
ECE 6133
Physical Design Automation
Spring 2019

ILP Based Floorplanning

Soundarya Bhagi
Vydeeswaran Kannan



Project 
Overview

 Integer Linear Programming Based Floorplanning

 Problem Formulation

 Algorithm and Implementation

 Results

 Extension

 Conclusion



Integer Linear 
Programming 
Based 
Floorplanning

 Integer Linear Programming algorithm for floorplanning has been 
implemented to handle soft and hard modules under area 
minimization constraint. 

 ILP algorithm has been implemented using Python language.

 lp_solve, a free mixed integer linear programming solver by 
SourceForge.net, has been used to solve the linear constraints. 

 Python’s GUI Tkinter is used to demonstrate the final floorplan.



Problem 
Formulation

 Objective:

To find the optimal dimensions of flexible blocks and rotation of 
fixed blocks and their locations on a chip such that the total area is 
minimized and none of the blocks are overlapped.

 Input:

The dimensions of a set of fixed blocks and the area and aspect ratio 
of the flexible blocks are provided by the user as a .ilp file.

 To Do:

Parse the input file and generate the input constraints which are fed 
to a linear programming solver. The generated output file with 
values satisfying the input constraints are used to generate the final 
floorplan layout.

 Output:

Generate the final floorplan layout on a GUI.



Algorithm and 
Implementation

Input .ilp
file

Python 
code to 

generate 
constraint 
.lp file for 
lp_solve

lp_solve
v5.5

Python 
code to 

read 
output file 

and plot 
on GUI

Extension



Results

 We ran our code for 5_block.ilp, 10_block.ilp, 30_block.ilp, 
50_block.ilp and 100_block.ilp.

 The output GUI is shown in the following slides and the extension 
where whitespace and overlap is removed, is shown beside it.

 Run time is the time we allowed the lp_solve to run. The higher 
the run time, better the result. Thus, the noted run times and final 
floorplan are not the optimal values since we can get better values 
if we let the lp_solve run for longer time.

 We do not report the percentage whitespace for the above noted 
reason.

 Hard non-rotated modules are represented by grey color.

 Hard rotated modules are represented by blue color.

 Soft modules are represented by red color.



Extension

 We extended our project by running ILP algorithm again on the 
floorplan but by setting all the modules to be rigid and fixing their 
relative positions. Thus only the location of each module is 
calculated by lp_solve.

 The area improvement is not much, but it would be significant if 
the initial floorplan solution is optimal.



5 Blocks –
Underestimation 
with runtime 
0.86s

With overlap After Extension



5 Blocks –
Overestimation 
with runtime 
0.86s

With whitespace After Extension



10 Blocks –
Underestimation 
with runtime 
60s

With overlap After Extension



10 Blocks –
Overestimation 
with runtime 
60s

With whitespace After Extension



30 Blocks –
Underestimation 
with runtime 
600s

With overlap After Extension



30 Blocks –
Overestimation 
with runtime 
600s

With whitespace After Extension



50 Blocks –
Underestimation 
with runtime 
1800s

With overlap After Extension



50 Blocks –
Overestimation 
with runtime 
1800s

With whitespace After Extension



100 Blocks –
Underestimation 
with runtime 
3600s

With overlap After Extension



100 Blocks –
Overestimation 
with runtime 
3600s

With whitespace After Extension



Tabulation of 
Results

Number 
of Blocks

Hard 
Modules

Soft 
Modules

Area with 
Underestimation

Area with 
Overestimation

Runtime

5 3 2 43.6702 46.4631 0.86s

10 7 3 72.6107 108.4557 60s*

30 26 4 1546.3848 2025.0 600s*

50 40 10 3279.1771 4624.0 1800s*

100 80 20 16129.00381 22801.0 3600s*

*Indicates that these blocks were run with a timeout flag, and the program was forced
to terminate after this amount of time



Percentage
Whitespace

Percentage of Whitespace in the final floorplan
Benchmarks Under-estimation Over-estimation

5_block 12.9841767698 16.4159036907
10_block 9.57929621032 37.3016299201
30_block 81.2465828462 85.6790123457
50_block 85.8196133085 89.9437716263

100_block 93.8371891302 95.6405420815
Run-time is the bottleneck, and with more run-time we could expect to see a 
reduction in overall whitespace in the floorplan.



Conclusion

The Mixed Integer Linear Programming approach is an analytical
method to obtain an area efficient floorplan with runtime being the
primary bottleneck. When the algorithm is run for a sufficient
amount of time we get good solution quality in terms of area and
whitespace, with percentage whitespace being as less as 10%.

Note:

We had also attempted implementing the algorithm in C++ but
found no improvement in run-time over Python, so we chose to
move ahead with Python due to the ease of integration with GUI.


	ECE 6133�Physical Design Automation�Spring 2019��ILP Based Floorplanning
	Project Overview
	Integer Linear Programming Based Floorplanning
	Problem Formulation
	Algorithm and Implementation
	Results
	Extension
	5 Blocks – Underestimation with runtime �0.86s
	5 Blocks – Overestimation with runtime �0.86s
	10 Blocks – Underestimation with runtime �60s
	10 Blocks – Overestimation with runtime �60s
	30 Blocks – Underestimation with runtime �600s
	30 Blocks – Overestimation with runtime �600s
	50 Blocks – Underestimation with runtime �1800s
	50 Blocks – Overestimation with runtime �1800s
	100 Blocks – Underestimation with runtime �3600s
	100 Blocks – Overestimation with runtime �3600s
	Tabulation of Results
	Percentage�Whitespace
	Conclusion

