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ptimum Clustering r Delay Minimization 
Rajmohan Rajaraman and D. F. Wong, Member, IEEE 

Abstract-This paper addresses the problem of circuit cluster- 
ing for delay minimization, subject to area capacity constraints. 
We use the general delay model, for which only heuristic solutions 
were known. We present an optimum polynomial-time algorithm 
for combinational circuits under this model. Our algorithm can 
be generalized to solve the problem under any monotone cluster- 
ing constraint. 

I. INTRODUCTION 

IRCUIT partitioning consists of dividing the circuit into 
parts each of which can be implemented as a separate 

component (e.g., a chip), that satisfies the design constraints. 
One such restriction is the area capacity of a chip. Limited 
capacity may force the circuit onto several chips, assigning 
each gate to one or more of the chips. Such a mapping might 
lead to inefficient implementations. For example, if a path from 
an input to an output crosses many chip boundaries, substantial 
delay may result at the output. We address the problem of 
dividing a circuit into components so that the maximum delay 
at the outputs is minimized. 

We consider circuit partitioning with replication of nodes, 
i.e., a gate may be assigned to more than one component in the 
layout. Following [l], [3] ,  we refer to each such component as 
a cluster, and to the problem as the circuit clustering problem. 
Reference [3] gave a polynomial-time optimum solution to this 
problem assuming the unit delay model (using the terminology 
of [l]). In this model, no delay is associated with any gate or 
interconnection linking two gates within a cluster. A delay 
of one time unit is encountered along any interconnection 
crossing a cluster boundary. 

The unit delay model is not realistic, as it assumes that the 
inter-chip delay totally outweighs any delay within a chip. As 
more gates are packed onto a single chip, a path might pass 
through many gates, incurring a substantial delay within the 
chip itself. 

Reference [l] proposed the general delay model, a more 
realistic extension of the unit delay model. In the general 
delay model: 

1) each gate v of the network has a delay given by S(w), 
2) no delay is encountered on an interconnection linking 

two gates in the same cluster, and 
3) a delay of D time units (D is a specified constant) is 

encountered on every interconnection linking two gates 
in different clusters. 
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The general delay model is quite powerful, and can capture 
many timing constraints by simple extensions. For example, 
delay on the interconnections can be handled by adding a 
dummy gate (with zero area) to every interconnection, and 
assigning an appropriate delay to the dummy gate. This 
transformation increases the size of the network by a constant 
factor only. Reference [l] gives an algorithm (referred to as 
the GLLT algorithm) to cluster networks with the objective of 
minimizing delay under the general delay model. The GLLT 
algorithm (based on a greedy labeling procedure) is optimum 
only under specific conditions. In this paper, we present a 
provably optimum polynomial-time algorithm that clusters any 
combinationd network such that the maximum delay through 
the network is minimized. 

Section II presents a formal description of the problem. Our 
algorithm is described in detail in Section 111. In Section IV, we 
prove the optimality and the polynomial-time complexity of 
the algorithm. Section V discusses extensions of the algorithm 
for monotone clustering constraints. Section VI presents some 
experimentat results, and we conclude with some remarks in 
Section VII. 

11. PROBLEM FORMULATION 

A combinational network can be represented as a directed 
acyclic graph G = (V, E ) ,  where V is the set of nodes, and 
E is the set of directed edges. Each node in V represents a 
gate in the network and each edge ( U ,  v)  in E represents an 
interconnection between gates U and v in the network. The 
fanin of a node is the number of edges incident into it, and the 
fanout is the number of edges incident out of it. A primary 
input (PI) is a node with fanin 0, and a primary output (PO) 
is a node with fanout 0. We represent the set of PI’S by PI, 
and the set of PO’s by FO. Each node has a weight and a 
delay associated with it. We denote the weight function by 
w: V -+ R+ and the delay function by 6: V ---f R+, where 
R+ denotes the set of nonnegative reals. A cluster is a set of 
nodes U C_ V of the network. 

Dejnition I :  A clustering of a network G = (V, E )  is a 
triple ( H ,  6, E), where 

1) H = (VI, E’) is a directed acyclic graph, 

2) 4 is a function mapping V’ to V such that 
a) 

b) 

for every edge (U’, U’) E E’, [d(u’), $(U’)] E E, 
for every node v’ E V’ and edge [U, 4 ( 4 ]  E E, 
there exists a unique U‘ E V’ such that d(u’) = U 

and (U’, U‘) E E’, and 

for every PO node U E V, there exists a unique 
U’ E V’ such that $(v’) = v, and 

c) 

3) C is a partition of V’. 
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Let I’ = [H = (VI, E’), 4, C] be a clustering of G. For 
w E V, w’ E V‘, if +(w’) = w, we call ‘U’ a copy of w .  The 
set V’ consists of all the copies of the nodes in V that appear 
in the clustering. Moreover, w’ E V’ is a PI (resp., PO ) of 
a clustering ( H ,  $, E) if $(w’) is a PI (resp., PO) of G. It 
follows from the definition of 4 that H is logically equivalent 
to G. 

The weight (resp., delay) of any node w’ in V’ is the weight 
(resp., delay) of $(U). The weight of any cluster C E C, 
denoted by W ( C ) ,  is the sum of the weights of the nodes 
in C. We now present a notion of delay of a clustering of a 
network using the general delay model. The delay of an edge 
(U’, U’) E E is D if U and w are in different elements of C, 
and zero otherwise. The delay along a path (v i ,  vh, . . . , wk) 
in a clustering r is the sum of the delays of the gates 
v i ,  wh, . . . , wi and the delays on the interconnection edges 
(wi, v i ) ,  .. . , wk). The delay of a node w’ in clustering 
r, denoted by &(w’), is the maximum delay along a path from 
a PI to U’. The delay of a clustering I‘ is the maximum delay 
of a PO in I‘. 

DeJinition 2: Given a combinational network G = (V, E )  
with weight function w:V --f R+, weight capacity M ,  and 
delay function 6: V t R+: 

1) A, clustering r = ( H ,  4, E) of G is feasible if for every 
cluster C E E, W(C)  is at most M .  

2) The circuit clustering problem is to compute a feasible 
clustering F of G such that the delay of r is minimum 
among all feasible clusterings of G. 

Fig. 1 shows an instance of the circuit clustering problem 
(taken from [3]). The combinational circuit is represented by 
the directed acyclic graph in Fig. l(a). An optimum clustering 
solution (under the unit delay model with M = 5 )  is shown 
in Fig. l(b). 

111. AN OPTIMUM ALGORITHM FOR DELAY MINIMIZATION 

The algorithm consists of two phases: Labeling and Clus- 
tering. In the labeling phase, we label each node v with 
the maximum delay at the uniquc copy of w in an optimum 
clustering of G,, where G, denotes the graph consisting of w 
and all of its predecessors. We denote an optimum clustering 
of G, by I?,. (Since r, has a unique copy of U, we use U to 
denote this copy as well.) This labeling is motivated by the 
following: 

Lemma I :  For any node w and any clustering I‘ of network 
G, we have &(U’ )  2 dr,(U) for every copy v‘ of U in I?. 0. 

Lemma 1 follows from the observation that any clustering 
of G induces a clustering on G,. Therefore, the maximum 
delay at any copy of ‘U in a clustering I‘ of G is at least the 
maximum delay in an optimum clustering of G,. 

The clustering phase consists of generating clusters based on 
the labeling done in the labeling phase. The clustering solution 
thus obtained is an optimum clustering of the network. 

A. The Labeling Phase 
This phase assigns to each node v in G, a label !(U). The 

network is processed in topological order. For each of the 
PI’S w, we assign t (v)  = 6(v). We now give a procedure 

to label a node v, all of whose predecessors have been 
labeled. For each U E G, \ {U} we compute & ( U )  as follows: 
&,(U) = l(u)+A(u, w ) ,  where A(u, w) is the maximum delay 
along any path from the output of U to the output of w, ignoring 
delays on the interconnections. For any subset S of G,\{w}, 
let m ( S )  denote any node in S with the maximum value of 
1,. The following algorithm computes l! ( w) : 

Algorithm Labeling (G, U); 
begin 
cZuster(v) t {U}; [,(U) +-- &(U)  t 0;  
Compute &,(U) for each u E G,\{v}; 
S t G,\{v} sorted in nonincreasing order of e, value. 
while ( S  f 0) and {W[cZuster(w)] + w[m(S)]  5 M }  

cZuster(w) e- cZuster(v) U { U } ;  

S +- S\m(S); 
if cluster(  U )  n PT # 0 

l , ( w )  t- max {&,(x) 1 5 E cZuster(v) n PZ}; 
endif 
if S # 0 &(U) + l,[m(S)] + D;  
endif 
!(U) + m:tx{el(v), &(v)>; 
end 

A key idea in the labeling phase is the computation of the 
function t,. (Note that there is a different function tu for every 
w). By the definition of e,, & ( U )  is a lower bound on the delay 
along any path from a primary input to w that passes through U. 

The greater the value of & ( U ) ,  the more the need to include 
U in cluster(v). Hence, we try to cluster ‘U with as many 
high &,-valued nodes as the capacity constraint permits. After 
building cZuster(w), v is labeled by considering all possible 
paths from an input to the output of W. All of the paths can 
be divided into two categories: 

1) Paths that lie entirely in cZuster(v). Such paths start 
from a primary input that is in cZuster(v), and never 
exit the cluster. The maximum delay along any such 
path is 

! , ( , U )  = max{e,(u) I U E cluster(v) n PI}. (1) 

2) Paths that cross the “boundary” of cZuster(v). Among 
these paths, the maximum delay is 

&(w) = max{l,(u) + D I U E G,\cZuster(v)}. (2) 

Thus the label e(w) is given by 

[(U) = max{-e1(w), .e2(v)>. (3) 

Consider the example in Fig. 2(a). The graph G represents 
the ISCAS’85 example circuit c17. There are 11 nodes, named 
a through k .  The five PI’S are a, b, e, d, and e. There are two 
PO’s, j and I C .  Each node has a weight of 1. The delays on 
the nodes are specified in the figure. Let the capacity M of a 
cluster be 3, and the intercluster delay D be 3. Labeling first 
assigns labels to the PI nodes, equal to their respective delays. 
The label on node f is easily Seen to be 3 [Fig. 2(b)].We now 
wish to label node h. We obtain the subgraph Gh and compute 
the function [denoted e’ in Fig. 2(c)] for each node in Gh: 
e h ( b )  = 0 + 3 = 3; th(c) = 1 f 3 = 4; e h ( d )  = 1 + 1 
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(a) (b) 

Fig. 1. An instance of the circuit clustering problem. (a) A clrcuit before clustering. @) A clustering solution. 

(a) @) (c) 

Fig. 2. The labeling phase. (a) The graph G representing the circuit c17. @) Labels of nodes b, c, and f. (c) Computing the label of h. 

2; and t h ( f )  = 3 + 1 = 4. Since the cluster capacity is 3, 
only nodes f and c can be accommodated into cZuster(w). We 
observe that although both c and d have the same label, c is 
a more critical node for f due to a path with greater delay. 
Note that while labeling a node v, we use the labels of all the 
predecessors of v in the network. Moreover, unlike in a greedy 
algorithm, we do not make use of the clusters computed in any 
previous iteration. Instead cluster(v) for a node w is computed 
by considering the entire subgraph G,. 

B. The Clustering Phase 

The labeling phase generates a cluster for each node of G. 
The clustering phase computes a clustering of G by selecting 
clusters among those generated in the first phase. For any 
cluster C, let T(C) denote the set of inputs to C.  We maintain 
a list L of nodes whose clusters will be selected and a set 
S of selected clusters. Initially L is set to the set of primary 
outputs of G. The following three steps are repeated until L 
is empty: 1) remove node U from L and add cZuster(u) to 
S, 2) compute I[cZuster(u)], and 3) for every node z 6 L 

such that z E I[cZuster(u)], if cZuster(z) 6 S, add z to L. 
(Note that for every input y of any cluster in S, cZuster(y) 
is selected in this phase.) 

A clustering r = ( H ,  4, E) can be easily defined from S 
and 1. The vertices of H are the different copies of the vertices 
in V .  For every vertex v E V, we have a copy of v in H for 
every cluster in S that v belongs to. The function (b maps every 
copy v’ of U E V to w. The edges in the clustering are of two 
kinds: edges within clusters and edges between clusters. The 
edges within any cluster C are all the edges in the subgraph 
of G induced by the vertices of C. The edges from cluster 
C = cZuster(u) to C’ are all the edges from the copy of U 

in C to all the neighbors of U in C’. The set C consists of all 
the subsets of V’ that correspond to the clusters in S. 

For the example of Fig. 2, the final clustered circuit is 
given in Fig. 3. We start with the PO’s j and k and select 
clusters cZuster(j), and cZuster(k), respectively. The set of 
nodes that form inputs to these clusters is {e ,  d ,  f ,  g, h}. So 
clusters rooted at these nodes are selected. Finally, cZuster(b) 
is selected since b is an input to cZuster(h). This optimum 
clustering solution requires replication of nodes b, c, f ,  and h. 
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cluster(j) 

Fig. 3. An optimum clustering of the circuit c17. 

The complete algorithm, named Clustering, includes both 
the labeling and clustering phases and is summarized in the 
following: 

Algorithm Clustering (G, w, 6, D ,  M )  
Output: Clustering r. 
begin 
Compute the maximum delay matrix A; 
for each P I  i ,  do l ( i )  t 6( i ) ;  
Sort the non-PI nodes of G in topological order 

to obtain list T ;  
whilr: T is nonempty 

liemove the first node w from T ;  
Compute G,; 
for each node U E G,\{v) do 

Sort the nodes in G,\{w} in order of decreasing 

Call Labeling(w); 

l ’ ( U )  +- [ ( U )  + A ( U ,  v); 

value of l, to form list P;  

endwhile 
L t PO; 
s +- 0; 
while L is not empty 

Remove a node w from L; 
$9 t S U {cluster(v) j; 
~[cZuster(w)] = {x E VI xis an input tocluster(w)}; 
L t L U [I(cZuster(w)]\{y I cZuster(y) E S } ) ;  

endwhile 
Generate clustering I’ from S and function I ;  
end 

Iv.  PROOF OF OPTIMALITY 

Theorem 1: For any directed acyclic combinational net- 
work G = (V, E )  with weight function w, delay function 
6, inter-cluster delay D,  and maximum cluster capacity M ,  
Clustering computes an optimum clustering r. 

We prove Theorem 1 by establishing the correctness of the 
labeling and clustering phases. Lemma 2 verifies the labeling 
phase. 

Lemma 2: For every U E V, we have [ ( U )  5 dr,(w). 

Pro03 The proof is by induction on the topological 
ordering of I f .  

Induction Basis: For each PI i ,  Labeling assigns l ( i )  = 
S ( i ) ,  which is the maximum delay in the optimum clustering 
of G, = { i } .  

Induction Step: Assume the statement is true for all prede- 
cessors of v, i.e., [ ( U )  5 dr,(u) for all U E G,\{w}. Based 
on (1) and (2) in Section 111-A, we consider the following two 
cases. 

Case 1: l ( w )  = l(u)+A(u, U), for some U E cZusier(w)n 
PZ. Since in this case l (u)  = S ( U ) ,  l ( v )  is just the delay 
along the path from U to ‘U. Clearly the maximum delay at the 
output of w will be at least !(U). 

Case2: l ( v )  = l (u)  + A(u, w) + D,  for some 
U cZuster(w). We first observe that for every 
LG E cZuster(w)\{w), l(w) 5 l ( x )  + A(x, U) + D. Therefore, 
for y E cZuster(w)\{v}) U { U } ,  we have 

Now consider r,, an optimum clustering of G,. Consider 
the cluster C that contains the unique copy of U, which we 
denote by w for convenience. Our proof is by contradiction. 
Assume dr,(u)  < l(w). Let X = {x $! cZuster(v) 1 [(U) = 
l(z)+A(x, ti)}. Hence, X is the set of nodes not in cZuster(w) 
that have the maximum value of e,. Since U belongs to X ,  
X is nonempty. 

If cZuster(w) U X C C, then the weight of C is greater 
than M ,  violating the capacity constraints, as otherwise in 
the labeling phase we would have added some node in X 
to cZuster(v). Therefore, there exists x E cZuster(v) U X 
such that no copy of x is in C. Let x‘ be any copy of 11: 

in r,. Thus, dr,(v) 2 drV(x’) + A(x, w) + D. It follows 
that l(w) > d r , ( d )  + A(x, w) + D.  If 1c E cZuster(w), by 
(4), we have l(x) > drv(d); otherwise 5 E X and we have 
l(w) = l ( x )  + A(z, U )  implying that ~ ( L G )  > drV(d). Since 
r, induces a clustering of G,, by invoking Lemma 1, we 
obtain that l ( x )  > d r z ( x ) ,  a contradiction of our induction 

0. hypothesis. Thus we have l(w) 5 dr, (U) 
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In Lemma 3, we show that the clustering solution generated 
in the clustering phase is an optimum solution. Let I’ denote 
the clustering output by Clustering, If cluster(v) is present 
in r, we denote the particular copy of ‘U in cluster(v) by v. 

Lemma 3: For every node v E V ,  if cZuster(v) is in r, 
then dj-(v) = l(v). 

Proo$ Let ‘U be any vertex such that cZuster(v) is in r. 
By Lemmas 1 and 2 we have dr(v)  2 dr,(w) 2 C(v). The 
proof in the other direction, dp(v) 5 !(v), is by induction on 
the topological ordering of V .  

Induction Basis: The maximum delay at the output of a PI 
i in any clustering solution is S ( i ) .  Since Labeling assigns 
t ( i )  = 6 ( i ) ,  the statement holds. 

ZnductionStep: Assume dp(z) I !(x) for every 5 E 
G,\{v} such that cluster(z) is in I?. If a cluster is generated 
for ‘U, dr(v)  is given by the maximum of 

max{dr(u) + A(u, w)I U E cZuster(v) nPz>, 

max{dr(u’) + ‘ ~ ( u ,  v )  + D I  u’is a copy ofu, 
and 

an input node to cluster(v)}. 

If dr (v )  = dr(u) + A(u, U) for some PI U ,  then dr(v) = 
l(w) (follows from (1) of Section 111-A); otherwise dr(v) = 
dr(u’) + A(u, w )  + D for some U’ that is a copy of U ,  an 
input to cluster(v). In this case, Clustering also generates 
cZuster(u). Since U is a predecessor of v, by the induction 
hypothesis, we have dr (u )  = l (u) .  So = ! (U) + 

0 
Proof of Theorem 1: By Lemma 3, for every PO node U ,  

we have dp(u) = l (u ) .  Since we have ! ( U )  = dr,(u) by 
0 

Theorem 2 :  For a combinational network G = (V, E ) ,  
Clustering runs in O(n2 log n + nm) time, where n = IVI 
and m = IEl. 

Proof: The computation of the matrix A can be reduced 
to an all-pairs shortest path problem by a suitable transfor- 
mation of the graph. The all-pairs shortest path problem for 
directed acyclic graphs can be solved in O[n(n+m)] time [4]. 
Sorting the nodes in topological order takes O(n + m) time. 
For each node U, G, can be constructed in O ( n  + m) time, 
and the nodes can be sorted according to the values of C‘ in 
O(n1og n) time. So the complexity of the first while loop is 
O(n2  log n + nm). The generation of the clustering can be 
done in 0 [n(n + m)] time. Hence the complexity of the entire 

0 

A(u, U) + D I l(v). 

Lemma 2, it follows that dr(u) =dr,(u). 

algorithm is O(n2 log n + nm). 

V. DELAY OPTIMIZATION WITH 
MONOTONE CLUSTERING CONSTRAINTS 

Our algorithm can be easily generalized to compute the 
optimum clustering solution under any monotone clustering 
constraint. A clustering constraint is monotone if and only if 
any connected subset of nodes in a feasible cluster is also 
feasible [3].  Clearly the capacity constraint is a monotone 
clustering constraint. 

TABLE I 
THE PERFORMANCE OF ALGORITHM CLUSTERING 

c880 443 4.0 
cl355 587 24 20.7 

I cl908 I 913 I 39 I 37.1 11 

To solve the delay optimization problem under any mono- 
tone constraint, the labeling phase has to be changed to test 
for the feasibility of the cluster being computed, under the 
particular clustering constraint. The correctness follows from 
the observation that the partial cluster obtained at any step 
during the computation of cluster(v) for any node v by the 
labeling phase, is always a connected subset of cluster(v). 
The proofs of all the theorems and lemmas in Section V 
follow with minor modifications. Thus we have the following 
theorem. 

Theurenz 3: The circuit clustering problem for delay mini- 
mization can be solved optimally under any monotone cluster- 
ing constraint in polynomial time in the size of the circuit.0 

One implication of this is that the problem of clustering with 
pin limitations can be solved in polynomial time for tree net- 
works. The “pin limitation” constraint is the restriction on the 
number of signals that cross a cluster. Since such a constraint 
is a monotone constraint for both rooted and nonrooted trees 
[3], our Clustering algorithm, with appropriate modifications 
can compute an optimum clustering solution. Unfortunately, 
for a general combinational network, the pin constraint is not 
monotone. Reference [SI has given an optimum algorithm for 
a special case of clustering under pin constraints in the unit 
delay model, that has applications in FPGA designs. 

VI. EXPERIMENTAL RESULTS 

We have implemented the Clustering algorithm in C on 
the SUN SPARC workstations. The algorithm was tested on 
some ISCAS combinational networks. Results for five ISCAS 
circuits are shown in Table I. No further logic minimization 
was done on these circuits. For our experiments, we chose: 
S(w) = 1, ~ ( v )  = 1 for all gates ‘U. We set the cluster capacity 
M to 100, and the cluster-interconnection delay 13 to 2. 

The table shows the number of nodes in the network,’ 
the maximum delay through the network (as calculated by 
Clustering), and the total time taken in seconds by the 
algorithm. 

VII. CONCLUDING REMARKS 

We have presented a polynomial time optimum algorithm 
for the problem of clustering networks to minimize delay, 
subject to capacity constraints, under the general delay model. 
Since the general delay model can be very easily extended 

’ The ISCAS ’85 format, in which the networks were specified, lists fanout 
branches separately as &stinct nodes. For OUT experiments, we have not added 
nodes for any fanout branch. 
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to handle delay on all interconnections and arbitrary arrival 
times at the primary inputs, our method applies to the most 
general clustering problem. Moreover, the algorithm can be 
generalized for any monotone clustering constraint. 

Our algorithm does not guarantee the minimum number of 
clusters in the solution with optimum delay. We can overcome 
this to some extent by using techniques mentioned in [l], in 
a postprocessing phase to reduce the number of nodes and 
clusters, without changing the delay through the circuit. 

r21 

[31 

141 
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