Lecture 12

Computer-Aided Heuristic Two-level Logic Minimization
Computer-Aided Heuristic Two-level Logic Minimization

- Heuristic logic minimization
- Principles
- Operators on logic covers
- Espresso

Disclaimer: lecture notes based on originals by Giovanni De Micheli
Heuristic minimization

- Provide irredundant covers with ‘reasonably small’ cardinality
- Fast and applicable to many functions
- Avoid bottlenecks of exact minimization
 - Prime generation and storage
 - Covering
Heuristic minimization principles

• Local minimum cover:
 – given initial cover
 – make it prime
 – make it irredundant

• Iterative improvement:
 – improve on cardinality by ‘modifying’ the implicants
Heuristic minimization operators

• Expand:
 – make implicants prime
 – remove covered implicants

• Reduce:
 – reduce size of each implicant while preserving cover

• Reshape
 – modify implicant pairs: enlarge one implicant enabling the reduction of another

• Irredundant:
 – make cover irredundant
Example

<table>
<thead>
<tr>
<th>on-set</th>
<th>0000</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>prime implicants</th>
<th>α</th>
<th>0**0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>01**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>10**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>1*01</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ζ</td>
<td>*101</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Expansion

- Expand 0000 to $\alpha = 0**0$
 - drop 0100, 0010, 0110 from the cover
- Expand 1000 to $\beta = *0*0$
 - drop 1010 from the cover
- Expand 0101 to $\gamma = 01**$
 - drop 0111 from the cover
- Expand 1001 to $\delta = 10**$
 - drop 1011 from the cover
- Expand 1101 to $\epsilon = 1*01$
- Cover is $\{ \alpha, \beta, \gamma, \delta, \epsilon \}$
Example reduction

• Reduce $0**0$ to nothing
• Reduce $\beta = *0*0$ to $\bar{\beta} = 00*0$
• Reduce $\varepsilon = 1*01$ to $\bar{\varepsilon} = 1101$
• Cover is \{\bar{\beta}, \gamma, \delta, \varepsilon\}
Example reshape

- Reshape \{\beta, \delta\} to \{\beta, \delta\}
- where \delta = 10\ast 1
- Cover is \{\beta, \gamma, \delta, \varepsilon\}
Example second expansion

• Expand $\underline{\delta} = 10*1$ to $\delta = 10**$
• Expand $\underline{\varepsilon} = 1101$ to $\zeta = *101$
Summary of Example

• Expansion:
 – Cover: \{\alpha, \beta, \gamma, \delta, \varepsilon\}
 – prime, redundant, minimal w.r.to single cube containment

• Reduction:
 – \alpha eliminated
 – \beta = *0*0 reduced to \beta = 00*0
 – \varepsilon = 1*01 reduced to \varepsilon = 1101
 – Cover: \{\beta, \gamma, \delta, \varepsilon\}

• Reshape:
 – \{\beta, \delta\} reshaped to \{\beta, \delta\} where \delta = 10*1

• Second expansion:
 – Cover: \{\beta, \gamma, \delta, \zeta\}
 – prime, irredudnant (= minimal)
Expand
naive implementation

• For each implicant
 – for each non-* literal (*care* literal)
 ‣ raise it to * (*don’t care*) if possible
 – remove all covered implicants

• Problems:
 – check validity of expansion: 2 ways
 ‣ non intersection of expanded implicant with OFF-set
 • requires complementation of ON-set
 ‣ expanded implicant covered by union of ON-set and DC-set
 • can be reduced to recursive tautology check
 – order of expansions
Heuristics

• First expand cubes which are unlikely to be covered by other cubes
 – Selection: choose implicants with least number of literals in common with other implicants
 – Example: \(f = a'b'c'd' + ab'cd + a'b'c'd \) choose \(ab'cd \)

• Choose expansions to cover the largest number of minterms possible (\(\Rightarrow \) prime implicant)
Reduce Example

• Expanded cover:
 \[\alpha \quad **1 \]
 \[\beta \quad 00* \]

• Select \(\alpha \): cannot be reduced and still cover the ON-set

• Select \(\beta \): reduced to
 \[\beta \quad 001 \]

• Reduced cover:
 \[\alpha \quad **1 \]
 \[\beta \quad 001 \]
Irredundant Cover

• *Relatively essential* set E^r
 – implicants covering some minterms of the function not covered by other implicants

• *Totally redundant* set R^t
 – implicants covered by the relatively essentials

• *Partially redundant* set R^p
 – remaining implicants
Irredundant cover goal and example

• Goal: find a subset of R^p that, together with E^r, covers the function

• Example:

\[
\begin{array}{l}
\alpha \quad 00^* \\
\beta \quad *01 \\
\gamma \quad 1*1 \\
\delta \quad 11^* \\
\varepsilon \quad *10 \\
\end{array}
\]

• $E^r = \{ \alpha, \varepsilon \}$

• $R^t = \{ \}$

• $R^p = \{ \beta, \gamma, \delta \}$
Example: continued

• Covering relations:
 – β is covered by \{\(\alpha\), \(\gamma\}\}
 – γ is covered by \{\(\beta\), \(\delta\)\}
 – δ is covered by \{\(\gamma\), \(\varepsilon\)\}

• Minimum cover: $\gamma \cup E^r$
Espresso Algorithm

• Compute the complement
• Extract essentials
• Iterate:
 – expand, irredundant, reduce
• Cost functions:
 – cover cardinality \mathcal{O}_1
 – weighed sum of cube and literal count \mathcal{O}_2
Espresso algorithm

Espresso(F,D) {
 $R = \text{complement}(F \cup D)$;
 $F = \text{expand}(F, R)$;
 $F = \text{irredundant}(F, D)$;
 $E = \text{essentials}(F, D)$;
 $F = F - E$;
 $D = D \cup E$;
 repeat {
 $\varnothing_2 = \text{cost}(F)$;
 repeat {
 $\varnothing_1 = |F|$;
 $F = \text{reduce}(F, D)$;
 $F = \text{expand}(F, R)$;
 $F = \text{irredundant}(F, D)$;
 } until ($|F| \geq \varnothing_1$);
 $F = \text{last_gasp}(F, D, R)$;
 } until cost(F) $\geq \varnothing_2$;
 $F = F \cup E$;
 $D = D - E$;
 $F = \text{make_sparse}(F, D, R)$;
}
Summary
heuristic minimization

• Heuristic minimization is iterative
• Few operators applied to covers
• Underlying mechanism
 – cube operation
 – recursive paradigm
• Efficient algorithms
• Preview: next lecture covers efficient boolean representations for computer manipulation