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A New Class of Iterative Steiner Tree Heuristics with 
Good Performance 
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Abstract-The minimum rectilinear Steiner tree (MRST) 
problem is very important for such aspects of physical layout 
as global routing and wiring estimation. Virtually all previous 
heuristics for computing rectilinear Steiner trees begin with a 
minimum spanning tree (MST) topology and rearrange edges to 
induce Steiner points. This paper gives a more direct approach 
which makes a significant departure from such spanning tree- 
based strategies: we iteratively find optimal Steiner points to be 
added to the layout. Our method not only gives improved aver- 
age-case performance, but also escapes the worst-case exam- 
ples of existing approaches. We show that the performance ra- 
tio of our method can never be as bad as 3/2, and is in fact 
bounded by 4/3 on the entire class of instances where the 
c(MST)/c(MRST) cost ratio is exactly 3/2. Sophisticated com- 
putational geometry techniques allow efficient and practical im- 
plementation, and the method is naturally suited to technolog- 
ical regimes where, e.g., via costs can be high and the number 
of Steiner points should be limited. Extensive performance re- 
sults show a 2% to 3% wire length reduction over the best pre- 
vious heuristics. We describe a number of variants and exten- 
sions, and suggest directions for further research. 

I. INTRODUCTION 
HE minimum rectilinear Steiner tree (MRST) prob- T lem in the plane is as follows: Given a set P of n 

points, find a set S of Steiner points such that the mini- 
mum spanning tree over P U S has minimum cost. The 
cost of any edge in the tree is the rectilinear, or Manhat- 
tan, distance between its endpoints, and the cost of a tree 
is the sum of its edge costs. This is a fundamental prob- 
lem in global routing and wire estimation for VLSI circuit 
layout, where we are interested in Steiner trees connect- 
ing the pins of a signal net. 

Several results have greatly influenced the progress of 
research on the MRST problem. First, Hanan showed in 
1966 lhat if one draws horizontal and vertical grid lines 
through each of the points in P, there is an MRST whose 
Steiner points S are all chosen from among the intersec- 
tion points (the Steiner candidate set) in the resulting grid 
[8]. Second, Garey and Johnson showed that despite this 
restriction on the solution space, the MRST problem is 
NP-complete [5]. Thus, a number of heuristics have been 
proposed, as surveyed recently in [16] and [23]. When 
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attacking intractable problems, a basic goal is to devise 
provably good heuristics, typically in the sense of having 
bounded worst-case error from optimal. Therefore, a third 
fundamental result is that of Hwang [l 11, who showed 
that the rectilinear minimum spanning tree (MST) over P 
is a fairly good approximation to the MRST, with a worst- 
case performance ratio of 3/2; i.e., if c (T)  denotes the 
total cost of a tree T, c(MST)/c(MRST) I 3/2.  Fig. 1 
shows an MST and an MRST for the same four-pin net. 
The result of Hwang implies that any MST-based strategy 
which improves upon an initial MST topology will also 
have performance ratio of at most 3/2. Thus, a number 
of Steiner tree heuristics resemble classic MST construc- 
tion methods. 

Examples of this approach include two recent MRST 
heuristics from Ho et al .  [lo] and Hasan et al .  [9]. The 
first gives a linear-time construction for the optimal rec- 
tilinear Steiner tree (RST) derivable from a given MST, 
i.e., lying within the union of the bounding boxes of the 
MST edges. The second heuristic also begins with an MST 
topology, and iteratively adds as many ‘‘locally indepen- 
dent” Steiner points as possible. Because the output of 
these heuristics will not have greater cost than the MST, 
they are indeed provably good, with a worst-case perfor- 
mance ratio of 3 /2  by the result of Hwang [ 113. In prac- 
tice, existing MRST heuristics exhibit very similar per- 
formance on random instances ( n  points generated from a 
uniform distribution in the unit square); the heuristic 
Steiner tree cost is 7% to 9% smaller than MST cost on 
average [16], [23]. A fundamental open issue has been to 
find a heuristic method with performance ratio strictly less 
than 3 /2. 

The worst-case bound given by Hwang and such aver- 
age-case bounds as that given by Steele’ provide compel- 

‘A more theoretical, retrospective justification for MST-based ap- 
proaches is based on asymptotics of subadditive functionals [l], [22] in the 
Lp plane (i.e., where the distance function in the plane is given by A = 
g(Ax)p + (Ayy; thus p = 1, p = 2, and p = m define the Manhattan, 
Euclidean, and Chebyshev norms, respectively). Such functionals include 
the MST cost and the MRST cost. Steele [22] has shown that optimal so- 
lutions to random n-point instances of these problems have expected cost 
0 6 ,  where the constant 0 depends on both the problem, e.g., MRST ver- 
sus MST, and the underlying Lp norm. The theory of subadditive function- 
als has many implications for VLSI CAD optimization. For example, sev- 
eral VLSI global routers (e.g., TimberWolfSC [18]) use the semiperimeter 
of a signal net bounding box as a computationally efficient MRST approx- 
imation. The growth function above immediately implies that this estimate 
can be refined by using an O ( 6 )  scaling factor, with negligible CPU 
cost. 
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Fig. 1 .  MST (lefr) and MRST (right) for the same four-point set. 

ling justification for MST-based MRST approximations. 
However, there are motivations for considering altema- 
tive approaches. Kahng and Robins [13] recently gave a 
class of examples which shows that the 3 /2 bound is tight 
for a large number of MST-based methods; i.e., the MST 
can be “unimprovable” (see Fig. 2). Thus, it seems un- 
likely that an MST-inspired heuristic will have perfor- 
mance ratio strictly less than 3 /2. 

Furthermore, although the MST and MRST may have 
“similar’ ’ growth rates, an MST-derived solution method 
may not be appropriate for VLSI routing applications. It 
has been shown [2], [7] that the optimal Steiner tree, as 
well as heuristic MST-based RST’s, will have a linear 
expected number of Steiner points. However, in certain 
board wiring technologies or for IC manufacturing and 
reliability considerations, having so many Steiner points 
may not be desirable. In fact, we would like to prescribe 
the relative incidence of Steiner points as a routing param- 
eter that is a function of technology, performance, or es- 
timated layout congestion, but this is not a natural concept 
when we use an MST-based method. 

When we consider the extreme case where extra vias 
are very expensive, it is natural to ask the following: If 
we are allowed to introduce exactly one Steiner point into 
a net, where should it be placed? This is the motivation 
for the iterated 1-Steiner heuristic, which repeatedly finds 
the best possible Steiner point and adds it to the point set 
until no further improvement is possible. The purpose of 
this paper is to introduce the iterated 1-Steiner method 
along with several variations. We find that this new ap- 
proach has a number of advantages: 

The performance ratio of the method is never as bad 
as 3/2, we prove that it is not greater than 4 / 3  on 
the entire class of instances for which 
c(MST) /c(MRST) = 3 /2, while other known meth- 
ods have performance ratio arbitrarily close to 3/2. 
The average performance of the method is signifi- 
cantly better than all previous MST-based methods, 
yielding an average improvement of 10% to 11% 
over MST costs. 
We can limit the algorithm so that it introduces only 
k Steiner points (e.g., in a layout regime where vias 
are expensive). 
The method can be efficiently implemented by ap- 
plying elegant computational geometry results, in- 

n n n - U - 0 
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Fig. 2. An example where the cost ratio of a separable (in the terminology 
of Ho, Vijayan, and Wong) MST-derived-RST to the MRST is arbitrarily 
close to 3 /2 .  The MRST shown (top) has cost (4/3) . (n - l ) ,  while any 
RST derivable from the accompanying MST (bottom) has cost 2(n - 2). 

cluding those of Georgakopoulos and Papadimitriou 

There are many useful extensions, including ran- 
domized, batched, and parallel variations, as well as 
applications to alternate routing geometries. 

In the following section, we review several important 
attributes of Steiner trees and develop the new method in 
detail. In Section 111, we discuss variants and extensions 
of the method, while Section IV presents a large body of 
empirical results. The paper concludes by listing direc- 
tions for further research. 

P I *  

11. THE ITERATED 1 -STEINER APPROACH 

We denote the minimum spanning tree over a point set 
P by MST(P),  and use c(MST(P)) to denote the cost of 
the MST on point set P. Given a point set P = { p l ,  - - * 

, pn } , a I-Steiner point is any point x such that c (MST(P 
U {x})) is minimized, with c(MST(P U {x})) < 
c(MST(P)).  A I-Steiner tree is the minimum spanning tree 
over P U { x } .  

Recall that a Steiner tree is an MST on the union of the 
original point set P and a set of Steiner points S. Our ap- 
proach is to iteratively calculate optimum 1-Steiner points 
and include them into S. The length of the MST over P 
U S will decrease with each additional point, and we ter- 
minate the construction if there is no x such that c (MST(P 
U S U { x } ) )  < c(MST(P U S)). Fig. 4 illustrates the 
execution of iterated 1-Steiner on a four-point example. 

The iterated 1-Steiner algorithm is thus stated as fol- 
lows: 

S=gr  
While IS1 < n and 3 1-Steiner Doint x Do S = S U { x l  

By the result of Hanan, we can find a 1-Steiner point 
by constructing a new MST on n + 1 points for each ele- 
ment in the Steiner candidate set, then picking the can- 
didate which results in the shortest MST. Each MST com- 
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Fig. 3 .  Execution of iterated 1-Steiner on a four-point example 

putation can be performed in O(n log n) time [15], 
yielding an O(n3 log n) time bound. Note that this is the 
time required to find just one 1-Steiner point, and that the 
Steiner tree may contain up to n - 2 Steiner points [7]. 

As it turns out, a new 1-Steiner point may be added in 
O(n2) time, as described below. A linear number of 
Steiner points can thus be found efficiently with a total of 
0(n3)  effort, and finding heuristic solutions with s k  
Steiner points, in a regime with high via costs, can be 
accomplished in O(kn2) time. 

There are numerous extensions to the iterated 1-Steiner 
approach, including randomized variants and a very use- 
ful amortization of the 1-Steiner point computation which 
adds an entire set of “independent” Steiner points in a 
single iteration. Before we discuss these and other ver- 
sions of this iterative construction, we review the O(n2) 
method for finding an 1-Steiner point and discuss the per- 
formance ratio of the 1-Steiner approach. 

A. Finding 1 -Steiner Points Eflciently 
Georgakopoulos and Papadimitriou [6] give an O(n2) 

method for computing a 1-Steiner tree (not just a 
1-Steiner point) for n points in the Euclidean plane. We 
use a direct adaptation of their method for the Manhattan 
norm. This idea is summarized as follows: 

A point p cannot have two neighbors in the MST 
which lie in the same octant of the plane with respect 
to p. Thus we can fix eight “orientations” at 45” 
intervals, each of which induces a Voronoi-like par- 
tition (the oriented Dirichlet cells) of the plane. 
These eight partitions can be overlaid into a “coars- 
est common partition” within 0(n2)  time. The re- 
sulting O(n2) regions of this partition are isodendral: 
introducing any point from within a given region will 
result in a constant MST topology. 

The minimum spanning tree on the n points is con- 
structed, and we perform preprocessing in O(n2) time 
such that whenever a new point is added to the point 
set, updating the MST to include the new point re- 
quires constant time. 
We then iterate through the O(n2) regions of the ov- 
erlaid partitions and determine, in constant time per 
region, the optimal Steiner point in each region. Each 
such point will induce an MST on n + 1 points that 
can be computed in constant time using the infor- 
mation obtained from the preprocessing. Comparing 
the costs of these trees and selecting the smallest one 
will give the minimum-length MST on n + 1 points. 
The total time for all phases is O(n2). 

There are at most n iterations, each requiring O(n2) com- 
putation; therefore the time complexity of this method is 
O(n3). Empirical results in Section I11 show that iterated 
1-Steiner significantly outperforms all existing heuristics 
(see Table I). We observe that the actual number of iter- 
ations the algorithm performs for random pointsets is less 
than n / 2  on average.2 

In surveying the vast Steiner tree literature, it seems 
that the closest conceptual relative of the iterated 1-Steiner 
heuristic is a method proposed by Smith and Liebman 
[19], [20], which involves a highly ad hoc examination 
of a linear-size subset of the candidate Steiner set. Our 
method seems preferable for several reasons: (1) perfor- 
mance: the method in [19] gives less than 8% average 
improvement over MST length for random point sets [ 121 
and thus seems to fall in with the other methods in the 
literature, while our method gives almost 11 % average 
improvement3; (2) eflciency: [19] gives an O(n4) method, 
while the iterated 1-Steiner algorithm is O(n3); (3) sim- 
plicity: the algorithm in [19] requires seven pages to de- 
scribe while our method is simply described and coded. 

B. Performance Ratio 
Several results can be proved which bound the error of 

the iterated 1-Steiner method. A main result is that the 
output of iterated 1-Steiner can never be as bad as 3/2 
times optimal. We prove our bound as follows. First, we 
completely characterize the class of instances (the ‘‘unions 
of pluses”) for which the ratio c(MST)/c(MRST) = 3/2,  
which is a result of independent interest. We then show 
that the iterated 1-Steiner algorithm will always find a 
1-Steiner point on such instances, whereas previous meth- 
ods may fail to find any improvement over the MST. Fi- 
nally, we show that on this class of “difficult” instances, 

’There are examples where as many as n - 1 iterations are performed. 
Thus, our method can generate more Steiner points than would exist in the 
optimal MRST, although we can easily enforce the n - 2 bound by re- 
moving degree-2 and degree-1 Steiner points without increasing the tree 
cost. 

’Recently, the method of [3] has been reported to also yield about 1 1  % 
average improvement over MST. 
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I Perf. Perf. Perf. #SP #SP #SP 
1 0.00 6.94 24.93 0 0.66 1 

0.00 8.70 29.11 0 1.20 3 
0.00 9.15 25.07 0 1.72 4 
0.00 9.35 27.00 0 2.23 4 
0.00 9.42 23.80 0 2.76 5 
0.00 9.36 25.46 1 3.22 6 
0.00 9.38 22.14 1 3.73 7 
3.30 9.24 19.99 1 4.18 7 
1.26 9.16 19.93 1 5.11 9 
0.00 8.93 21.73 1 5.98 11 
0.00 8.85 19.35 1 6.81 11 
0.09 8.78 15.99 1 7.71 12 
0.04 8.61 15.98 1 8.50 14 
0.42 8.21 14.39 1 10.34 17 
0.16 8.44 15.00 1 12.50 19 
0.44 7.75 14.82 1 13.56 24 
0.22 7.90 13.64 1 16.00 26 
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Perf. Perf. Perf. #SP #SP #SP 
0.00 6.94 24.93 0 0.66 1 
0.00 8.73 29.11 0 1.09 3 
0.00 9.45 25.07 0 1.60 4 
0.00 9.80 27.00 0 2.07 5 
0.00 10.07 23.80 0 2.57 5 
0.31 10.19 25.46 1 3.02 6 
0.80 10.28 22.57 1 3.49 7 
0.39 10.25 22.62 1 3.94 7 
1.50 10.35 19.93 2 4.86 9 
2.45 10.42 21.77 3 5.76 10 
3.01 10.51 19.90 3 6.78 11 
4.09 10.43 17.19 4 7.63 11 
5.40 10.60 16.25 5 8.58 14 
4.07 10.67 15.62 6 10.83 16 
5.00 10.90 15.60 10 13.11 18 
6.46 10.78 15.32 12 15.31 22 
5.78 10.97 14.76 12 17.78 26 

- 
# 

Pts 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
18 
20 
25 
30 
35 
40 

- 

- 

- 
# 

Pts - 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
18 
20 
25 
30 
35 
40 

Corner Flipping 
Min Ave Max 
Perf. Perf. Perf. 
0.00 6.60 24.93 
0.00 7.85 29.11 
0.00 8.09 25.07 
0.00 8.16 27.00 
0.00 8.12 23.15 
0.00 8.20 22.57 
0.37 8.27 20.94 
0.39 8.20 19.29 
1.02 8.20 19.27 
1.93 8.25 18.04 
2.46 8.24 16.65 
3.07 8.15 16.12 
3.26 8.23 14.21 
3.10 8.37 13.70 
3.51 8.44 12.70 
4.98 8.35 13.18 
4.35 8.50 12.78 

TABLE 1 
STEINER TREE HEURISTIC STATISTICS 

Prim 
Min Ave Max 
Perf. Perf. Perf. 
0.00 4.10 24.93 
0.00 5.71 29.11 
0.00 6.20 25.07 
0.00 6.34 22.56 
0.00 6.45 23.24 
0.00 6.52 19.97 
0.00 6.57 19.16 
0.00 6.45 17.34 
0.00 6.44 18.40 
0.12 6.46 16.09 
0.41 6.48 14.34 
0.72 6.60 13.24 
0.84 6.31 11.89 
1.81 6.47 13.01 
2.19 6.67 11.20 
2.85 6.53 11.32 
2.89 6.68 11.40 

Iterated 1-Steiner 
Min Ave Max Min Ave Max 
Perf. Perf. Perf. #SP #SP #SP 
0.00 6.94 24.93 0 0.66 1 
0.00 8.73 29.11 0 1.09 3 
0.00 9.41 25.07 0 1.59 4 
0.00 9.74 27.00 0 2.03 5 
0.00 9.99 23.80 0 2.52 5 
0.31 10.10 25.46 1 2.96 6 
0.80 10.19 22.57 1 3.42 7 
0.39 10.15 22.62 1 3.83 7 
1.50 10.26 19.93 2 4.73 8 
2.45 10.34 21.77 2 5.60 9 
2.95 10.43 19.90 3 6.61 10 
3.61 10.35 17.19 4 7.42 11 
5.40 10.52 16.25 5 8.35 13 
4.07 10.64 15,62 6 10.59 15 
5.00 10.90 15.60 9 12.80 17 
6.46 10.74 15.32 10 15.04 20 
5.78 10.93 14.76 12 17.37 22 

I 2 Meta Heuristic 
I Min Ave Max Min Ave Max I Min Ave Max Min Ave Max 

the iterated 1 -Steiner method actually has performance 
bound I 4 / 3 ,  significantly better than previous methods. 

Lemma 1: Any point set P with IPI 5 3 has 
c(MST)/c(MRST)  I 4 / 3 .  

Proof: For ]PI = 2 ,  c (MST)/c(MRST)  = 1. For IPI 
= 3 we have c(MRST) = R / 2 ,  where R is the perimeter 
of the bounding box of P .  On the other hand, we observe 
that c(MST) I 2 R / 3 .  It follows that c(MST)/c(MRST)  

De$nifion: A plus is a Steiner tree over four points 
having coordinates of the form {(x - r ,  y ) ,  (x + r, y ) ,  
(x, y - r ) ,  (x, y + r ) } ;  a plus has exactly one Steiner 
point at (x, y ) ,  the midpoint of the plus. 

Lemma 2: A plus is the only configuration of four 
points that achieves a ratio c(MST)/c(MRST)  of exactly 
3 / 2  using exactly ohe Steiner point. 

Proof: If a four-point configuration has exactly one 

I ( 2 R / 3 ) / ( R / 2 )  = 4 / 3 .  0 

Steiner point in its MRST, its topology is the unique one 
depicted in [ l l ,  Fig. 5(a)] (i.e., that of a plus); thus the 
point set must have coordinates of form P = {(x - h l ,  
y ) ,  (x + h2, y ) ,  (x, Y - V I ) ,  (x, Y + ~ 2 ) ) .  Again, 1etRbe 
the perimeter of the bounding box of P .  The MRST for P 
has cost exactly equal to R / 2 ,  while the MST has cost at 
most R - R / 4  since we can obtain a spanning tree by 
deleting the largest of the four edges which make up the 
bounding box, and this edge must have cost at least R / 4 .  
This implies that c(MST)/c(MRST)  I 3/2,  with equal- 
ity holding only when the largest edge around the bound- 
ing box is not greater than R / 4 ,  i.e., when all four edges 
around the bounding box are of equal length. Therefore, 
hl = h2 and v1 = v2. We write h = h,  = h2 and v = v1 
= v2, and assume without loss of generality that h s v. 
We now have 

3 c(MST) 2 ( v  + h) + 2h h 
-= = 1 + -  
c(MRST) 2 (v  + h) v + h - 2  

< -  
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with equality holding when h = U ,  implying that the con- 
figuration is indeed a plus. 0 

DeJinition: A union of pluses is a Steiner tree with k 
Steiner points over a point set P with I PI = 3k + 1, where 
each Steiner point has degree 4 and all four edges incident 
to any Steiner point are of equal length. 

Theorem 1: Any point set having c(MST) / c ( M R S T )  = 
3 /2  has an MRST which is a union of pluses. 

Proof: Following the proof of the result in Hwang 
[ 1 11, note that for any point set P there is an optimal Stei- 
ner tree composed of connected components, each of 
which has all of its Steiner points forming a chain. With- 
out loss of generality, all of the Steiner points on such a 
chain are collinear, with the possible exception of the 
Steiner point at the end of the chain. Using the same upper 
bound for MST cost and the exact expression for MRST 
cost as in [ l l ] ,  we can equate expressions for (2/3) 
c(MST) and c(MRST) for the points of any chain: 

R .  (1 + 3 - e) = R (; + e), 
where R is again the length of the bounding box of the 
points in the chain, and 8 is defined so that R - 8 is equal 
to the sum of the distances from all (except the last) of 
the original points to their adjacent Steiner points in the 
chain. The equality above implies that 8 = 0 and thus all 
but one of the original points have the same coordinates 
as their adjacent Steiner points, a contradiction unless 
there is only one Steiner point (i.e., the last) in this chain. 
We already know from Lemma 2 that any chain which 
has only one Steiner point and which exactly achieves the 
3/2 ratio must be a plus. It follows that any optimal Stei- 
ner tree which exactly achieves the 3 /2  ratio must be de- 
composable into pluses; i.e., it is a union of pluses. 0 

Theorem 1 completely characterizes the point sets for 
which c(MST)/c(MRST)  is exactly equal to 3/2.  Using 
this, we show the following: 

Theorem 2: The performance ratio of iterated l-Steiner 
is always less than 3/2.  

Proof: If a point set has c(MST)/c(MRST)  < 312 
then even if iterated l-Steiner does not find any Steiner 
points, its performance ratio will be less than 3/2.  From 
Theorem 1, we know that any point set for which 
c(MST)/c(MRST)  = 312 will have an MRST that is a 
union of pluses; in this case iterated 1-Steiner will cer- 
tainly select and add the midpoint of some plus at the first 
iteration; hence the performance ratio will be less than 
3 /2  overall. To see this, note that a spanning tree with 
cost 3 /2  times c(MRST) is found by simply replacing 
every plus in the MRST by an arbitrary tree on the four 
endpoints of the plus, as shown in Fig. 4. Adding the 
midpoint of the plus as a Steiner point will reduce the cost 
of connecting these four endpoints, and the midpoint is 

Fig. 4. Locally replacing each plus (lefr) with an MST (right). 

indeed one of the candidates considered during the first 
0 

Notice that existing MST-based methods will have per- 
formance ratio arbitrarily close to 3 /2  on unions of pluses, 
as shown by the example of Fig. 2. In contrast, we may 
show the following good performance bound for the 
l-Steiner method: 

Theorem 3: The performance ratio of iterated l-Steiner 
on instances whose MRST’s are unions of pluses is al- 
ways s 4 / 3 .  

Proof: When iterated l-Steiner selects a midpoint of 
a plus, at most three midpoints of other pluses may be 
excluded from future selection. By the selection rule of 
the algorithm, the three midpoints that are possibly ex- 
cluded cannot belong to pluses larger than the one se- 
lected. Thus if iterated l-Steiner selects a plus that is not 
in the optimal MRST, the savings will be at least as great 
as the savings that would have been realized by selecting 
the largest of the (up to three) pluses that are now ex- 
cluded by topological constraints, as shown in Fig. 5 .  

Each plus represents a savings of 1 /3  of the MST cost 
over the endpoints of the plus, so even if we use simple 
MST edges to connect the remaining affected points to the 
selected plus, the total heuristic cost is no more than 

Therefore, the performance ratio of iterated l-Steiner is 
no greater than ($ c ( M S T ) ) / ( $  c(MST))/  = 4/3. 0 

We note that this bound can probably be tightened by 
more exhaustive case analysis. Since most nets of prac- 
tical size have fewer than six terminals, we now briefly 
discuss performance bounds for small nets. 

Theorem 4: The iterated l-Steiner heuristic is optimal 
for four or fewer points. 

Proof: For three points, there can be at most one 
Steiner point, and since our heuristic examines all candi- 
dates, it is optimal. For a set of four points, the MRST 
can have zero, one, or two Steiner points, and our method 
is trivially optimal when this number is less than 2. When 
the MRST has two Steiner points, it must have one of the 
two topologies shown in Fig. 6 [ l  13. A simple case anal- 

iteration of the iterated 1 -Steiner a l g ~ r i t h m . ~  

c(MST) - (1/3) * (1/3) * c(MST)  = (8/9) . c(MST).  

4Even if there are other candidates within the convex hull of the four 
points of the plus, the midpoint trivially gives the greatest possible savings 
since it achieves a cost improvement of exactly one third. 



? 
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Fig. 5. Each selected I-Steiner point may exclude at most three potential 
1-Steiner points from future selection; thus at least one third of the maxi- 
mum possible savings is achieved. 

4 
Fig. 6.  The two possible Steiner tree topologies on four points. 

P P 
Fig. 7. A four-point example where MST-improvement algorithms per- 
form arbitrarily close to 4 / 3  times optimal (Zef); in contrast, iterated 
1-Steiner performs optimally on all point sets of size 4 or less (r ight) .  

P 
0 P 

P 
T 

6 

4 

Fig. 8 .  A nine-point example where the iterated 1-Steiner performance ra- 
tio is 13/11; the optimal MRST ( l e f )  has cost 1 1 ,  while the (possible) 
heuristic output (righr) has cost 13.  

ysis shows that our heuristic always selects both Steiner 
0 

In contrast, MST-based methods are generally not op- 
timal even for four-point nets, as shown by the example 
in Fig. 7. We have found a nine-point example where the 
1-Steiner heuristic performs as badly as 13 / 1 1 times op- 
timal (Fig. 8). After considerable effort we have not found 
any instance for which iterated 1-Steiner has a perfor- 
mance ratio worse than 13 / 1 1. 

It is encouraging that while five- or six-point examples 
exist which force a performance ratio of 3 /2  for other 
MRST heuristics in the literature, the worst-case perfor- 
mance ratio of iterated 1-Steiner for a five-point example 
seems to be only 7 / 6  (Fig. 9). We conjecture that the 
iterated 1-Steiner method has a performance ratio uni- 
formly bounded away from 3/2;  i.e., there exists a pos- 

points, with order of selection irrelevant. 

Fig. 9. A five-point example where the iterated I-Steiner performance ra- 
tio is 7 /6 .  The optimal MRST ( l e f )  has cost 6,  while the (possible) heu- 
ristic output (righr) has cost 7. 

itive constant E such that iterated 1-Steiner will never have 
performance ratio greater than 3 /2  - on any i n ~ t a n c e . ~  

111. 1 -STEINER VARIANTS 
A. A Random Variant 

An important variant of iterated 1-Steiner is motivated 
by observing that it may not be necessary to find the best 
candidate Steiner point at each iteration. In particular, the 
quality of the final tree might be acceptable even if each 
step simply chooses a random improving point. For both 
this method and the original heuristic, we may simplify 
the output by removing Steiner points that become de- 
gree-l or degree-2 points in subsequent MST’s; by the 
triangle inequality the latter can be removed without in- 
creasing the MST cost, and the former can trivially be 
removed. The advantage of this refinement is that perfor- 
mance is not affected, while the final layout is guaranteed 
to have at most n - 2 Steiner points. The iterated random 
I-Steiner heuristic is: 
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~ 

S = f l  
While 3 1-Steiner points Do 

S = S U { a random improving Steiner point } 
Remove elements of S with degree I 2 in MST(P U S :  

Iterated random 1-Steiner lends itself well to a simple, 
compact implementation. Performance is worse than it- 
erated 1 -Steiner, but remains slightly better than MST- 
derived solutions for typical instances. Iterated random 
1-Steiner will clearly terminate because the MST length 
decreases monotonically, but the cost can take on any of 
an exponential number of distinct values for certain in- 
stances (intuition suggests that there is a polynomial ex- 
pected upper bound on the number of iterations). A var- 
iant which requires that a point cannot return to the layout 
after it has been deleted will have a trivial O(n2) bound 
on the number of iterations, and we can construct a family 
of instances for which the randomized method actually 
produces this quadratic number of Steiner points. 

B. A Batched Variant 
Perhaps the most promising variant involves amortiza- 

tion of the computational expense, as follows. We use the 
approach of [6] to compute an optimal 1-Steiner point and 
its associated MST cost savings within each isodendral 
region, but instead of selecting only a Steiner candidate 
which has highest cost savings, we select a maximal “in- 

’Nore Added in Proof: recent methods of Berman [24] and Zelikovsky 
[25] can be used to show that our conjecture is true; e . g . ,  an 1 1  /8  perfor- 
mance ratio can be established for the batched 1-Steiner variant described 
below. 
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dependent” set of Steiner points, similar to the approach 
of [9]. The criterion for independence is that no candidate 
Steiner point is allowed to interfere with, i.e., reduce, the 
potential MST cost savings of any other candidate in the 
added set. In particular, for a set of points P ,  candidate 
Steiner points x and y may be added in the same round 
only if 

AMSTV‘, { X I )  + AMST(P,  { y } )  I AMST(P,  {x, y } ) ,  

where A M S T ( P ,  S )  = max(0, MST(P)  - MST(P U S ) )  
and where A M S T ( P ,  { x } )  > 0 for x to be a candidate 
Steiner point. A round of this method is formally de- 
scribed as follows: 

Compute the MST over P in O(n log n )  time using a 
Voronoi diagram-based method [ 151. Also construct 
the weighted undirected graph G = ( P ,  E ) ,  where E 
= { ( x ,  y )  I (x, y )  is an edge in the Delaunay trian- 
gulation over P }  and the weight of each edge in E is 
the rectilinear distance between its two endpoints. 
Compute the O(n2) isodendral regions over P ,  and 
for each region determine the 0(1) potential neigh- 
boring points in the MST as in [6]. This requires a 
total of o(n2) time. 
Preprocess the O(n2) isodendral regions, now treated 
as a planar subdivision, so that future planar subdi- 
vision searches (i.e., determining the planar region 
in which a given point lies) may be performed in 
O(1og n )  time [ 151. This preprocessing requires O(n2 
log n)  time, using 0 ( n 2  log n )  space. 
For each candidate Steiner point x ,  compute the cost 
savings A M S T ( P ,  { x } )  associated with x .  We deter- 
mine the isodendral region to which x belongs in 
O(1og n )  time via planar subdivision search, and let 
X be the set of potential MST neighbors of x .  For 
each subset Y E X we add the weighted edge set { ( x ,  
y )  1 y E Y }  to the graph G (recall that the weight of 
each edge is the rectilinear distance between x and 
y ) .  The MST of a planar weighted graph can be 
maintained using @log n )  time per additiodinser- 
tion of a point or edge [4]. Since (XI = O(1) and 
therefore 1 Y I = O( l ) ,  we can determine in O(1og n )  
time the MST cost savings for each candidate Steiner 
point. By Hanan’s theorem there are at most n2 can- 
didate Steiner points; therefore the time for this en- 
tire phase is O(n2 log n ) .  
Next, sort the O(n2) Hanan candidates in order of 
decreasing MST cost savings; this requires O(n2 log 
n )  time using any efficient sorting algorithm. 
Determine a maximal set of independent candidate 
Steiner points to be added during this round, by suc- 
cessively adding candidates in order of decreasing 
MST cost savings, as long as each added Steiner 
point is independent of all Steiner points previously 
added during the round. In other words, for an orig- 
inal point set P ,  a set of already added candidate 
points S ,  and a new candidate x ,  add x to S if and 
only if A M S T ( P ,  { x } )  I AMST(P U S ,  {x}). 
Again, MST cost savings arising from the addition 

or deletion or a single point can be determined in 
time O(1og n)  [4], bringing the total time for this en- 
tire step to 0 ( n 2  log n ) .  

We iterate such rounds with P = P U S until we reach 
a round which fails to add at least one Steiner point to P .  
The total time required for each round is O(n2 log n ) .  
Given a point set P ,  the batched I-Steiner algorithm is 
summarized as follows: 

~ 

While 3 set S = {xIAMST(P,  { x } )  > 0} # 
For x E S in order of decreasing AMST Do 

Do 

If AMST(P - S ,  { x } )  I AMST(P,  {x}) 
Then P = P U { x }  

Empirical data indicate that the number of rounds re- 
quired grows much more slowly than the number of Stei- 
ner points produced. For example, experimental results 
on point sets of size 40 show an average number of about 
17 Steiner points produced (with a maximum of 22) ,  while 
the average number of rounds for batched 1-Steiner is only 
2.05 (with a maximum of 4). We conjecture that the num- 
ber of rounds grows only sublinearly as a function of I PI. 

IV. COMPUTATIONAL RESULTS 

We coded the iterated 1-Steiner, the iterated random 
1-Steiner, and batched 1-Steiner heuristics, along with 
several existing methods, using ANSI C in both Sun-4 
and Apple Macintosh environments. The code is available 
from the authors upon request. 

Extensive performance comparisons contrasted iterated 
1-Steiner and random 1-Steiner with the standard Corner 
and Prim methods described below. For typical values of 
n ,  5000 n-point instances were solved using all methods. 
The instances were generated randomly from a uniform 
distribution in a 1000 X 1000 grid; such instances are 
statistically indistinguishable from the pin locations of ac- 
tual cell-based layouts, and they are in fact the standard 
test-bed for Steiner tree heuristics [16]. The results are 
summarized in Table I, and are depicted graphically in 
Fig. 10. Table I1 gives results demonstrating that batched 
1-Steiner is as effective as iterated 1-Steiner. 

A. Incremental Calculations 
These tables also show that even when restricted to a 

k-point or k-round solution, both the iterated and the 
batched 1-Steiner algorithms still perform well, with a 
large portion of the wire-length savings (as a percentage 
improvement over the MST cost) occumng in the first 
several iterations/rounds. Because of this, it seems rea- 
sonable for a layout system to use our method for “ k -  
Steiner point routing”; this will be accomplished in O(kn2) 
time and the parameter k can reflect via costs, routing 
congestion, performance, and other manufacturability or 
reliability attributes. Similar arguments can be made for 
a k-round implementation of the batched 1-Steiner vari- 
ant, which will take O(kn2 log n)  time. For batched 
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# 
pts 
3 

TABLE I1 
AVERAGE IMPROVEMENT PERCENTAGES PER ROUND FOR BATCHED 1-STEINER 

# of Rounds improvement per round 
min ave max 1 2 3 4 
0 0.67 1 7.66 0.00 0.00 0.00 

4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
18 
20 
25 
30 
35 
40 

0 0.96 2 8.83 0.18 0.00 0.00 
0 1.07 4 9.30 0.30 0.00 0.00 
0 1.15 4 9.48 0.38 0.01 0.00 
0 1.19 5 9.61 0.40 0.01 0.00 
0 1.24 4 9.75 0.45 0.01 0.00 
1 1.28 5 9.75 0.47 0.02 0.00 
1 1.33 6 9.82 0.49 0.02 0.00 
1 1.40 4 9.79 0.48 0.02 0.00 
1 1.48 5 9.87 0.53 0.02 0.00 
1 1.56 4 9.90 0.54 0.02 0.00 
1 . 1.61 4 9.85 0.54 0.03 0.00 
1 1.65 4 9.81 0.58 0.03 0.00 
1 1.77 5 9.97 0.52 0.03 0.00 
1 1.93 4 10.14 0.69 0.03 0.01 
1 2.00 4 10.09 0.58 0.02 0.00 
1 2.05 4 9.80 0.55 0.04 0.01 

:omer Flipping 

T 

improvement per Steiner point 

7.66 0.00 
8.39 0.62 0.00 
7.78 1.72 0.10 0.00 
7.06 2.37 0.42 0.03 0.00 
6.34 2.73 0.82 0.11 0.01 0.00 
5.90 2.83 1.15 0.30 0.04 0.00 
5.38 2.87 1.36 0.50 0.12 0.01 0.00 
5.01 2.83 1.51 0.69 0.24 0.04 0.00 
4.33 2.71 1.65 0.91 0.46 0.20 0.04 0.00 
3.87 2.56 1.70 1.07 0.63 0.37 0.17 0.05 0.01 0.00 
3.44 2.39 1.71 1.17 0.77 0.50 0.31 0.15 0.04 0.01 
3.16 2.23 1.65 1.20 0.83 0.56 0.39 0.26 0.11 0.03 
2.88 2.09 1.59 1.22 0.89 0.62 0.43 0.25 0.21 0.12 
2.45 1.84 1.46 1.18 0.94 0.74 0.57 0.41 0.30 0.24 
2.17 1.68 1.36 1.12 0.93 0.78 0.62 0.51 0.39 0.31 
1.82 1.44 1.23 1.07 0.92 0.79 0.67 0.54 0.45 0.38 
1.74 1.12 0.94 0.81 0.71 0.62 0.56 0.48 0.43 0.37 

7 8 9 1 0  1 2 3  4 5 6  

# 
Pts 
10 
12 
15 
17 
18 
22 
25 

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  
3 4 5 6 7 8 9 10 12 14 16 18 20 25 30 35 40 

Fig. 10. Performance comparison of the heuristics; the horizontal axis 
represents the number of points per set, while the vertical axis represents 
percentage cost improvement over MST. 

Corner Prim 
Ave % Ave % 

8.18 6.54 
8.16 6.30 
8.19 6.54 
8.16 6.43 
8.25 6.48 
8.29 6.49 
8.38 6.53 

1-Steiner, the advantages of incremental calculation are 
dramatic: on 40-point instances, about 95% of the total 
improvement occurs in the first round, and over 99% of 
the improvement occurs in the first two rounds. Results 
detailing the nature of the incremental improvements are 
given in Table 11. 

B. On Metaheuristics 
For a number of combinatorial problems, the following 

concept of a metaheuristic is natural. Given an instance 
of a problem and m different heuristics (algorithms) H , ,  
H2, * , H,, the metaheuristic Hmeta(H1, H2, - * , H,) 
will output the best among the m outputs of heuristics H I ,  
H2, * . * , H,. Intuitively, several methods can trade off 
in their “areas of expertise”, so while the metaheuristic 
is asymptotically of the same time complexity as the 
slowest component heuristic, the approximation perfor- 

TABLE 111 
META(CORNER, PRIM) OUTPERFORMS ITS COMPONENT HEURISTICS 

IV 
‘H CORNER AND PRIM 

mance is typically better than the performance of any sin- 
gle method. 

To illustrate this phenomenon, we give computational 
results from implementations of Corner (from “comer- 
flipping”; this method gives results similar to the method 
of [lo]) and Prim, a simple analog of Prim’s MST heu- 
ristic construction that is similar to MRST heuristics ana- 
lyzed in [ 161. Table I11 shows that Comer and Prim, when 
used together, give an average performance of about half 
a percent better than Comer alone, although the average 
performance of Prim is about 2 % worse than that of Cor- 
ner. In contrast, the metaheuristic H(Prim, Comer, 
1 -Steiner) gives essentially the same performance as 
1 -Steiner alone, implying that 1 -Steiner strictly dominates 
the other methods (Table IV). This is a very important 
aspect: it suggest that the 1-Steiner method will univer- 
sally give “reasonably good” solutions. 
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The metaheuristic is a general algorithmic phenomenon 
that applies to numerous other problems and subareas of 
computer science. There is very little evidence in the lit- 
erature to indicate that this phenomenon, especially for 
heuristics, has received the attention it deserves. Partic- 
ularly in the light of advances in parallel computation and 
hardware implementation of algorithms, such composite 
methods should become a highly fertile avenue of re- 
search in practical optimization. 

V. EXTENSIONS AND CONCLUSIONS 

In this paper, we have presented a fast new approach 
to the rectilinear Steiner problem. The method yields re- 
sults that reduce wire length by up to 2 % to 3 % over the 
best previous methods. Furthermore, it is the first heuris- 
tic which has been shown to have a performance ratio less 
than 3/2; in fact, the performance ratio is less than or 
equal to 4 / 3  on the entire class of instances where the 
ratio c(MST)/c(MRST) is exactly equal to 3/2.  The al- 
gorithm has practical asymptotic complexity owing to an 
elegant implementation which uses methods from com- 
putational geometry and which parallelizes readily. A 
randomized variant of the algorithm, along with a batched 
variant, has also proved successful. 

We further note that the approach extends easily to 
routing formulations for newer technologies. We observe 
that several technological trends lead to three-dimen- 
sional global routing formulations. The previous standard 
heuristic approach, i.e., improving an initial MST solu- 
tion, becomes much more difficult in three dimensions 
since there are more orientations for each edge; this sug- 
gests that the benefit of using a constructive 1-Steiner 
strategy increases in this higher dimension. To this end, 
we briefly mention several advantages of our approach in 
higher dimension. It is not difficult to see that Hanan’s 
theorem still holds in all higher dimensions [21], and we 
have conjectured [ 131 that the obvious generalization of 
Hwang’s theorem holds in d-space, i.e., 

2d - 1 c(MST) I 7 * c(MRST). 
U 

There is an infinite family of higher-dimensional point 
sets for which our iterated 1-Steiner scheme performs op- 
timally yet all other MST-based heuristics can perform as 
badly as (2d - 1) /d times optimal in d dimensions, which 
is no better than the MST length for the same point sets 
[13]. Furthermore, Theorem 3 can be generalized to ar- 
bitrary dimension d,  where the performance of iterated 
1-Steiner would be no worse than (4d2 - 5d + 2)/(d(2d 
- l)), e.g., for d = 3 we obtain a worst-case bound of 
23/15 for “difficult” point sets which have an MRST 
that is a union of “pluses.” Empirical results for three- 
dimensional problem instances seem quite favorable. 
The 1-Steiner approach also succeeds in the presence of 
nonorthogonal wiring directions [ 171, and Hanan’s result 
also generalizes to such geometries. 

We conclude by noting two avenues for future re- 
search: (i) the concept of a metaheuristic, introduced in 
Section IV, which may be effective in addressing other 
optimizations, and (ii) the unknown performance ratio of 
the iterated 1-Steiner method, which we conjecture to be 
uniformly bounded away from 3 /2  (see Footnote 5). 
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