INTRO. TO COMP. ENG.
CHAPTER VIII-1
FINITE STATE MACHINES

•CHAPTER VIII

CHAPTER VIII FINITE STATE MACHINES (FSM)

STATE MACHINES

•STATE MACHINES -INTRODUCTION

FINITE STATE MACHINES

INTRODUCTION

- From the previous chapter we can make simple memory elements.
 - Latches as well as latches with control signals
 - Flip-flops
 - Registers
- The goal now is to use the memory elements to hold the running state of the machine.
 - The state of the machine can be used to perform sequential operations.
 - This chapter will discuss how to represent the state of the machine for design and communication purposes.

FINITE STATE MACHINES

STATE MACHINES

MEALY & MOORE MACHINES

•STATE MACHINES
-INTRODUCTION

Mealy machine

 Sequential system where output depends on current input and state.

Moore machine

 Sequential system where output depends only on current state.

FINITE STATE MACHINES

STATE MACHINES

SYNC. & ASYNC. SYSTEMS

•STATE MACHINES
-INTRODUCTION
-MEALY & MOORE MACH.

Synchronous sequential system

- Behaviour depends on the inputs and outputs at discrete instants of time.
- Flip-flops, registers, and latches that are enabled/controlled with a signal derived from clock form a synchronous sequential system.
- Asynchronous sequential system
 - Behaviour depends on inputs at any instant of time.
 - Latches without control signals behave in an asynchronous manner.
- The state machines discussed in this chapter will be synchronous sequential systems (i.e. controlled by a clock)
 - This allows us to form timed Boolean functions such as
 - $N(t) = D_A(t+1)$ where N is the next state of a D flip-flop D_A .

FINITE STATE MACHINES

STATE DIAGRAMS

ELEMENTS OF DIAGRAMS

- STATE MACHINES
 - -INTRODUCTION
 - -MEALY & MOORE MACH.
 - -SYNC. & ASYNC SYSTEMS
- A state diagram represents a finite state machine (FSM) and contains
 - Circles: represent the machine states
 - Labelled with a binary encoded number or S_k reflecting state.
 - **Directed arcs**: represent the transitions between states
 - Labelled with input/output for that state transition.

Input:

 $x(t) \in \{a, b\}$

Output:

 $z(t) \in \{p, q\}$

State:

 $s(t) \in \{S_k, S_j\}$

Initial state:

 $s(0) = S_k$

Input/Output

FINITE STATE MACHINES

STATE DIAGRAMS

PROPERTIES

•STATE MACHINES
•STATE DIAGRAMS
-ELEMENTS OF DIAGRAMS

- Some restrictions that are placed on the state diagrams:
 - FSM can only be in one state at a time!
 - Therefore, only in one state, or one circle, at a time.
 - State transitions are followed only on clock cycles. (synchronous!)
- Mealy machines and Moore machines can be labelled differently.
 - Mealy machine: Since output depends on state and inputs:
 - Label directed arcs with input/output for that state transition.
 - Moore machine: Since output depends only on state:
 - Label directed arcs with input for that state transistion.
 - Label state circles with S_k /output.

FINITE STATE MACHINES

STATE DIAGRAMS

STATE DIAGRAM EXAMPLES

- •STATE MACHINES
 •STATE DIAGRAMS
 -ELEMENTS OF DIAGRAMS
 -PROPERTIES
- The following is a simple example. What does this state machine do?

Here is a simplified way of forming the above state machine.

• An input of 0 or 1 causes the transition with output 1 and 0, respectively.

FINITE STATE MACHINES

STATE DIAGRAMS

BIT FLIPPER EXAMPLE

•STATE DIAGRAMS

- -ELEMENTS OF DIAGRAMS
- -PROPERTIES
- -STATE DIAGRAM EX.
- Consider the simple bit flipper looked at the in previous chapter. How would a state diagram be formed?
 - Below is one possible way of drawing the state diagram for the bit flipper.

• Since the bit flipper is a Moore machine, the state diagram can also be

FINITE STATE MACHINES

STATE DIAGRAMS

PATTERN DETECT EXAMPLE

•STATE DIAGRAMS

- -PROPERTIES
- -STATE DIAGRAM EX.
- -BIT FLIPPER EX.
- Suppose we want a sequential system that has the following behaviour

Input:
$$x(t) \in \{0, 1\}$$

Output:
$$z(t) \in \{0, 1\}$$

Function:
$$z(t) = \begin{cases} \mathbf{1} & \text{if } x(t-3, t) = \mathbf{1101} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

- Effectively, the system should output a 1 when the last set of four inputs have been 1101.
- For instance, the following output z(t) is obtained for the input x(t)

t	0123456789
X(t)	100100100100 1101 0 1101 00 1101 001
Z(t)	???00000000000100001001000001000

FINITE STATE MACHINES

STATE DIAGRAMS

PATTERN DETECT EXAMPLE

- •STATE DIAGRAMS
- -STATE DIAGRAM EX.
 - -BIT FLIPPER EX.
 - -PATTERN DETECT EX.
- The following state diagram gives the behaviour of the desired 1101 pattern detector.
 - Consider S_0 to be the initial state, S_1 when first symbol detected (1), S_2 when subpattern 11 detected, and S_3 when subpattern 110 detected.

FINITE STATE MACHINES

STATE TABLES

INTRODUCTION

•STATE DIAGRAMS

- -STATE DIAGRAM EX.
- -BIT FLIPPER EX.
- -PATTERN DETECT EX.
- State tables also express a systems behaviour and consists of
 - Present state
 - The present state of the system, typically given in binary encoded form or with S_k. So, a state of S₅ in our state diagram with 10 states would be represented as 0101 since we require 4 bits.
 - Inputs
 - Whatever external inputs used to cause the state transitions.
 - Next state
 - The next state, generally in binary encoded form.
 - Outputs
 - Whatever outputs, other then the state, for the system. Note that there would be no outputs in a Moore machine.

FINITE STATE MACHINES

STATE TABLES

BIT FLIPPER EXAMPLE

•STATE DIAGRAMS
•STATE TABLES
-INTRODUCTION

Consider again the bit flipper example with state diagram

The state table for this state diagram would be

Present State	Input	Next State	Output
\mathcal{S}_0 or $oldsymbol{0}$	-	1	-
S₁ or 1	-	0	-

FINITE STATE MACHINES

STATE TABLES

TRANSLATE FROM DIAGRAM

•STATE DIAGRAMS
•STATE TABLES
-INTRODUCTION
-BIT FLIPPER EX.

- From a state diagram, a state table is fairly easy to obtain.
 - Determine the number of states in the state diagram.
 - If there are *m* states and *n* 1-bit inputs, then there will be $m2^n$ rows in the state table.
 - Example: If there are 3 states and 2 1-bit inputs, each state will have 2² = 4 possible inputs, for a total of 3*4=12 rows.
 - Write out for each state, the 2ⁿ possible input rows.
 - For each state/input pair, follow the directed arc in the state diagram to determine the next state and the output.

FINITE STATE MACHINES

STATE TABLES

PATTERN DETECT EXAMPLE

•STATE TABLES
-INTRODUCTION
-BIT FLIPPER EX.
-TRANSLATE DIAGRAM

• If we consider the pattern detection example previously discussed, the following would be the state table.

Present State			Input	Next State		Output	
	P ₁	P ₀	X		N ₁	N ₀	Z
S_0 or	0	0	0	S_0 or	0	0	0
S_0 or	0	0	1	S_1 or	0	1	0
S_1 or	0	1	0	S_0 or	0	0	0
S_1 or	0	1	1	S_2 or	1	0	0
S_2 or	1	0	0	S_3 or	1	1	0
S_2 or	1	0	1	S_2 or	1	0	0
S_3 or	1	1	0	S_0 or	0	0	0
S_3 or	1	1	1	S_1 or	0	1	1

FINITE STATE MACHINES

STATE TABLES

TRANSLATE TO DIAGRAM

•STATE TABLES
-BIT FLIPPER EX.
-TRANSLATE DIAGRAM

-PATTERN DETECT EX.

- If given a state table, the state diagram can be developed as follows.
 - Determine the number of states in the table and draw a state circle corresponding to each one.
 - Label the circle with the state name for a Mealy machine.
 - Label the circle with the state name/output for a Moore machine.
 - For each row in the table, identify the present state circle and draw a directed arc to the next state circle.
 - Label the arc with the input/output pair for a Mealy machine.
 - Label the arc with the input for a Moore machine.

FINITE STATE MACHINES

SEQ. CIRCUITS

INTRODUCTION

STATE TABLES

- -TRANSLATE DIAGRAM
- -PATTERN DETECT EX.
- -TRANSLATE TO DIAGRAM
- With the descriptions of a FSM as a state diagram and a state table, the next question is how to develop a sequential circuit, or logic diagram from the FSM.
- Effectively, we wish to form a circuit as follows.

FINITE STATE MACHINES

SEQ. CIRCUITS

FROM STATE TABLE

•STATE TABLES
•SEQUENTIAL CIRCUITS
-INTRODUCTION

- The procedure for developing a logic circuit from a state table is the same as with a regular truth table.
 - Generate Boolean functions for
 - each external outputs using external inputs and present state bits
 - each next state bit using external inputs and present state bits
 - Use Boolean algebra, Karnaugh maps, etc. as normal to simplify.
 - Draw a register for each state bit.
 - Draw logic diagram components connecting external outputs to external inputs and outputs of state bit registers (which have the present state).
 - Draw logic diagram components connecting inputs of state bits (for next state) to the external inputs and outputs of state bit registers (which have the present state).

FINITE STATE MACHINES

SEQ. CIRCUITS

PATTERN DETECT EXAMPLE

•STATE TABLES
•SEQUENTIAL CIRCUITS
-INTRODUCTION

-DEVEL. LOGIC CIRCUITS

 Following the procedure outlined, Boolean functions for the pattern detector state table can be formed using Karnaugh maps as follows.

$$\begin{split} &N_1 = X\overline{P_1} + \overline{X}P_1P_0 \\ &N_0 = \overline{X}\overline{P_1}P_0 + XP_1P_0 + X\overline{P_1}\overline{P_0} = \overline{X}\overline{P_1}P_0 + X(\overline{P_1 \oplus P_0}) \\ &Z = XP_1P_0 \end{split}$$

FINITE STATE MACHINES

SEQ. CIRCUITS

PATTERN DETECT EXAMPLE

- •SEQUENTIAL CIRCUITS
- -INTRODUCTION
 - -DEVEL. LOGIC CIRCUITS
 - -PATTERN DETECT EX.
- Notice that the previous Boolean functions can also be expressed with time as follows.

$$\begin{split} \mathbf{N_1}(t) &= \mathbf{P_1}(t+1) = \mathbf{X}(t) \cdot \overline{\mathbf{P_1}(t)} + \overline{\mathbf{X}(t)} \cdot \mathbf{P_1}(t) \cdot \mathbf{P_0}(t) \\ \mathbf{N_0}(t) &= \mathbf{P_0}(t+1) = \overline{\mathbf{X}(t)} \cdot \overline{\mathbf{P_1}(t)} \cdot \mathbf{P_0}(t) + \mathbf{X}(t) \cdot \overline{\mathbf{P_1}(t)} \cdot \overline{\mathbf{P_0}(t)} \\ &+ \mathbf{X}(t) \cdot \overline{\mathbf{P_1}(t)} \cdot \overline{\mathbf{P_0}(t)} \\ &= \overline{\mathbf{X}(t)} \cdot \overline{\mathbf{P_1}(t)} \cdot \mathbf{P_0}(t) + \mathbf{X}(t) \cdot \overline{\mathbf{P_1}(t)} \oplus \overline{\mathbf{P_0}(t)} \\ \mathbf{Z}(t) &= \mathbf{X} \cdot \mathbf{P_1}(t) \cdot \mathbf{P_0}(t) \end{split}$$

 An important thing to note in these equations is the relation between the present states P and the next states N.

FINITE STATE MACHINES

SEQ. CIRCUITS

PATTERN DETECT EXAMPLE

- •SEQUENTIAL CIRCUITS
 - -INTRODUCTION
 - -DEVEL. LOGIC CIRCUITS
 - -PATTERN DETECT EX.
- The following logic circuit implements the pattern detect example.

FINITE STATE MACHINES

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS

- -INTRODUCTION
- -DEVEL. LOGIC CIRCUITS
- -PATTERN DETECT EX.

- · Consider the following system description.
 - A sequential system has
 - One input = {**a**, **b**, **c**}
 - One output = {**p**, **q**}
 - Output is
 - q when input sequence has even # of a's and odd # of b's
 - **p** otherwise

FINITE STATE MACHINES

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

- We can begin forming a state machine for the system description by reviewing the possible states. In addition, assign each state a state name.
 - S_{FF}: even # of a's and even # of b's / output is p
 - S_{EO}: even # of a's and odd # of b's / output is q
 - S_{OO} : odd # of **a**'s and odd # of **b**'s / output is **p**
 - S_{OF}: odd # of a's and even # of b's / output is p
- Note that this machine can be a Moore machine. So, we can associate the output with each state.

FINITE STATE MACHINES

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

Now draw a circle with each state.

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

- FINITE STATE MACHINES
 - Finally, for each state, consider the effect for each possible input.
 - For instance, starting with state S_{EE}, the next state for the three input a,
 b, and c are determined as follows.

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

FINITE STATE MACHINES

• Finishing the state diagram, the following is obtained.

FSM EXAMPLES

FINITE STATE MACHINES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

- A state table can also be formed for this state diagram as follows.
 - First, assign a binary number to each state

•
$$S_{EE} = 00$$
, $S_{EO} = 01$, $S_{OO} = 10$, $S_{OE} = 11$

- Assign a binary number to each input
 - a = 00, b = 01, c = 10
- Assign a binary number to each output
 - p = 0, q = 1
- Then for each state, find the next state for each input. In this case there
 are three possible input values, so, three possible state transitions from
 each state.
- The state table on the following slide shows the results for this example.

FINITE STATE MACHINES

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

Present State		Input	Next State		Output
P ₁	P ₀	X	N ₁	N ₀	Z
$S_{EE} = 0$	0	a = 00	S _{OE} = 1	1	p = 0
$S_{EE} = 0$	0	b = 01	$S_{EO} = 0$	1	p = 0
$S_{EE} = 0$	0	c = 10	$S_{EE} = 0$	0	p = 0
$S_{EO} = 0$	1	a = 00	$S_{OO} = 1$	0	q = 1
$S_{EO} = 0$	1	b = 01	$S_{EE} = 0$	0	q = 1
$S_{EO} = 0$	1	c = 10	$S_{EO} = 0$	1	q = 1
$S_{OO} = 1$	0	a = 00	$S_{EO} = 0$	1	p = 0
$S_{OO} = 1$	0	b = 01	$S_{OE} = 1$	1	p = 0
$S_{OO} = 1$	0	c = 10	$S_{OO} = 1$	0	p = 0
$S_{OE} = 1$	1	a = 00	$S_{EE} = 0$	0	p = 0
$S_{OE} = 1$	1	b = 01	$S_{OO} = 1$	0	p = 0
$S_{OE} = 1$	1	c = 10	$S_{OE} = 1$	1	p = 0

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

FINITE STATE MACHINES

- The Boolean function for the output can be determined from a Karnaugh map as follows.
 - Note that an input of **11** is not possible since we only have three inputs that we have assigned to **00**, **01**, and **10**. We can therefore use don't cares for this possible input.

$$Z = \overline{P_1}P_0$$

FSM EXAMPLES

FINITE STATE MACHINES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

 The Boolean function for the next state bit can also be determined from Karnaugh maps as follows.

$$N_1 = \overline{P_1 \oplus X_1 \oplus X_0}$$

$$N_0 = P_0 X_1 + \overline{P_0} \overline{X_1} = \overline{P_0 \oplus X_1}$$

FSM EXAMPLES

EXAMPLE #1

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

FINITE STATE MACHINES

The following logic circuit can be made with these Boolean functions.

FSM EXAMPLES

FINITE STATE MACHINES

EXAMPLE #2

•SEQUENTIAL CIRCUITS
•FSM EXAMPLES
-EXAMPLE #1

- A sequential circuit is defined by the following Boolean functions with input
 X, present states P₀, P₁, and P₂, and next states N₀, N₁, and N₂.
 - $N_2 = X(P_1 \oplus P_0) + \overline{X}(\overline{P_1 \oplus P_0})$
 - $\bullet \ \ N_1 = P_2$
 - $N_0 = P_1$
 - $Z = XP_1P_2$
- Derive the state table.
- Derive the state diagram.

FSM EXAMPLES

EXAMPLE #2

•SEQUENTIAL CIRCUITS

- •FSM EXAMPLES
 - -EXAMPLE #1
 - -EXAMPLE #2

FINITE STATE MACHINES

The state table is formed as follows.

Present State	Input	Next State	Output
P_2 P_1 P_0	X	N_2 N_1 N_0	Z
0 0 0	0	1 0 0	0
$\begin{matrix}0&0&0\\0&0&1\end{matrix}$	Ó	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	0
0 0 1	1	1 0 0	0
0 1 0	U 1	0 0 1	0
0 1 1	Ó	1 0 1	Ŏ
0 1 1	1	0 0 1	0
1 0 0 1 0 0	0 1	1 1 0	0
1 0 0	Ó	0 1 0	0
1 0 1	1	1 1 0	0
1 1 0	0	0 1 1	0
1 1 0	Ó	1 1 1 1 1 1	0
i i i	1	0 1 1	Ĭ

FINITE STATE MACHINES

FSM EXAMPLES

EXAMPLE #2

•SEQUENTIAL CIRCUITS

- •FSM EXAMPLES
 - -EXAMPLE #1
 - -EXAMPLE #2

The state diagram can be drawn as follows.

