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Abstract. The paper describes a new global router applicable for any object with a defined 
channel structure. This router can be used for the routing of chips and boards with rectilinear 
or nonrectilinear channel topology in a multilayer environment. This makes it more universal 
than other known global routers. The router is based on a multicommodity flow model in the 
graph form with hierarchical cost function. This model is proved to be NP-complete. An 
algorithm applied to this problem is based on minimax ideas. It moves from the solution 
optimal w/r to an initial cost function in the direction of the constraints by maximking on 
each iteration the decrease in the number of channels at the highest level of overflow and the 
number of cells with overflown via count. If a solution exists for each iteration, then 
algorithm will converge in polynomially bounded number of steps to the solution of the 
multicommodity flow problem. If, for some iteration, a solution does not exist, then an 
escape procedure is applied and the process continues. Experimental results indicate that 
performance characteristics of this global router are not inferior to global routers applicable 
only to gate arrays. 

Keywords. Global router, multicommodity flow problem, graph model, minimax algorithm, 
hierarchical objective function. 

1. Introduction 

The computational properties of algorithms in DA depend heavily on char- 
acteristics of mathematical models proposed for these problems. Many such 
models [l] belong to the class NP-complete; i.e. optimal solutions for them can be 
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obtained only by exponential algorithms. The majority of mathematical models 
suggested for the routing problem are proven to be NP-complete. Many practical 
algorithms for routing, as for other DA problems, are based on the substitution of 
the original NP-complete models with a hierarchy of polynomially solvable 
models. Such combinations of models generally sacrifice optimality in order to 
obtain a quick solution which satisfies the constraints. Such methodology objec- 
tively reflects the possibility for the usage of various objective functions, for 
different hierarchical models or even the formulation of a routing problem as a 
solution of the system of constraints. The most common structure of heuristic 
algorithms for routing includes a decomposition step and the subsequent repeated 
solution of relatively simple subproblems. The decomposition step itself often is 
solved in a hierarchical way. 

A decompositional approach to the routing problem resulted in the introduc- 
tion of a global routing step in the routing process. Global wiring decomposes the 
original routing problem into independently solved routing problems for regions 
of the chip. Several major approaches to the global wiring problem can be 
identified. 

(1) Top-down hierarchical routing. This strategy provides hierarchical specifi- 
cation of the location of routes. Implementation of this idea in [2] is based on 
linear integer programmin g (or dynamic programming) and properties of some 
special cases of rectilinear Steiner trees. This method is order independent but has 
limitations related to the requirement of uniformity for wiring substrate. 

(2) Bottom-up hierarchical routing. Implementation of this approach in [3] is 
based on solving, on each hierarchical level, routing problems for arrays of 2 x 2 
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super cells. Each super cell consists of 4 cells from the previous hierarchical level. 
This realization of the bottom-up strategy solves the ordering problem by wiring 
short connections first and suffers, to a certain extent, from the negative conse- 
quences of order dependency. It has an effective rerouting scheme based on a set 
of heuristic rules. 

(3) Global wiring by simulated annealing. First suggested in [4], this method 
does not consider constraints on the channel capacities and it has limitations on 
the wire shapes. Additional work is required to provide a global router based on 
this method. 

(3) Independent global wiring of nets with simple rerouting. This approach to 
global routing, implemented in [5,6], is similar to the strategy of detailed routing 
of one net at a time based on the Lee-Moore algorithm. Results of this method 
of global routing are order dependent. 

(5) Global routing based on minimax algorithm. This model, described in [7], is 
based on the cell representation of data. The objective function is the minimum 
of the maximal overflow of boundary capacities subject to constraints on the 
number of pins inside each cell. The algorithm consists of two major steps. Initial 
routing assumes independent routing of each net by the use of the Lee-Moore 
algorithm. Iterative rerouting is then performed until no positive overflow exists. 
This algorithm does not prevent an increase of overflow in the process of 
rerouting. To get a solution with reduced overflow count, many reroutes are tried. 

Our approach to global routing is more universal because, in addition to 
rectilinear, it also allows us to consider nonrectilinear and multilayer structures of 
wiring channels. This makes it applicable to multilayer chips and boards. We 
represent global routing as a multicommodity flow problem in the graph form, 
where nodes represent collections of pins to be wired, and the edges correspond 
to the channels through which the wires run (Fig. 1). Any required level of 
generalization can be achieved by such a model ranging from representation of a 
whole cell as one vertex of the graph and a segment of the routing channel as an 
edge, to representation of each pin as a vertex of the graph and each routing track 
as an edge. A limiting factor for implementation of such a model for detailed 
routing is the polynomial complexity of the global routing algorithms with respect 
to the size of the graph. This makes decomposition of the original routing 
problem by global routing procedure followed by channel routing, more compu- 
tationally effective than detailed routing by global router. 

It has been proven that the multicommodity flow problem itself is NP-com- 
plete [S]. This, not only the routing problem as a whole, but also the step which 
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Fig. 1. Multiple objective functions for routing. 
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performs the decomposition of the routing problem are NP-complete problems. 
However, such a representation of global routing has certain advantages. It 
provides the opportunity to consider nonrectilinear and multilayer structures and 
apply such effective algorithms as the shortest path through the graph [g-11]. 
Although the proposed heuristic algorithm does not guarantee an existence of a 
solution (recall the NP-hard nature of the task), it does efficiently generate 
solutions which satisfy the constraints in most practical situations. 

2. Multicommodity flow model of global routing 

In this section, we introduce notation and initial formulation of our problem in 
terms of the graph theory. A directed graph G = { I, J} consists of nonempty and 
finite sets of nodes I= (1, 2,...,m} and arcs J= {l,..., n}. There are m nodes 
and n arcs in G. A finite set of commodities K = { 1,. . . , t } is defined on the set 
of nodes I. Let us assume that there is only one source and one sink for each 
commodity and the amount of each commodity is equal to 1. Then, a number uik 
is the amount of commodity k produced (consumed) at the node i, and aik = 0, 
f 1. Let o be a ‘nodes-arcs’ incidents matrix, where wij = 0, + 1. Let positive 
integers pi and cj be, respectively, unit shipment cost along the arc and capacity 
of the arc j. Let xjk be a flow of commodity k by arc j. If flow of minimal cost 
should be found, then the problem can be formulated in a following way: 

C CPjlxjkI =$ minv (1) 
i k 

zqjxjk=aik Vi, k, cIxjkl Q cj Vi, j, xjk= O,+ 1 Vj, k. 
j k 

If the arcs of graph G represent segments of the routing channels, capacities cj 
represent the number of tracks available for routing in each segment, nodes of the 
graph represent pins and vias, and certain costs are assigned to the arcs, then 
model (1) can be interpreted as a model of global routing. A more realistic model 
of global routing does not require a ‘minimal cost’ solution, but rather a solution 
which satisfies constraints of the original multicommodity flow problem and is 
‘reasonably’ good with regard to objective function. This fact plays a major role 
in the formulation of our algorithm. 

It was mentioned earlier that many formulations of the multicommodity flow 
problem are NP-complete [l] and representation of global routing as a multicom- 
modity flow problem itself, does not provide an immediate advantage. However, 
we can suggest an effective algorithm for the global routing as a special case of 
multicommodity flow problem. This algorithm has a polynomial complexity when 
some additional constraints are satisfied for each step of the algorithm. The 
algorithm is based on minimax ideas and we named it MM (minimax) algorithm 
for global routing. 

High Level Description of MM 
At a high level of abstraction, the global routing problem can be envisioned as 
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an attempt to obtain a minimum of some cost function (which includes routing 
length, number of vias, etc.) over some constrained domain (in most cases this 
domain is defined by channel capacities). As a minimum, two approaches to the 
problem present themselves: we can operate within the constrained domain, 
attempting to find minima of the cost function among solutions which satisfy 
constraints, or we can begin with a situation optimal with respect to the cost 
function, and then move in the direction of the constraints. It is the latter 
technique, a descent from optimal w/r to initial cost function to acceptable w/r 
to constraints, which we implemented in the MM algorithm. We begin by solving 
the multicommodity flow problem with capacity constraints removed. This is 
equivalent to finding a minimum cost path for each source-sink pair, where 
individual connection pairs are treated in isolation from one another, and results 
in a situation optimal with regard to our cost function. Next, we use a minimax 
iterative procedure in which we choose to reroute that connection which promises 
to maximize the decrease in the number of edges at the highest level of overflow 
over the system. A real danger here is to create, as a result of rerouting, new edges 
with the highest level of overflow or even with the level of overflow higher than 
the previous highest level. To prevent this from happening, a cost function used 
in the rerouting procedure penalizes, most heavily, the edges which already have 
the highest level of overflow, and less heavily, other overflown edges. We 
continue to honor the initial cost function, when possible, by using it in a tie 
breaking capacity. 

3. Formal description of algorithm 

This algorithm consists of an Initial Step and a General Step. 

Initial Step 
Solve a multicommodity flow problem (1) with constraints on capacities of 

edges removed. 

C CPjIxjkI =$ min, 
j k 

coijxjk=aiL Vi, k, xjk=O,+ 1 Vj, k. (2) 

The problem (2) is separable w/r to commodities, i.e. a solution of it can be 
obtained by an independent solution of the problem (3) for each commodity k 
independently. 

CPjIxjkI =$ min, 

&coijxjk = aik Qi, k, xjk = 0,f 1 Qj, k. (3) 

For the situation when each commodity represents one from-to connection with 
agk = 1 for the source node g, agk = - 1 for the sink node q, and aik = 0 for all 
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intermediate nodes, the problem (3) is equivalent to the shortest path from g to q 
in the graph G [12]. Thus, the multicommodity flow problem in the form (2) is 
solved by repeated k times shortest path problem for each connection indepen- 
dently. There are many algorithms for shortest path problems [lO,ll]. An 
algorithm applied in this work is an adoptation of familiar Dijkstra procedure [9]. 
Details of our implementation of the shortest path algorithm will be discussed 
later. 

General Step 
Let r be an iteration number inside the General Step. Let [x$-~)] be a vector 

of variables obtained after (r - 1) iteration. Then the following operations should 
be executed at each iteration of the General Step. 

Step 1. Find a maximal level of overflow h4, over the graph G after (r - 1) 
iteration 

M,= max(c(x$-l)i-c,). 
i k 

If M, < 0 then stop, otherwise continue. 
Step 2. Find a set of arcs Jp at the maximal and one below maximal level of 

overflow 

JP=(jeJ:{Clx:;“l-c,+Iz,yj 
k 

and set of arcs J, E JF, so that I=~~x$-‘) I - cj = M,. 
Remark: An existence (but not uniqueness) of j, E J, follows from the defini- 

tion of the set Jp, 
Step 3. Assign new costs to the arcs of the graph G: Let 

pI=do forjEJF, pi=~i(~-l) for j#Jp. 

Step 4. Define a set of connections Kf, so that 

K,!(k,EK, jEJ”* r .{ Ix;k’-l)I = 1); 

and subset K, E KP, so that: 

K,=(~,EKP, jEJ,:(Ix$-‘)(=l). 

Step 5. Solve shortest path problems for all k E K,. Let us denote solutions of 
these problems x;~. . If a solution of the shortest path problem satisfies condition 
rnin C,~~~X~~. 1 ir: 00 as minimum for one k E K,, then go to Step 6. Otherwise, go 
to Step 9. 

Step 6. Find connection k” E K, such, that 
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Step 7. Assign xi;( = xJko Vj for k = k”; xi;( = x$-l) Vj for k # k”. 

Step 8. Increase an iteration counter r = r + 1 and go to Step 1. 
Step 9. Check condition 

xi;- 1) )( xjl;- 1) =OVp, q~J,!(p#q),Vk~K,O (*) 

(this condition will be discussed later in Lemma 5). If condition (*) is satisfied, 
then Stop (routing problem does not have a solution for a given set of data). 
Otherwise, execute the Escape Procedure (see next section) and go to Step 1. 

It will be shown in this section that all constraints of the original problem of 
type C,I xjk 1 G c. can actually be satisfied as a result of the execution of AI- 
gorithm MM, although the minimum of the objective function need not neces- 
sarily be achieved. 

4. Convergence, number of iterations and related subjects 

Earlier, we denoted by J,, a subset of the set J of such edges, that 

A number of elements in Jr is denoted as m(r). 
The following two lemmas will be proven together. 

Lemma 1. M,,, Q M,. 

Lemma 2. If M,,, = M,, then m(r + 1) < m(r) - 1. 

Proof. These two lemmas are formulated under the assumption that the solution 
of the shortest path problem, which satisfies condition min Cjpil x$I# 00, exists 
as minimum for one k E K, on each execution of Step 5 of the’ Algorithm MM. 
Then, it can be stated that according to Steps 4 and 7 of Algorithm MM 

(a) CIXJ~I = CIxj;-‘)I -1 for j=j,, 

(b) ;,x$, < ;,x$-‘), for jEJF, j#jr, 

(4 &k, G i, x$-‘)I + 1 for j # Jp. 
k k 

Since ckl xj;-‘) 1 - cj < M, - 2 for j $ Jp, then &I xj;c 1 - cj 6 M, - 1. From (a) 
and (b) follows, that M,.,, is not bigger than M,.. If Mr+l = M,., then from (a) 
follows, that IYI ( r) decreased by 1, from (b) follows, that m(r) did not increase 
and from (c) follows, that m(r) did not increase. This completes the proof. 0 
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This lemma follows from Lemmas 1 and 2 and holds under the same assump- 
tions. 

Corrolary 1. Algorithm MM will converge in M, = 0 under assumptions of Lemmas 
1-3. 

An upper bound for the number of steps is [J] * M,, where [J] is an upper bound 
for m(r) and MI is a level of overflow after initial step of MM. 

Remark 1. From Lemma 3 and Corrollary 1 follows, that the number of steps of 
Algorithm MM depends on the maximal level of overflow created by the Initial 
Step of the algorithm. This initial level of overflow can be decreased by choosing 
for each connection among the routes with equal cost, one which has the minimal 
number of edges in common with the other routes. 

It is possible, that there is no solution to the global routing problem for the 
given set of data. This will result in the failure of r step of the algorithm MM to 
find a route of finite cost for all connections, which belong to the set K,. The 
same effect may be caused by the wrong topology of certain nets resulting in an 
incorrect choice of pairs to be connected. Some additional facts can be stated to 
distinguish these situations. 

Let us denote FL minimal cost for the route k E K,, obtained as a solution of 
shortest path problem by Step 5 of Algorithm MM. 

Lemma 4. If FL = 00 Vk E K,, then Jp is a cutset of the graph G. 

The statement of the lemma immediately follows from Step 5 of Algorithm 
MM and definition of cutset. 

Lemma 5. If (a) M,> 0; (b) Jp is a cutset and (c) x$-l) Xx$-l) = 0 Vk, p, 
q E J,.’ ( p f q); then the global routing problem does not have a solution. 

Proof. From (a) follows, that vector [xji-“1 does not satisfy constraints of (1). 
From (b) and (c) follows, that each route crosses cutset J,. not more then once. 
Thus, any redistribution of routes will not decrease the maximal overflow through 
cutset Jr’. This proves the lemma. 0 

Lemma 5 provides a sufficient condition for nonexistence of solution for (1). A 
check of this condition is performed by Step 9 of Algorithm MM. If Step 5 of 
algorithm MM generates infinite solutions only, but conditions of Lemma 5 are 
not satisfied, then the escape procedure is activated. The function of the escape . 
procedure is to find nets whtch have wrong topology and are blocking improve- 
ment of the route distribution and change their topology by changing pairs of 
connected nodes. 
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Escape Procedure 
Let a set of arcs J,+ for a connection k be a subset of Jp, such as Jrk = { j E Jp:{ 

Ix;;-“I = l}. Let a number of elements in Jrk be u(r, k). Then, the escape 
procedure can be formulated as follows: 

Step I. Find connection k’ E K,!‘, such as u’(r, k’) = max,u(r, k); 
Step 2. Rip-off connection k’. 
Step 3. Route a new connection, which will preserve continuity of the net by 

connecting another pair of terminals of the net broken by removal of connection 
k’. 

Step 4. Add this route to the list of routes and go to Step 1 of General Step of 
Algorithm MM. 

5. Details of implementation of algorithm MM 

The MM algorithm takes as input a description of the graph model for the 
global routing problem and a list of from-to pairs which are to be connected. The 
data is organized so that we can obtain for each node: (1) position in the grid; (2) 
arcs incident at the node. For each arc: (1) nodes which it runs between; (2) 
length; (3) capacity. This information is simply an input to the problem. 

To facilitate processing a data base is maintained consisting of 
(1) Route list: list of connections (edges comprising routes). 
(2) Edge list: list of edges where for each edge is stored: (a) usage (number of 

routes using the edge); (b) list of routes using the edge. 
(3) Overflow list: An array representing the current level of overflow throughout 

the graph. This includes for each level of overflow: (a) number of edges at this 
level; (b) list of edges at this level. 

With respect to a data base our algorithm can be described as follows: 

Step I. Choose the initial routes for all connections. 
Step 2. If the overflow list is empty, then routing is completed, otherwise: 
Step 3. For each arc at the highest level of overflow, attempt to reroute one of 

the routes using the edge, in a manner which maximally decreases the number of 
edges at the highest level of overflow. Break any ties by consulting the cost 
function. If the reroute is not found, the escape procedure is invoked and 
processing is continued at Step 2. 

Step 4. Add this route to the data base (update the various lists) and continue 
processing at Step 2. The implementation relies heavily on a routine MinCost- 
Path. The routine (described further on) solves the problem of a minimum cost 
path (w/r to the given function) between source and sink through the current 
state of the graph. Step 1 is completed by calling MinCostPath with a cost 
function assigning arc cost equal to the arc length. Step 2 requires traversing the 
list of arcs at the highest level of overflow. A list of routes using this arc is 
examined and an attempt is made to find rerouting of the connections. 



12 E. Shragowitz, S. Keel / Global router based on multicommodity flow model 

This attempted rerouting constitutes a call on MinCostPath with a cost L 
function that weights an edge according to its level of overflow. 

As it was stated earlier, the algorithm of MinCostPath is an adaptation of 
Dijkstra procedure, which aims to label the sink node with the cost of the optimal 
path from the source. The routine maintains, at all times, a list of edges L and 
relies on the notion of an edge’s ‘arrow head distance’ (AD) from the source. If cl 
is the cost of an optimal path from the source to the starting node of the edge, 
and if c2 is the cost of traversing the edge, then the edges ‘arrow head distance’ 
from the source is the sum cl + c2. With this, the routine can be described by: 

Step 1. L starts out empty and the start node is labeled with cost 0. Let n be 
this node. 

Step 2. For each of the edges incident on vertex n set AD and place the edge in 

Step 3. If L is empty, no path exists. Otherwise, let e be the edge in L with 
minimal AD. Remove e from L. 

Step 4. Let n be the node at the tip of e. If n is already labeled, continue 
processing at Step 3. Otherwise go to Step 5. 

Step 5. Label n with the AD of 3. If n is the sink node, then stop. Otherwise, 
continue processing at Step 2. 

If processing terminates successfully, then a list of decreasing labels can be 
followed to obtain an optimal path from sink to source. 

It is clear from the description of MinCostPath that the fundamental loop is 
executed, at most, once for each node of the graph, and that the processing in the 
single loop is heavily dominated by the chore of adding elements to L, and 
retrieving edges to L with minimal AD. In order to obtain optimal performance, 
it is necessary to select a representation for L which facilitates addition and 
deletion of edges based on AD. We selected a balanced binary tree representa- 
tion, which allows for the deletion or addition of an element with the order of 
log( 1 L I) operations. Thus, the complexity of MinCostPath is o( mlog n), where m 
is a number of nodes and n is a number of edges for graph G. 

6. Multiple objective functions for routing 

Two characteristics of routing render the consideration of methods for multi- 
ple-goal functions important. First, there is often a set of routes between a given 
source-sink pair which are all optimal w/r to objective function; secondly, a 
number of independent or semi-independent objective functions can be applied 
for ranking routes. Thus, for each function, may exist a number of optimal routes, 
and for any set of routes, a number of functions for determining optimality. 
Simultaneously, although each objective function may have a set of optimal 
routes, it is possible that these sets do not overlap. That is, it is conceivable that 
no route exists which is optimal w/r to each objective function independently. 
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Formally: let M be a set of routes between a given source and sink and g, be an 
objective function. Let us define a set 

Q(M, g)=(R-(g@)= %;g;(M)), (z=L...,a) 

Then possibly fl,Q( M, g,) = 9. As an example, suppose g,(R) is the length of a 
route and g2( R) is the number of edges in the route. Suppose we consider routes 
between Nl and N2 (Fig. 1). Then Q( M, gi) = Nl-N3-N4-N7-N2, Q( M, gz) = 
Nl-N5-N6-N2, and Q( M, gi) n Q( M, gz) = 4. G’ iven this possibility, a reasona- 
ble alternative is to rank the functions g,, g,, . . . , g, according to heuristically 
defined importance and then seek a route in the set S, where S, is a set of all 
routes optimal w/r to g,, S, is the subset of S, of all routes optimal w/r to g,, 
etc. In effect, objective functions g,, . . . , g, can be used successively to break ties 
among the routes optimal w/r to g,, hence obtaining a route with ‘ranked 
optimality’. 

A straight forward method of determining a route r in S, is to decompose the 
problem into the series of smaller problems of form: 

Given objective function g and set of routes M, find Q( M, g). Thus, S, can 
be obtained by: 

given g, and M, obtain S, = Q( M, g,) ; 
given g, and S, , obtain S, = Q ( S, , g, ) ; 
etc. 

Such decomposition methodology is implicit in the number of tie-breaking 
routines currently in use. It will be demonstrated here that instead of decompos- 
ing the problem, we can transform it into a single MinCostPath problem with an 
auxiliary objective function f composed of a weighted sum of the g,. We begin 
with a proof of the existence of such function f. 

Let functions g, be bounded and 0, be max of g, over M, and R > 1 r 1 for all 
r E M. Suppose 

a 
w,’ c DQ@, z= 1 ,...,(a - 1). 

X-r+1 

Lemma 6. If g,( R,) < g,( R,) then 

ii dR,)w, < t g,(R,h 
X-r X-2 

Proof. 

2 MR2) -dR,h h-2 
= kz(R,) - g,(R,)]w, + i [g&) -g,(4)] w,, 

A-z+1 
a 

> w,- c gd4b% ’ w, - 5 D,Rw,>O. •I 
X-r+1 x-z+1 
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Theorem 1. Assuming w, satisfies the conditions of the Lemma 6, route optimal 
w/r to function f = Chu:AgX belongs to subset S,, h = 0,. . . , a; i.e. 

QW~f,={S,=Ai+~}- 

Proof. Proof is by induction. For h = 0, S, = M. so result is evident. Let assume 
inductively that Q(M, f) c {fl~I~Sx}. Let r E Q(M, f) and suppose r f# S,. 
Then by induction base r~ Sx-r. but TE Q(S,-,, gx), thus 3r’ E Sk-, such that 
gx( r’) < gh( r). From definition of f follows: 

X-l 

fb) -fW = c [g&J - g.p)] WV + 5 [g,(r) - g,(r’)] H’g. 
q=l q=X 

As r, Y’ E S,,, . . . , Sk-, then g,(r)=g,(r’) for v=l,...,h-1. Also by the 
Lemma 6 ZEGCx[gh( r) - gx( r’)]W, > 0. Thus, f(r) > f( r*) contradicting the as- 
sumption, that r E Q( M, f ). This completes the induction. 0 

7. Details of implementation of several goal functions 

The existence of wh satisfying the condition of Lemma 6 follows from the fact 
that any objective function has a finite domain, and hence is bounded. As an 
indication of how the weights can be obtained in a practical environment, we 
provide an example which is similar to the actual implementation of the MM 
algoIithm. 

For an edge i, 
gl(j) = 1 if i is overflowed at the maximum level, 0 otherwise; 
gr(j) = 1 if i is overflowed below the maximum level, 0 otherwise; 
g3( j) = 1 if j is within some box, 0 otherwise. 

Thus, g, discourage the use of edges at maximum overflow, g, discourages the 
use of overflowed edges at below maximum level, and g, discourages the search 
for paths outside a box around source and sink. Suppose we want a path with a 
minimum number of edges at the maximum level of overflow, and among these, 
one on the minimum general overflow, and among these, one with a minimum 
number of edges outside of the bounding box. 

Let R be a bound on the longest route possible. (The dimensions of the graph 
provide a reasonable number). Let D, = Dz = D, = 1. The requirements of the 
Lemma 6 are that wt > R * w2 + R * w3 and w2 > R * wj. For large R (i.e. for 
largegraphs) wl=R*R*R, w,=R*R and w,=l willsuffice. 

The transformation based approach is preferable to the decomposition in two 
respects. Most visibly, the decomposition creates and processes a number of paths 
which are abandoned on subsequent tie breaking stages while the transformation 
obtains a ‘ranked-optimal’ path directly from a single call to the min-cost routine. 
In addition, the number of iterations of the min-cost algorithm is decreased by 
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Table 1 
Experimental results 

Number of vertices 
in graphs 

Number of edges 
Number of 

COMeCtiOnS 

Channel capacities 
CPU (xc) initial 

routing 
CPU (xc) rerouting 
CPU (xc) on 

Apollo DN300 

50 400 400 400 900 900 
84 760 760 760 1740 1740 

41 811 987 1229 367 514 
3 7 7 7 10 10 

4 301 352 411 653 786 
20 143 307 394 105 515 

24 444 659 905 758 1301 

the transformation. The fundamental step of mm-cost consists of labeling a node 
with the cost of an optimal path from the source, essentially completing a path to 
the node. The nodes are labeled in increasing order, hence one iteration is 
performed for any node which can be reached by a path whose cost is less than 
the cost of an optimal path to the target node. The effect of the weighted 
objective function is to increase the cost of some paths optimal w/r to the 
primary objective function. As a result of the increase, these never expanded, 
since the goal is reached first by expansion of some unaltered path, hence 
processing is decreased. Such weighting will not eliminate any potential path, as 
min-cost will attempt all possible path before failing, nor will any path subopti- 
mal w/r to the primary function be accepted if an optimal w/r to primary exists, 
since the primary function is weighted above all else (refer to Lemma 6 and 
Theorem 1 for justification). 

Finally, there is a sort of methodological justification for the transformation 
approach. Since an efficient algorithm exists for the MinCostPath, if the problem 
can be efficiently transformed to one of MinCostPath, then decomposition, 
traditionally justified by overcomplexity, is unnecessary and undesirable. 

The MM algorithm was implemented into a program written in the C-language 
and executed on an Apollo DN300. Experimental data for several problems are 
given by Table 1. Our computer is lo-14 tunes slower then VAX 11/780 used by 
many researchers [3]. With this number in mind, we can state that a perfomance 
of our general global router is not inferior to the performance of some global 
routers specialized for gate arrays. 
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