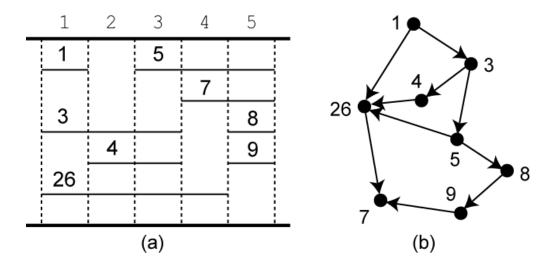

$$h(6,2) = \max\{u(6), u(2)\} + \max\{d(6), d(2)\} - \max\{u(6) + d(6), u(2) + d(2)\} = 0$$

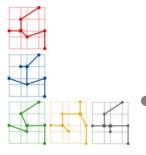
$$\begin{array}{lll} g(5,2) &=& 100 \cdot h(5,2) - \{\sqrt{u(2) \cdot u(5)} + \sqrt{d(2) \cdot d(5)}\} \\ &=& 94.5 \end{array}$$

$$\begin{array}{lll} g(6,2) &=& 100 \cdot h(6,2) - \{\sqrt{u(2) \cdot u(6)} + \sqrt{d(2) \cdot d(6)}\} \\ &=& -5.4 \end{array}$$

- Since g(5,2) > g(6,2), we choose $n^* = \text{net } 6$
- We merge $m^* = 2$ and $n^* = 6$
 - Likely to minimize the increase in the longest path length in VCG

- Merged net 2 and 6
 - We had $P = \{5,6\}$ and $Q = \{2\}$, and need to remove 2 and 6
 - *Q* is empty, so we are done with zone 2 and 3
 - We had $L = \{1,2\}$ and $R = \{5,6\}$, and need to remove 2 and 6
 - We keep $L = \{1\}$
 - Updated zone representation and VCG

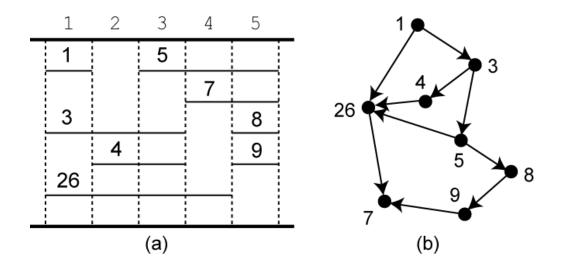


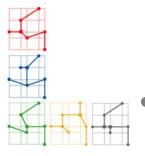

Practical Problems in VLSI Physical Design

YK Channel Routing (8/16)

Net Merging: Zone 3 and 4

- We compute
 - $L = \{1,3,4\}$ and $R = \{7\}$ (= net 1 inherited from last step)
 - All nets in *L* and *R* are on the same path in VCG
 - no merging possible

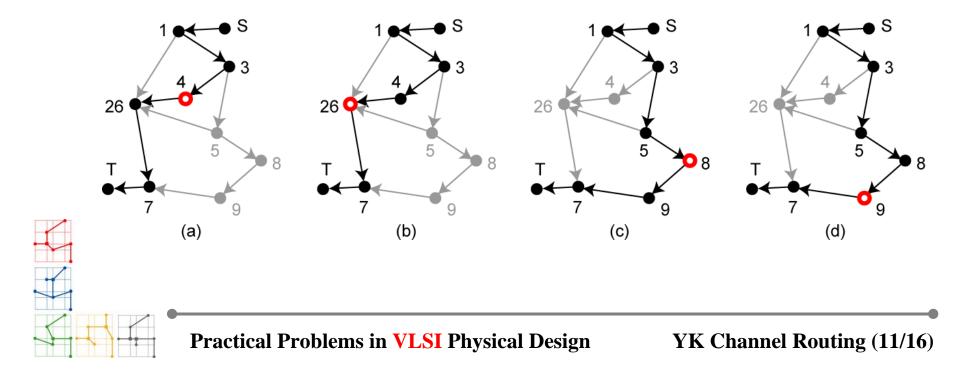




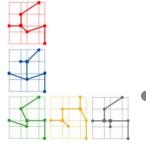
Net Merging: Zone 4 and 5

• We compute

- $L = \{1,3,4,26\}$ and $R = \{8,9\}$
- Merge-able pairs: (4,8), (4,9), (26,8), (26,9)



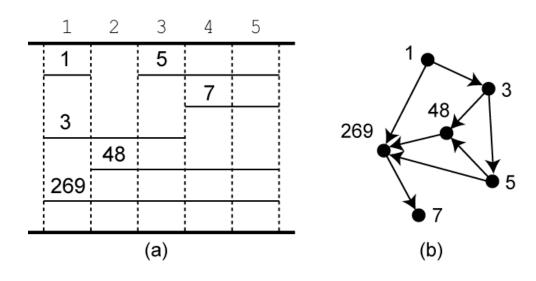
Practical Problems in VLSI Physical Design

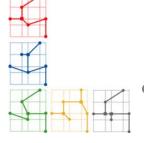

YK Channel Routing (10/16)

- Choose m^* from Q
 - We form $P = \{4, 26\}$ and $Q = \{8, 9\}$
 - We compute
 - u(4) = 3, d(4) = 3, u(26) = 4, d(26) = 2, u(8) = 4, d(8) = 3, u(9) = 5, d(9) = 2

- Choose m^* from Q (cont)
 - We find *m*^{*} from *Q* that maximizes
 - $f(8) = 100 \cdot \{u(8) + d(8)\} + \max\{u(8), d(8)\} = 704$
 - $f(9) = 100 \cdot \{u(9) + d(9)\} + \max\{u(9), d(9)\} = 705$

• So,
$$m^* = 9$$


- Choose n^* from P
 - We compute g(4,9) and g(26,9) using K = 100


$$h(4,9) = \max\{u(4), u(9)\} + \max\{d(4), d(9)\} - \max\{u(4) + d(4), u(9) + d(9)\} = 1$$

$$h(26,9) = \max\{u(26), u(9)\} + \max\{d(26), d(9)\} - \max\{u(26) + d(26), u(9) + d(9)\} = 0$$

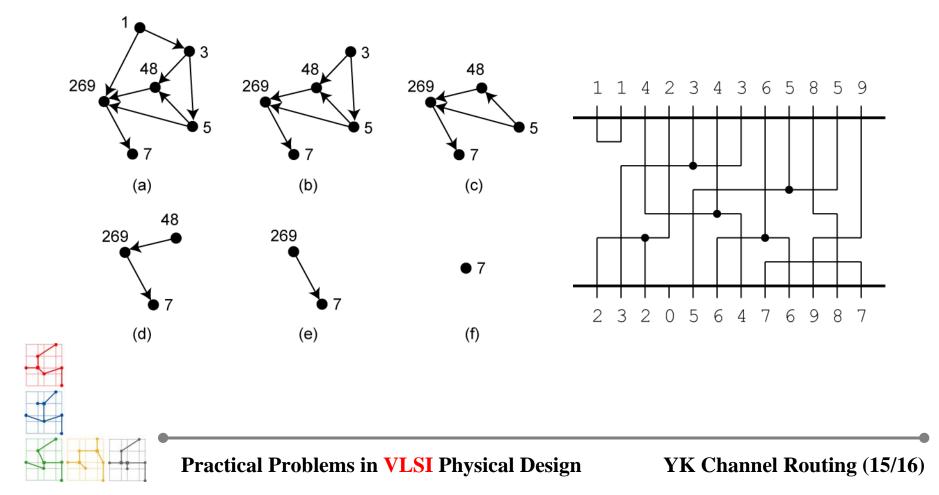
$$g(4,9) = 100 \cdot h(4,9) - \{\sqrt{u(9) \cdot u(4)} + \sqrt{d(9) \cdot d(4)}\} = 93.7$$

$$g(26,9) = 100 \cdot h(26,9) - \{\sqrt{u(9) \cdot u(26)} + \sqrt{d(9) \cdot d(26)}\} = -6.5$$

• Since g(4,9) > g(26,9), we get $n^* = \text{net } 26$

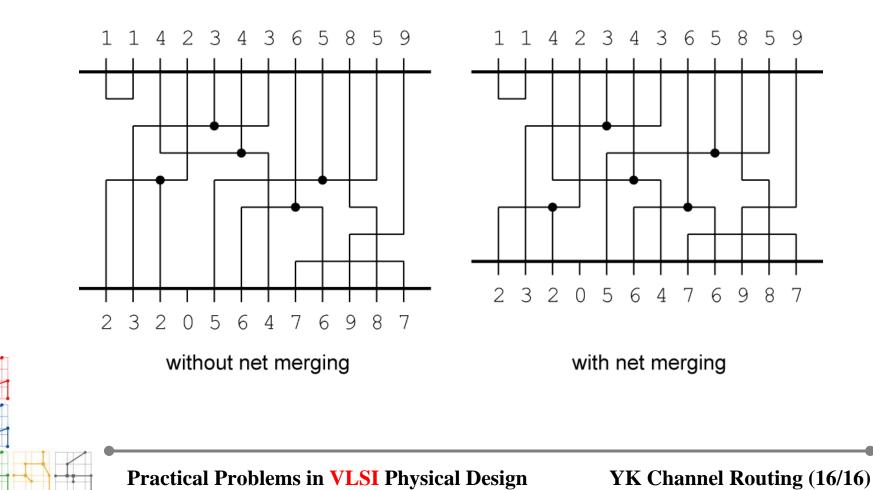
• We merge
$$m^* = 9$$
 and $n^* = 26$

- Merged net 26 and 9
 - We had $P = \{4,26\}$ and $Q = \{8,9\}$, and need to remove 26 and 9
 - Q is not empty, so we repeat the whole process
 - Updated $P = \{4\}$ and $Q = \{8\}$
 - Trivial to see that $m^* = 8$ and $n^* = 4$, so we merge 8 and 4
 - Updated zone representation and VCG



Practical Problems in VLSI Physical Design

YK Channel Routing (14/16)


Routing with Merged Nets

- Perform CLE on merged netlist
 - Use tracks top-to-bottom, left-to-right

Comparison

- Net merging helped
 - Reduce channel height by 1

