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Abstract. In this paper, we present a new algorithm for standard cell global routing. The 
algorithm considers all of the interconnection nets simultaneously; this produces superior 
results since information about all of the nets is available throughout the global routing 
process. Wc formulate the global routing problem as one of finding the optimal spanning 
forest on a graph that contains all of the interconnection information. The results of an 
important theorems allow us to prune many non-optimal connections before the global 
routing process begins. This approach successfully solves the net ordering and congestion 
prediction problems which other approaches suffer. The new algorithm was implemented as 
part of the DATools system at Xerox PARC. The benchmarks from the Physical Design 
Workshop are used as part of the comparison suite. The new algorithm achieves up to 11% 
area reduction compared to the previous global routing package used in the DATools 
system and obtains up to 17% reduction in the total channel density compared to the 
Timberwolf 4.2 package. 
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I. Introduction 

The standard cell design style is widely used in the design of VLSI circuits; 
the cells (either obtained from a library or constructed by a cell generator) are 
arranged in horizontal rows. The aim of a standard cell design system is to 
generate a correct physical design for a circuit from its logic design with the best 
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uti l izat ion of  chip area.  D u e  to the i n h e ren t  complexi ty  of  physical design, the 
process  is usually divided into th ree  steps: p l acement ,  global rout ing  and 
channe l  rout ing.  Dur ing  p lacement ,  we d e t e r m i n e  the row and the  posi t ion 
within the row for  each  cell in the  logic design. Next ,  dur ing  global rout ing,  we 
d e t e r m i n e  the  connec t i on  pa t t e rn ,  or  topology,  for  each  net .  Globa l  rout ing  
in t roduces  feedthrough cells making  connec t ions  across the cell rows, selects  the 
pins ( f rom the pins tha t  are in ternal ly  c o n n e c t e d  within the cells) to be 
connec t ed ,  and  de t e rmines  the rout ing  channe ls  tha t  the  net  segments  be long  
to. Then ,  each  channe l  is r ou t ed  individually by a channe l  r o u t e r  which assigns 
specific layers and tracks for  wires to i m p l e m e n t  the co n n ec t i o n  pa t t e rns  
d e t e r m i n e d  by global rout ing.  This  p a p e r  s tudies the  global rout ing  p ro b l em  in 
s t anda rd  cell designs. 

T h e  global r o u t e r  in the High land  system [1] was used as the b e n c h m a r k  for  
s t anda rd  cell global rout ing  at the Physical Des ign  W o r k s h o p  on P l a c e m e n t  and 
F loo rp l ann ing  [2]. It builds a l umin imum  spanning  t ree  for  each  net.  T h e  cost for  
each  net  edge  is a func t ion  of  channe l  density,  f e e d t h r o u g h  availability and wire 
length.  An  subsequen t  op t imiza t ion  s tep tr ies to improve  the  solut ion.  Supowit  
[3] gives an odd-even  heur is t ic  a lgor i thm for  s t anda rd  cell global rout ing.  It 
p roduc e s  a solut ion within a fac tor  of  1.5 of  the  op t imal  solut ion (in t e rms  of  
total  channe l  density).  However ,  Supowit ' s  resul t  applies  only to p rob lems  in 
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which all the nets are two-pin linear nets. Another  global router developed for 
standard cell designs is part of the Timberwolf package [SeSa86]. It first 
connects each net by a minimum spanning tree based on wire length. Then it 
employs an iteration algorithm (simulated annealing with t -- 0) to improve the 
assignment of net segments to channels. The previous standard cell global 
router [4] used in the DATools system at Xerox PARC [5] generates the 
minimum number of feedthroughs. Feedthroughs are added only to connect the 
nets. Feedthroughs are then placed, along with the other cells, as part of a 
row-based placement improvement step. More recent work on standard cell 
global routing includes the work by Mowchenko and Ma [6], which generalized 
the left edge algorithm for channel routing to global routing, the work by Lee 
and Sechen [7] which generated Steiner trees from minimum spanning trees, a 
parallel router by Rose [8], which enumerated all possible two-bend nets, a 
parallel router by Brouwer and Banerjee [9], which is based on Burstein and 
Pelavin's hierarchical approach, and a global router by Meixner and Lauther 
[10] based on network flow computation. In [11] and [12], a similar problem was 
addressed for gate array designs, where the objective was to minimize the 
maximum channel density. 

A careful study shows that these approaches have one or more of the 
following shortcomings: 
(1) The final solution produced is sensitive to the order in which the nets are 

considered because the nets are connected one by one. However, little is 
known about what is a good net order. (In [6], they avoided net ordering 
problems by carrying out the routing on a channel by channel basis. But still, 
it is difficult to choose a good channel order.) 1 

(2) These global routers are not capable of predicting congested area in chan- 
nels when they add net segments. This is especially true in the early stage 
when most net segments have not been included. 

(3) The net connection patterns that can be produced are restricted by the 
algorithms. Only a few predetermined topologies are allowed. 

In this paper, we present a new algorithm for standard cell global routing which 
successfully overcomes the shortcomings mentioned above. This algorithm pro- 
cesses all the nets in parallel, so the results are independent  of the order in 
which the nets are considered. Furthermore,  better results are produced since 
information about all of the nets is available throughout the global routing 
process. We introduce the net connection graph and formulate the problem as 
finding an optimal spanning forest of the net connection graph. We prove a 
theorem which allows us to simplify the net connection graph by pruning a large 
number of non-optimal connections. This makes it computationally feasible to 
consider the optimal connections in all the channels at the same time. Thus, our 
algorithm can predict very accurately the densest areas in each channel and, 
therefore, distribute density evenly over all channels to minimize the total 
channel density. The new algorithm was implemented as part of the DATools 

Parallel global routers usually avoid the net ordering problem. 
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system at Xerox PARC. Benchmarks from the Physical Design Workshop are 
used as part of the comparison suite. The new algorithm achieves up to 11% 
reduction in area compared to the previous global routing package used in the 
DATools system and obtains up to 17% reduction in the total channel density 
compared to the Timberwolf 4.2 package. In no case does the new algorithm do 
worse than its competitors. 

The remainder of this paper describes the algorithm. Section 2 defines the 
problem formulation. The two-stage algorithm is discussed in Section 3. The 
comparative results are presented in Section 4. An extended abstract of this 
paper was presented in ICCAD'88 [13]. 

2. Formulation of the problem 

The goal of global routing is to determine the connection pattern for each net 
and achieve the best utilization of chip area. The connection pattern is defined 
by the positions for feedthroughs, the pins to be connected, and the channels in 
which the net segments that connect the pins lie. Chip area is equal to the 
product of the width of the chip and the height of the chip, where the width of 
the chip is the maximum length (including any feedthroughs) of any row of the 
chip, and the height of the chip is the sum of the heights of all cell rows and the 
total channel density times the line-to-line spacing. 

We define the net connection graph to be an undirected graph G = (V, E), 
where V is the set of pins currently in the design. An edge (pi, Pj) is in E if the 
two pins Pi and Pi are in the same net. We also call (pg, pj) a net segment if Pi 
and Pi are in the same channel. Clearly, each net in the net connection graph is 
a connected component and is represented by a complete graph on the pins of 
the net. Note that V may grow as we perform the global routing because new 
pins are introduced when feedthroughs are added. A global routing solution is a 
spanning forest of the net connection graph. A spanning forest which yields the 
minimum chip area is called an optimal spanning forest. 

There are two problems involved in standard cell global routing. The first 
problem is to determine whether and where to add feedthroughs. Generally 
speaking, feedthroughs have two functions. One function is to complete the 
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Fig. 1. A feedthrough allows a net to cross a cell row. Thc feedthrough in row 2 is required to 
complete the connection. 
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Fig. 2. Feedthroughs can also be used to reduce the total channel density. 

connections among pins that make up the nets. For the example shown in Fig. 
l(a), we have to insert a feedthrough in row 2 to complete the connections for 
the net as shown in Fig. l(b). The other  function of feedthroughs is to reduce 
the total channel density. Consider the net shown in Fig. 2(a). Although we can 
complete the connection without adding any feedthroughs,  by adding a 
feedthrough in row 2 we save a long wire in channel 2. This may reduce the total 
channel density. The second problem in standard cell global routing is to 
determine the net segments to complete the connection of the nets after 
feedthroughs have been added. Figure 3 shows three different choices of net 
segments to connect  a net. At this stage, since the width of the chip is fixed, the 
problem is to build a spanning forest of the net connection graph to minimize 
the total channel density. 

In some standard cell families, many cells have build-in feedthroughs. In this 
case, the feedthrough insertion problem is eliminated or simplified. In [3] and 
[6], it was assumed that all the feedthroughs have been added and only the 
problem of determining the net segments was studied. In [4] and [14], simple 
methods were used to determine feedthrough locations for completing the 
connections. Their  algorithms concentrated on the problem of determining the 
net segments. In our global router, we also use a rather straightforward method 
to compute the feedthroughs first. Then, we focus on the optimal selection of 
net segments. 

The standard cell global routing problem is computationally difficult; we can 
show the problem of finding an optimal spanning forest is NP-hard. In fact, the 
problem of determining net segments itself is already NP-hard even for a small 
number  of cell rows (assuming that no feedthroughs need to be added). To be 
more precise, we state the following theorem based on a result in [15]: 

Theorem 1. Given a standard cell placement in which no feedthroughs are needed 
to complete the net connections, the problem o f  choosing net segments to minimize 
total channel density is NP-hard i f  there are five or more cell rows in the design. 

I _ . ~  j j ! I t I f 

[ I [ I [ I 
Fig. 3. For the net shown, three different choices of net segments. 
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Proof. First, let us look at a simplified net segment selection problem. Suppose 
that each net has two logical pins. Moreover,  the two logical pins in each net are 
in the cells of the same row. Such a net is called a two-pin linear net [3,16]. Since 
each logical pin has two physical pins, there are two possible ways to connect 
each linear net, one way to use the channel below the net and the other  to use 
the channel above the net (see Fig. 4). We want to connect each two-pin linear 
net so that the total channel density is minimum. This problem is called the 
two-pin linear net routing (TLNR) problem. Clearly, we do not need to introduce 
feedthroughs to connect any net in the TLNR problem. Moreover,  the two 
possible ways of connecting a two-pin linear net correspond to the two net 
segments of the net. Therefore ,  the TLNR problem is a special case of the 
general net segment selection problem that we are interested. However, the 
TLNR problem was shown to be NP-hard if there are five or more cell rows in 
the design [15]. Thus, the net segment selection problem is NP-hard if there are 
five or more cell rows in the design. [] 

In the remainder  of this paper, we present an efficient heuristic algorithm for 
computing a standard cell global routing solution. 

3. The new standard cell global routing algorithm 

Our global router  works in two stages. In the first stage, we determine all the 
feedthroughs to be added and determine their locations within the rows. In the 
second stage, we choose which physical pins will be connected (and thus choose 
the net segments) to complete connections for each net. 

3.1. Determine feedthroughs 

In most previous algorithms, feedthroughs are added only when connections 
for some nets cannot be completed.  In our algorithm, we use feedthroughs not 
only to complete the connections but also to trade off the width and height of 
the chip. Additional feedthroughs can often reduce track density and thus 

I I 
po . . . . . . . . . . . . . . . . . . . . . . . . . . . .  • p 

V l  : : V  2 

I [ I i 
v ~ i  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i ~2 

L 1 
Fig. 4. Two possible ways to connec t  a two-pin l inear  net.  
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reduce chip height with no expense in width. An additional feedthrough on 
other than the longest row will not increase the width of the chip. 

We generalize Kruskal's minimum spanning tree algorithm [17] to build a 
minimum spanning forest of the net connection graph. Feedthroughs are deter- 
mined by the intersections of cell rows and the edges in the minimum weighted 
spanning forest. 

We weight each edge according to the length of the edge and the cost to 
insert feedthroughs for the edge. For each edge e = (pi, Pi) in the net connec- 
tion graph connecting two pins pi and p~ in the same net, we define the weight 
of e 

w ( e ) = [ x i - x j l + K "  ~ weight(Ri)  
ef~Ri~dp 

where x~ and xj are the horizontal coordinates for p~ and pj, respectively. K is 
a constant factor, e n R i 4= c~ m e a n s  that net edges e intersects row R i, weight(R i) 
is the weight of row Rg, which is based on the current length of row Ri. Assume 
we choose e to be included in the minimum weighted spanning forest. If Pi and 
pj are in the same channel, we simply add e into the solution. If Pi and pj are in 
different channels, we add feedthroughs fl,  f2 , . . . ,  fl in rows Ri,, Ri2,... , Ri, 
which intersect with e. Then we add the path from pi to pj through these 
feedthroughs into the solution. The cost of an edge thus defined is a function of 
both the wirelength and the cost of adding feedthroughs. By assigning different 
weights to different rows, we discourage adding feedthroughs in the longest rows 
since this will increase the width of the chip. On the other hand, when two pins 
are far apart we may connect them to nearby pins in the same net, even at the 
cost of extra feedthroughs. These extra feedthroughs may decrease the total 
channel density and thus decrease the height of the chip. We adjust the factor K 
to control the trade-off between the width and the height of a chip. 

Note that the weight of each net edge is not static. After a feedthrough is 
added, some pin locations and the weights of some rows may change. If we 
construct the minimum spanning forest by building a minimum weighted span- 
ning tree net by net, a different order for considering the nets will quite likely 
lead to a different result. However, there is no efficient algorithm available to 
determine an optimal net order. In order to avoid the net ordering problem, our 
algorithm builds a minimum spanning forest directly by considering all of the 
nets simultaneously based on a generalization of the Kruskal's minimum span- 
ning tree algorithm [17]. It keeps adding the minimum weighted edge selected 
from the entire net connection graph into the spanning forest as long as no cycle 
is introduced. The edge insertion process ends when all the nets are connected. 
Our algorithm for the first stage is shown as follows, in which F represents the 
spanning fores to be constructed. 

Algorithm 1. D e t e r m i n e  Feedthroughs ( * Stage 1 of global routing * ) 
1. V:= all the vertices in the net connection graph; 

E .= all the edges in the net connection graph; 
F.'= Q; 
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2. while E ( ) •  do 
remove the minimum weighted edge e from E; 
if F W {e} does not have a cycle 
then include e (or the path induced by e) in F; 

if e crosses some cell rows 
then introduce feedthroughs at the intersections and add them to V; 

introduce edges connected to the new feedthroughs and add them 
to E; 

end-while 
3. output  F 

The advantage of this algorithm is clear. Since we consider the edges of all nets 
at the same time, the algorithm is independent  of input net order. The spanning 
tree for each net gets an equal chance to grow. Information about  all nets is 
available throughout  the process. 

It is necessary to show that this algorithm will converge since we keep adding 
new vertices (induced by feedthroughs) to the net connection graph. In [1], a 
limit is set on the total number  of vertices allowed for each net. However,  we 
can show that our algorithm ends after a linear number  of edge insertions. 

Theorem 2. The Stage 1 algorithm will converge to a spanning forest after n - k  
steps o f  edge insertions, where n is the total number o f  original pins in the design, 
and k is the number o f  nets. 

Proof. Let m be the number  of steps of edge inclusion that we execute to obtain 
a spanning forest. Let V, be the set of vertices in the net connection graph after 
the i-th step of edge inclusion. Let F i be the set of edges in the partially 
constructed spanning forest after the i-th step of edge inclusion. Initially, 
[VeIl = n  and Ih ,  I - -0 .  When we obtain a spanning forest, we have k con- 
nected components  and each of them is a spanning tree. Thus, I V,n [ - I F,,, I = k. 

Let e i = (ui, v,) be the edge included in the i-th step. There are two cases: (i) 
If u i and v i are in the same channel, then V, = V,_ 1 and F i = F i i u {(ui, l~'i)}; (ii) 
If u i and l;i are in different channels, suppose that f~, f 2 , . . . ,  fl are the vertices 
along the path introduced by adding feedthroughs,  then V,= V, i u { f j ,  
f2 . . . . .  fl} and F i = F  i 1W{(ui, f j ) ,  ( f l ,  f2) . . . . .  (fl,  ci)}. In both cases, we have 

I V,. I - I  F, I = [ V,_, I -  I F,. 11-1  

By induction, it is easy to show that 

IV,,, I - I  F,,, I = IV0 I - I e o l - m  
It follows that k = n - m, i.e., m = n - k. [] 

In the implementation of Algorithm 1, we use the union-find operations [17]. 
Initially, we start with n sets. Each set contains a single vertex. When we include 
an edge (u, t,), we union the two sets that vertices u and v belong to, together 
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with the set of new vertices introduced by adding feedthroughs. At any time of 
execution, each set contains a collection of vertices which have been connected. 
Cycle detection becomes very easy. To see whether F u {(u, u)} contains a cycle, 
we need to only check whether u and L, belong to the same vertex set. In fact, 
after each edge insertion, we remove all the edges connecting vertices of the 
same set. Moreover, we update all the edge costs after each edge insertion. Let 
p be the maximum number of pins per net (in CMOS technology, p is bounded 
by a small constant). Then, each edge insertion takes (kp 2) time. Since there are 
n -  k edge insertions and O ( k p ) =  O(n), the time complexity is O(pn 2) for 
Stage 1 of our global routing algorithm. 

Note that after Stage 1 of our algorithm, we actually obtain a global routing 
solution in which the feedthroughs are specified by the vertices in the spanning 
forest and the net segments are specified by the edges in the spanning forest. 
However, the selection of the net segments is made without consideration of 
global density distribution, and may lead to a poor routing solution in terms of 
minimizing the total channel density. Therefore, our algorithm will go through 
the second stage, as described in the next subsection, to re-compute the best net 
segment selection for total channel density minimization. 

3.2. Determine net segments 

After Stage 1, all of the required feedthroughs have been added and their 
positions have been determined; we shall not add new feedthroughs. Thus, we 
can remove those edges that cross the cell rows (but are not built-in edges that 
represent feedthroughs or connections within the cells) from the net connection 
graph. Figure 5 shows an example of a connected component induced by a net 
in the net connection graph at the beginning of Stage 2. The solution of Stage 2 
is a spanning forest S of the net connection graph such that each edge in S lies 
entirely in one channel. Since the width of a chip is fixed after Stage 1, the 
objective in Stage 2 is to minimize the height of the chip by minimizing the total 
channel density. 

v 

Fig. 5. The connected component induced by a net in the net connection graph at the beginning of 
Stage 2. 
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Most previous approaches to global routing build a spanning tree for each net 
one by one. And for each net, these algorithms keep adding the minimum 
weighted feasible edge until a spanning tree is obtained. A serious problem 
exists with these approaches. It is very difficult to decide whether and where a 
net segment should be added to a channel since these algorithms have no 
knowledge of the density distribution in the final solution, especially early in the 
execution of the algorithms when only few net segments are present. Also, these 
approaches face the problem of choosing a good order to process the nets. 

To avoid these problems, we develop a new algorithm based on the iterative 
deletion approach. First, the basic approach is described; then we will show the 
performance improvements and refinements. The algorithm constructs a mini- 
mum weighted spanning forest to approximate the optimal spanning forest. We 
define the weight of an edge e to be w(e) = d ( e ) / d ,  where d(e) is the maximum 
density over the edge in the channel to which e belongs, and d is the density of 
the channel. First, we put all the edges in the net connection graph into an edge 
set S. Then, we repeatedly remove the maximum weighted edge from S as long 
as we do not disconnect any net. We update the weights of edges in a channel 
whenever an edge is removed from that channel. The process terminates when S 
is a spanning forest. Clearly, this approach has two advantages: 
(1) Since all the edges are considered from the start, the algorithm has global 

information and knows where the most congested areas are. The weight of 
each edge during the construction reflects the relative density over that edge 
in the resulting spanning forest, and the removal of the maximum weighted 
edges distributes the routing density evenly in the design; 

(2) Since we process all nets in parallel, the result of our algorithm does not 
depend on the order in which nets are processed. 

However, a straightforward implementation of the above algorithm may suffer 
two problems. First, there may be ~(n 2) edges in the net connection graph at 
the beginning of Stage 2 (even after we removed edges, other than the built-in 
edges, which crossed cell rows), where n is the number of pins after Stage 1. 
Since there are only O(n) edges in the final spanning forest, we may have to go 
through O(n z) steps of edge deletion; which is quite time consuming. Moreover, 
since most of the initial edges are to be removed, the weight of an edge at the 
beginning of the deletion process may not closely approximate the channel 
density over that edge in the final spanning forest. Both problems are due to the 
fact that we may have to start with a quadratic number of edges at the beginning 
of the edge deletion process. A careful study showed that we can further 
simplify the net connection graph before we compute the optimal spanning 
forest. We define the simplified net connection graph SG to be an undirected 
graph, whose vertex set is the set of pins in the design, and for two pins Pi and 
pj of the same net, (pi, Pj) is an edge of SG if and only if the two pins satisfy 
one of the following conditions: (1) Pi and pj are on the same cell or feedthrough 
and are connected internally (i.e., they are connected by a build-in edge); or (2) 
p, and pj are in the same channel and there are no other pins of the same net in 
the same channel between them. Figure 6 shows the example of a connected 
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J 

Fig. 6. The connected component  induced by the same net in the simplified net connection graph 
is much sparse than the one in Fig. 5. The optimal spanning forest is not lost by this simplification. 

component  induced by a net in the simplified net connection graph. Note it is 
much more sparse than the one shown in Fig. 5. In fact, we can make the 
following claims: 

Theorem 3. Let n and m be the number o f  vertices and edges, respectively, in the 
simplified net connection graph. Then 
(1) m ~ 1.Sn. 
(2) The simplified net connection graph can be constructed in O(n log n) time, 

where n is the total number o f  pins in the design. 
(3) The simplified net connection graph contains an optimal spanning forest. 

Proof. (1) For each vertex v, the degree d(v)  of v in the simplified net 
connection graph is at most 3, since it can be connected to only its left closest 
pin in the same net, its right closest pin in the same net, and its equivalent pin in 
the same cell (see Fig. 6). We have 

2m = ~ d(tdi) ~ 3n 
i=1 

Thus, m ~< 1.5n. 
(2) The simplified net connection graph can be constructed by sorting pins in 

each channel,  then do a linear scan to compute the left closest pin and the right 
closest pin in the same net for each pin in the channel. The total scanning time 
is bounded by O(~/~_ lni), where k is the number of nets and n i is the number  of 
pins in channel i. Note that Z/k in i = n, thus, the complexity is dominated by the 
total sorting time, which is 

Y'. n i log n i <~ n i log ~ n i = n log n 
i= I  i i=1 

(3) Let F be an optimal spanning forest. Suppose e = (u, v) is an edge in F 
but e is not in the simplified net connection graph, without loss of generosity, 
assume v is right to u. Let wj, w 2 . . . . .  w~ be all the pins of the same net in the 
same channel from left to right between u and v. Clearly, (u, w~), (w~, 
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w2),. . . ,  (w t, t~) are all in the simplified net connection graph. It is not difficult to 
show that we can remove (u, t,) and add a set of edges (probably all) of (u, w~), 
(w~, Wz),...,(wt, t~) to make another spanning forest F'. It is clear that 
d(F') <~d(F). Thus, F '  is also an optimal spanning forest. By repeating this 
process, we can remove all the edges in F but not in the simplified net 
connection graph to obtain another optimal spanning forest which contains 
edges only from the simplified net connection graph. [] 

The benefits from the theorem are clear. Since we only have to go through 
approximately 0.Sn number of edge deletions, our algorithm runs much faster. 
Also, since only a relatively small number of edges in SG are to be removed, the 
weight of each edge measures more accurately the density over the edge in the 
resulted spanning forest. Moreover, we can compute the simplified net connec- 
tion graph efficiently without losing the optimal spanning forest. We summarize 
our algorithm for Stage 2 as follows: 

Algorithm 2. Determine the Net Segments ( * Stage 2 of global routing * ) 
1. build the the simplified net connection graph; 
2. S := all the edges in the simplified net connection graph; 
3. repeat 

Remove the maximum weighted edge in S that is in a cycle; 
Update edge weights for the affected edges; 

until S is a spanning forest; 
4. outout S. 

In our implementation, we use the graph biconnectivity algorithm in [18] to 
identify all the edges which are in some cycles. An edge is in some cycle if and 
only if it belongs to a biconnected component with no less than 3 vertices. We 
can generate all the biconnected components of a graph in linear time using the 
depth first search algorithm. Moreover, after removing an edge, we need to 
update the weights of all the edges in the same channel. We may have O(n) 
edges in the channel in the worst case, and a straightforward computation of 
each edge weight takes O(L) time, where L is the number of physical pins in 
the channel. Thus, updating all the edge weights takes O(nL) time, and the time 
complexity of the second stage of our algorithm is O(n2L). 

For large designs, we can use a data structure called segment tree [19] to 
reduce the time for updating an edge weight from O(L) to O(log L). For each 
channel C, we construct a segment tree T, so that the maximum density over 
any given interval in the channel can be computed in O(Iog L) time. Without 
loss of generality, we assume that L = 2 t for some I. Let x~, x2, . . . ,  x L be the 
x-coordinates of the pins in the channel C. The segment tree T~: is a balanced 
binary tree with L leaves in which each leaf corresponds to the x-coordinate of 
a pin (i.e., an interval of length zero) and each internal node (root of a subtree) 
corresponds to an interval (from the leftmost leaf to the rightmost leaf in the 
subtree). Clearly, the root of the i-th subtree of height j corresponds to the 
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interval [x(i_ l).2j+ 1, Xi'2J]" Such an interval is called a power interval. Each node 
X in the tree has three fields: X interval stores the corresponding power 
interval, X density stores the maximum density over the power interval X-inter- 
val, and X_de le te  indicates how many times that X_interval  is deleted from the 
subtree rooted at X. At the beginning of the iterative deletion algorithm, we 
compute X density for each node in the tree T,. and set X_dele te  to be zero. 
For example, Fig. 7(a) shows a set of intervals and the corresponding segment 
tree. Suppose that we want to remove an edge in channel C whose interval is I. 
It is not difficult to show that I can be decomposed into O(log L) maximal 
power intervals 11, I 2 , . . . ,  It, which correspond to a set of nodes X1, X 2 , . . .  , X,  
in the segment tree. For example, in Fig. 7(a), interval J5 = [5,7] can be 
decomposed into intervals [5,6] and [7,7], and interval J8 = [3,8] can be decom- 
posed into intervals [3,4] and [5,8]. For each I i, we make the following updates: 

Xi delete = Xi  delete + 1 and X i density = X,  density - 1, 1 <~ i <~ t 

Moreover, we update the nodes on the paths from the root to X~'s. Let Yi be 
the sibling of X i and Zg be the parent node of X i. Then, 

Z i density = max(X/ density, Yi d e n s i t y ) -  Z i delete 

and the update of the density field propagates upward in the tree. We update 
the density field of all the relevant nodes on the l-th level first before we move 
to the ( l -  1)-th level. For example, Fig. 7(b) shows the corresponding segment 
tree after we remove intervals J5 and J8 from Fig. 7(a). In order to compute the 
maximum density over a given interval I, we, again, decompose I into O(log L) 
maximal power intervals 11, 12 . . . .  , I,. Let X~, X 2 , . . .  , X t be the corresponding 
nodes in the tree. Let P~ be the path in the tree T,. from the root to the parent 
node of X i. Then, the maximum density over the interval I~ is 

d[ Ii] = X i density - ~ ,  Y d e l e t e ,  
Y~Pi 

and the maximum density over I is max~_ld[Ii]. For example, the maximum 
density over the interval J2 in Fig. 7(b) is 

max(d[4],d[5,6])  = max(3 - 1, 3 -  1 )=  2 

Therefore, we can update each edge weight in O(log L) time after we remove 
an edge from the channel. With this refinement, the second stage of our global 
routing algorithm can be implemented in O(n 2 log L) time. 

4. Experimental results 

We implemented our algorithm in the Cedar language running on Xerox 
Dorado workstations (2-MIPS machines) and incorporated it into the DATools 
system developed at Xerox PARC. Table 1 summarizes the examples used to 
compare the new algorithm with the previous global router in the DATools 
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Fig. 7. (a) A set of intervals and its corresponding segment tree. The labels at each node X specify 
X density/X delete, respectively. (b) The new segment tree after intervals J5 and J8 are 

deleted. 

Tablc 1 
A summary of the example circuits used to compare the new algorithm with the previous 
algorithm and with the global router in Timberwolf 4.2 

Example #cells #IOS #nets #pins 

16-bit adder 144 50 177 546 
16-bit counter 173 56 206 609 
32-bit adder 288 98 355 1090 
32-bit counter 342 104 396 1203 
64-bit adder 576 194 707 2178 
64-bit counter 681 200 783 2393 
Primary 1 752 81 904 2737 
Primary 2 2907 107 3029 8758 
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Table 2 
Comparisons with the previous global routing package in the Xerox PARC DATools system 
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Example #of  previous algorithm new algorithm improvement 
r o w s  

width height width height 

16-bit adder 4 1104 812 1104 764 6.3% 
16-bit counter 5 1320 1120 1320 1008 11.1% 
32-bit adder 6 1528 1415 1528 1324 6.8% 
32-bit counter 7 1904 1736 1904 1624 8.5% 
64-bit adder 8 2448 1956 2448 1860 5.1% 
64-bit counter 9 3096 2744 3096 2456 11.7% 

system and with the global router in Timberwolf 4.2. The counters and adders 
are the circuits synthesized by the DATools system when no performance 
requirements are imposed. Both types of circuits are simple, ripple-carry de- 
signs. Primary 1 and Primary 2 are the benchmarks from the Physical Design 
Workshop [2]. 

Table 2 summarizes the experiments comparing the old and new algorithms. 
Compared to the previous standard cell global routing package used in the 
DATools system, the new algorithm achieves a 6 to 11% area reduction. In 
general, more feedthroughs are added by the new algorithm, but the chip widths 
are not increased. The extra feedthroughs are being used to reduce chip height 
by reducing total track density. 

We also compared our global routing results with the results produced by the 
Timberwolf 4.2 global routing on the two Physical Design Workshop bench- 
marks. In both examples, the global routing is performed on the same placement 
(the one produced by Timberwolf). Figure 8 illustrates the comparison process. 
Table 3 shows the comparisons on these examples. We obtained 5 to 17% 
reduction in total track density and over 20% reduction in the number of 
inserted feedthroughs compared to Timberwolf 4.2. We could not compare our 
algorithms with other algorithms since we were unable to obtain the common 
placement solutions. (We observed that the placement solution affects both the 
number of feedthroughs and the total channel density significantly. Thus, it 

Timberwolf 
Placer 

Timberwolf 
G-router 

DATools 
G-router 

Fig. 8. Comparison of global routing solutions is based on the same placement solution. 
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Table 3 
Comparisons with thc global routing algorithm in Timberwolf 4.2 [14] on Primary 1 and Primary 2 
benchmarks from thc Physical Design Workshop 

Example #of  Timberwolf new algorithm improvement 
r o w s  

#FTs  #tracks #FTs  #tracks #FTs  #tracks 

P1 17 1380 223 1120 190 23.2% 17.4% 
P2 29 4621 474 3761 449 22.9% 5.6% 

would be very inaccurate to compare global routing results based on different 
placement solutions.) 

Our global router is a straightforward implementation of the algorithm 
described here. As a result, there are a number of opportunities for further 
improvement of the results. Some standard cell global routing packages improve 
the global routing (and further reduce area) by exchanging adjacent cells in the 
same row or modifying the cell orientation [1,4,14]. In addition, the cells in the 
Physical Design Workshop Benchmarks (Primary 1 and Primary 2) have a large 
number of built-in feedthroughs that are exploited by Timberwolf, but not by 
the global router described here. (The standard cells used at Xerox PARC do 
not have built-in feedthroughs so this feature was not included.) We did not 
implement these refinements in the current version of our global routing 
package. 

5. Remarks and conclusions 

In this paper, we present a new algorithm for standard cell global routing. By 
processing all the nets in parallel, we avoid the problems associated with net 
ordering and the problems created by lack of congestion information early in the 
global routing process. By simplifying the net connection graph and applying an 
iterative deletion algorithm for building spanning trees, we can more accurately 
predict congested areas. This global routing algorithm produces high quality 
solutions in polynomial time. 

In both Stage 1 and Stage 2, the weights for edges in the net connection graph 
are dynamic. A significant amount of time is spent on updating edge weights in 
our current implementation. We are studying how to reduce the computation 
time for updating edge weights. One possibility is to use more sophistical data 
structures to identify those edges whose weights need to be updated more 
efficiently (without scanning all the edges). This will certainly speed up the 
re-computation for edge weights. Another possibility is not to update the edge 
weights after every iteration but to update them after several iterations. Our 
experience is that small errors in the edge weights will not affect the quality of 
final solution significantly. 
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