
CS8803: Advanced Digital Design for 

Embedded Hardware

Lecture 4: 

Latches, Flip-Flops, and Sequential Circuits

Instructor: Sung Kyu Lim (limsk@ece.gatech.edu)

Website: http://users.ece.gatech.edu/limsk/course/cs8803

Copyright 2000, 2003  MD Ciletti    75 

STORAGE ELEMENTS: R-S LATCH 

Storage elements are used to store information in a binary format (e.g. state, data, address, 
opcode, machine status).

Storage elements may be clocked or unclocked. 

Two types: level-sensitive, edge-sensitive 

Example: R-S latch (Unclocked) The state of an R-S latch is dependent on the value of its R 
and S inputs. 
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Note: Avoid applying 11 to a R-S Nor latch, 
and 00 to an R'S' Nand latch.  The circuit is 
unstable and oscillation will result. 
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• NAND gates can also be used to create a latch, this time an  latch.

• Notice that this latch is level-sensitive.
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• The SR latch also uses feedback to “store” a bit.

• Notice that this latch is level-sensitive.
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• A D latch can be implemented using what is effectively the SR latch with a 

control line as follows.

• Note that as long as , that the latch will change according to the 

value of .
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STORAGE ELEMENTS: TRANSPARENT LATCHES 

Latches are level-sensitive storage elements; data storage is dependent on the level (value ) 
of the input clock (or enable) signal.  The output of a transparent latch changes in response to 
the data input while the latch is enabled.  Changes at the input are visible at the output 
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• Latches like the D latch are termed “transparent” or level-sensitive.

• This is because, when enabled, the output follows the input.
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• The following behaviour is observed for Enable = 0 and Enable = 1.
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stored bit outputed.

bit



R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER VII-15

LATCH EXAMPLE
PROBLEMS W/ TRANSPARENCY

SEQUENTIAL SYSTEMS

•LATCHES
-D LATCH
-TIMING DIAGRAMS
-TRANSPARENCY

• A problem with latches is that they are level-sensitive.

• A momentary change of input changes the value passed out of the latch.

• This is a problem if the input of a latch depends on the output of the same 

latch.

• Example:  Design a system that flips a stored bit whenever Enable goes 

high.  An inexperienced engineer might design the following.

Transparent
Latch

How will this design behave?

Will the bit flip once when the
Enable signal goes high?

Answer:  The output will
follow the input, which
happens to keep changing.Enable

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER VII-16

LATCH EXAMPLE
PROBLEMS W/ TRANSPARENCY

SEQUENTIAL SYSTEMS
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• Let’s analyze the timing behaviour of this “poor” design.

A

B

BA

• Notice that instead of the desired 

bit flip when Enable=1, that the 

input oscillates.  This is because 

the output depends directly on the 

input since A and B appear to be 

connected by a wire.
Enable

Enable
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• The problem with transparent, level-sensitive latches can be fixed by 

splitting the input and output so that they are independent.

• New solution:  Consider the following improved design that flips a stored 

bit whenever Enable goes high.  This design now uses a master and a 

slave transparent latches to separate the input from the output.

Transparent
Latch

Transparent
Latch

Enable Enable
Master Slave
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STORAGE ELEMENTS: FLIP-FLOPS

Flip-flops are edge-sensitive storage elements; data storage is synchronized to an edge of a 
clock.  The value of data stored depends on the data that is present at the data input(s) when 
the clock makes a transition at its active (rising or falling) edge. 

Example: D-type  flip-flop
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next
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t

t

t

Ignored

 Characteristic equation: qnext = D.

This example is active on the rising 
(positive) edge of the clock. 

Intermediate data transitions are 
ignored.

Timing constraints (setup, hold, 
minimum pulse width) must be met. 
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MASTER-SLAVE FLIP-FLOP

A master-slave configuration of two data latches samples the input during the active cycle of 
the clock applied to the master stage.  The input is propagated to the output during the slave 
cycle of the clock. 

Master-slave implementation of a negative edge-triggered D-type flip-flop: 

D

Enable

Q
Data

Latch

D

Enable

Q
Data

Latch

Q'

q

q'

clock

data

Master Slave

Timing constraint: the output of the master stage must settle before the enabling edge of the 
slave stage.   The master stage is enabled on the inactive edge of the clock, and the slave 
stage is enabled on the active edge.  Timing constraints apply to the active edge. 
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CMOS TECHNOLOGY - MASTER-SLAVE FLIP-FLOP

CMOS Transmission Gate: 

output_sig

~enable

enable

input_sig

D-type flip-flops in CMOS technology are 
formed by combining transmission gates 
with glue logic to form a master-slave circuit. 
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CMOS TECHNOLOGY MASTER-SLAVE FLIP-FLOP  (Cont.) 
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Master stage: output capacitor (node w2)
is charged and sustained by the feedback 
loop.  The delays of the master stage 
determine the setup conditions of the flip-
flop.

Slave stage:  The output of the slave 
stage is sustained while the master stage 
is charging.  At the active edge of the flip-
flop, the output of the master stage 
charges the output of the slave stage, 
which is sustained by the feedback loop 
during the active cycle. 

Note: the read operation is non-
destructive.
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• A common and useful type of flip-flop are edge triggered flip-flops.

• Positive edge triggered flip-flops

• Negative edge triggered flip-flops

TransparentIN OUT

EnableEnable
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Latch
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• The output C, which is also the bit stored, appears to change on the 

negative edge of the Enable transitions.
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FLIP-FLOPS
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SEQUENTIAL SYSTEMS

•FLIP-FLOPS
-SINGLE BIT STORAGE
-EDGE TRIGGERED
-NEG. EDGE TRIGGERED

• The output C, which is also the bit stored, appears to change on the 

positive edge of the Enable transitions.
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BUILDING BLOCKS: THREE-STATE DEVICES 

Three-state devices provide high-impedance interface devices. 
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Typical applications: i/o pad and bus isolation. 

register

inbound_dat

a

reg_to_bus

send_data

rcv_data

data_to_from_bus

32

32 32

Copyright 2000, 2003  MD Ciletti    85 

BUILDING BLOCKS: BUSSES 

Busses provide parallel datapaths and 
control interfaces and between functional 
units.

Synchronous and asynchronous busses 

Handshaking protocols are required for 
coherent communication 

Key Issues: Bus Contention and Arbitration 

Example: Register-to-Register transfer on a 4-
bit datapath. 
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SEQUENTIAL MACHINES  (p 80) 

Sequential machines, also called finite state machines, are characterized by an input/output 
relationship in which the value of the outputs at a given time depend on the history of the 
applied inputs as well as their present value.

Example: A machine that is to count the number of 1s in a serially transmitted frame of bits. 

The history of the inputs applied to a sequential machine is represented by the state of the 
machine, and requires hardware elements that store information, i.e. requires memory to store
the state of the machine as an encoded binary word. 

All sequential machines require feedback that allows the next state of the machine to be 
determined from the present state and inputs. 

Next State forming

Logic

Inputs

Memory
Present

State (PS)

Outputs

Feedback of present state

Next State

(NS)

The set of states of a sequential 
machine is always finite, and the 
number of states is determined by 
the number of bits that represent 
the state. 
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SEQUENTIAL MACHINES (Cont.) 

Sequential machines may be asynchronous or synchronous (clocked). 

The state transitions of a (edge-triggered) flip-flop-based synchronous machine are 
synchronized by the active edge (i.e. rising or falling)  of a common clock.  State changes give 
rise to changes in the combinational logic that determines the next state and the output of the 
machine.

period

Rising edge

Falling edge

A lower bound on the cycle time (period) of the machine's clock is set by the requirement that 
the period of the clock must be long enough to allow all transients activated by an a transition 
of the clock to settle at the outputs of the combinational logic before the next active edge 
occurs.
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SEQUENTIAL MACHINES (Cont.) 

 The inputs to the flip-flops must remain stable for a sufficient interval before and after the active 
edge of the clock.  The former constraint establishes an upper bound on the longest path 
through the circuit, which constrains the latest allowed arrival of data. The latter constraint 
imposes a lower bound on the shortest path through the combinational logic that is driving the 
storage device.   It constrains the earliest time at which data from the previous cycle could be 
overwritten.

 Together, these constraints ensure that valid data is stored.  Otherwise, timing violations may 
occur at the inputs to the flip-flops, with the result that invalid data is stored.

 In an edge-triggered clocking scheme, the clock isolates a storage register's inputs from its 
output, thereby allowing feedback without race conditions. 

 The outputs of a state machine controls the synchronous datapath operations and register 
operations of more general digital machine.
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 FINITE STATE MACHINES 

 Synchronous (i.e. clocked) finite state machines (FSMs) have widespread application in digital 
systems, e.g. as datapath controllers in computational units and processors.   Synchronous 
FSMs are characterized by a finite number of states and by clock-driven state transitions. 

 Mealy Machine:  The next state and the outputs depend on the present state and the inputs.   

 Moore Machine: The next state depends on the present state and the inputs, but the output 
depends on only the present state.
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FINITE STATE MACHINES (Cont.) 

Next State and Output

Combinational

Logic

Inputs

State

Register

Outputs

Next State

Combinational

Logic

Inputs

State
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Outputs
Output

Combinational

Logic

clock

clock

Moore machine

Mealy machine
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• Suppose we want a sequential system that has the following behaviour

• Effectively, the system should output a 1 when the last set of four inputs 

have been 1101.

• For instance, the following output z(t) is obtained for the input x(t)

x t( ) 0 1,{ }∈Input:

z t( ) 0 1,{ }∈Output:

z t( )
1 if x t 3 t,–( ) 1101=

0 otherwise               ⎩
⎨
⎧

=Function:

100100100100110101101101001101001

???000000000000100001001000001000

x t( )
z t( )

t 0123456789...
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FINITE STATE MACHINES

•STATE DIAGRAMS
-STATE DIAGRAM EX.
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-PATTERN DETECT EX.

• The following state diagram gives the behaviour of the desired 1101 pattern 

detector.

• Consider  to be the initial state,  when first symbol detected (1),  

when subpattern 11 detected, and  when subpattern 110 detected.

S0 S1 S2

S3

S0 S1

1/0

0/0

S2 S3
0/01/0

1/1

0/0 1/0

0/0
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-STATE DIAGRAM EX.
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-PATTERN DETECT EX.

• State tables also express a systems behaviour and consists of

• Present state

• The present state of the system, typically given in binary encoded 

form or with .  So, a state of  in our state diagram with 10 

states would be represented as 0101 since we require 4 bits.

• Inputs

• Whatever external inputs used to cause the state transitions.

• Next state

• The next state, generally in binary encoded form.

• Outputs

• Whatever outputs, other then the state, for the system.  Note that 

there would be no outputs in a Moore machine.

Sk S5
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•STATE TABLES
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• If we consider the pattern detection example previously discussed, the 

following would be the state table.

Present State Next StateInput Output

0

1

0

0

S0

0 0

1 0

0 0

1 0

0 0

1 1

or 0 0

P1 P0 X Z

S0 or 0 0

S1 or 0 1

S1 or 0 1

S2 or 1 0

S2 or 1 0

S3 or 1 1

S3 or 1 1

S0 or 0 0

S1 or 0 1

S0 or 0 0

S2 or 1 0

S3 or 1 1

S2 or 1 0

S0 or 0 0

S1 or 0 1

N1 N0
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•STATE TABLES
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• If given a state table, the state diagram can be developed as follows.

• Determine the number of states in the table and draw a state circle 

corresponding to each one.

• Label the circle with the state name for a Mealy machine.

• Label the circle with the state name/output for a Moore machine.

• For each row in the table, identify the present state circle and draw a 

directed arc to the next state circle.

• Label the arc with the input/output pair for a Mealy machine.

• Label the arc with the input for a Moore machine.
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•SEQUENTIAL CIRCUITS
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• The procedure for developing a logic circuit from a state table is the same 

as with a regular truth table. 

• Generate Boolean functions for

• each external outputs using external inputs and present state bits

• each next state bit using external inputs and present state bits

• Use Boolean algebra, Karnaugh maps, etc. as normal to simplify.

• Draw a register for each state bit.

• Draw logic diagram components connecting external outputs to external 

inputs and outputs of state bit registers (which have the present state).

• Draw logic diagram components connecting inputs of state bits (for next 

state) to the external inputs and outputs of state bit registers (which have 

the present state).
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• Following the procedure outlined, Boolean functions for the pattern 

detector state table can be formed using Karnaugh maps as follows.

0 1 0 0

1 0 1 0

0

1

00 01 11 10
P1P0

X

0 0 1 0

1 1 0 0

0

1

00 01 11 10
P1P0

X

0 0 0 0

0 0 1 0

0

1

00 01 11 10
P1P0

X

N1 XP1 XP1P0+=

N0 XP1P0 XP1P0 XP1P0+ + XP1P0 X P1 P0⊕( )+= =

N1 N0 Z

Z XP1P0=
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• The following logic circuit implements the pattern detect example.

Z

P1

φ1 φ2

P0

φ1 φ2

X

N1

N0
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•SEQUENTIAL CIRCUITS
•FSM EXAMPLES

-EXAMPLE #1

• A sequential circuit is defined by the following Boolean functions with input 

, present states , , and , and next states , , and .

•

•

•

•

• Derive the state table.

• Derive the state diagram.

X P0 P1 P2 N0 N1 N2

N2 X P1 P0⊕( ) X P1 P0⊕( )+=

N1 P2=

N0 P1=

Z XP1P2=
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• The state table is formed as follows.

Present State Next StateInput Output

0 00 0

P1 P0 X ZN1 N0P2 N2

0 0 01
1 00 00 0 00
0 00 10 0 00
1 00 10 0 01
0 01 00 0 10
1 01 00 0 11
0 01 10 0 11
1 01 10 0 10
0 00 01 1 01
1 00 01 1 00
0 00 11 1 00
1 00 11 1 01
0 01 01 1 10
1 11 01 1 11
0 01 11 1 11
1 11 11 1 10
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•SEQUENTIAL CIRCUITS
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-EXAMPLE #2

• The state diagram can be drawn as follows.

S1S0 S2 S3

S4 S5 S6 S7

0/0

1/0

0/0

1/0

0/0

1/0 0/0

1/0

0/0

1/0
0/0

1/0

0/0

1/1

0/0

1/1
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MEALY FINITE STATE MACHINE - EXAMPLE 

A serially-transmitted BCD (8421 code) word is to be converted into an Excess-3 code. An 
Excess-3 code word is obtained by adding 3 to the decimal value and taking the binary 
equivalent.  Excess-3 code is self-complementing [Wakerly, p. 80], i.e. the 9's complement of a 
code word is obtained by complementing the bits of the word.

Decimal 8-4-2-1 Excess-3

Digit Code Code

(BCD)

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100
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MEALY FINITE STATE MACHINE - EXAMPLE (Cont.) 

The serial code converter is described by the state transition graph of a Mealy FSM. 

      State Transition Graph 

S_5

S_0

input / output

1/00/1

0/1

0/0, 1/1

1/0

0/1
1/0

0/10/0, 1/1

0/0, 1/1

S_1 S_2

S_4S_3

S_6

state
next state/output

input
0 1

S_0 S_1 / 1   S_2 / 0

S_1 S_3 / 1   S_4 / 0

S_2 S_4 / 0   S_4 / 1

S_3 S_5 / 0   S_5 / 1

S_4 S_5 / 1   S_6 / 0

S_5 S_0 / 0   S_0 / 1

S_6 S_0 / 1       - / -

Next State/OutputTable

The vertices of the state transition graph of a Mealy machine are labeled with the states. 

The branches are labeled with (1) the input that causes a transition to the indicated next state, 
and (2) with the output that is asserted in the present state for that input.

The state transition is synchronized to a clock. 

The state table summarizes the machine's behavior in tabular format. 
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DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 

To design a D-type flip-flop realization of a FSM having the behavior described by a state 
transition graph, (1) select a state code, (2) encode the state table, (3) develop Boolean 
equations describing the input of a D-type flip-flop, and (4) using K-maps, optimize the Boolean 
equations.

state
next state/output

input
0 1

S_0 S_1 / 1 S_2 / 0

S_1 S_3 / 1 S_4 / 0

S_2 S_4 / 0 S_4 / 1

S_3 S_5 / 0 S_5 / 1

S_4 S_5 / 1 S_6 / 0

S_5 S_0 / 0 S_0 / 1

S_6 S_0 / 1     - / -

Next State/Output Table

1

0 1

q
0

S_0

S_6 S_4

S_2

S_5 S_31

1 0

0 1

0 0

q
2

q
1

S_1

State Assigment

q
2
 q

1
 q

0
q

2
+ q

1
+ q

0
+

input

0 1

state next state output

input

0 1

S_0 000 001 101 1 0

001 111 011 1 0

101 011 011 0 1

111 110 110 0 1

011 110 010 1 0

110 000 000 0 1

010 000 - 1 -

100 - - - -

S_1

S_2

S_3

S_4

S_5

S_6

Encoded Next state/ Output Table
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00

10

11

01

00 01 11 10

1

q
2
 q

1

q
0
 B

in

1 1 1

0 0 0

0 0 0 0

x x 1 1

x

q
0
+ = q

1
'

S_0 S_0 S_1 S_1

S_6 S_6 S_4 S_4

S_5 S_5 S_3 S_3

S_2 S_2

00

10

11

01

00 01 11 10

0

q
2
 q

1

q
0
 B

in

0 1 1

0 1 1

0 0 1 1

x x 1 1

x

q
1
+ = q

0

S_0 S_0 S_1 S_1

S_6 S_6 S_4 S_4

S_5 S_5 S_3 S_3

S_2 S_2

00

10

11

01

00 01 11 10

1

q
0
 B

in

0 0 1

1 0 1

0 1 1 0

x x 1 0

x

B
out

 = q
2
'B

in
' + q

2
B

in

S_0 S_0 S_1 S_1

S_6 S_6 S_4 S_4

S_5 S_5 S_3 S_3

S_2 S_2

00

10

11

01

00 01 11 10

0

q
2
 q

1

q
0
 B

in

1 0 1

0 0 1

0 0 1 1

x x 0 0

x

S_0 S_0

q
2
+ = q

1
'q

0
'B

in
 + q

2
'q

0
B

in
' + q

2
q

1
q

0

S_1 S_1

S_6 S_6 S_4 S_4

S_5 S_5 S_3 S_3

S_2 S_2

q
2
 q

1

Note: We will optimize the equations 
individually.  In general - this does not 
necessarily produce the optimal (area, speed) 
realization of the logic.  We'll address this 
when we consider synthesis. 
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DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 

Realization of the sequential BCD-to-Excess-3 code converter (Mealy machine): 
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DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.) 

Simulation results for Mealy machine: 

0 10 0

1 11 0

B_in

B_out

Note: s3 = 1112


