
1-Steiner Routing
using Kahng and
Robins Algorithm

April 2019

RUI LI
MADHU SUDHAN LAKSHMIPATHY

Goals
• Perform KR Routing with MST construction using

PRIM’s algorithm
• Implement Random Variant of KR Algorithm
• Speed up the code
• Verify the results using Matlab
• Create a video animation showing the wirelength

improvement for points_30_50.pts testbench
• Extension: Add the feature to use Kruskal’s

algorithm in the code, instead of PRIM

PRIM’s Algorith for MST
• Get P be the set of points that are not

connected initially.
• Move point ‘i’ from P to the graph set G
• Find the nearest point ‘j’ to ‘i’, draw and edge

between ‘i’ and ‘j’.
• Next, add another point which is closest to any

of the points in the tree by drawing an edge.
• Repeat the step till P becomes a Null Set.
• PRIM is a greedy algorithm, results in a

minimum spanning tree

Steiner Point
• Points that are added to MST to reduce the

wirelength

Kahng and Robins Algorithm
• Hanan Grid:

A Grid of points obtained by intersection of vertical and
horizontal lines drawn on all nodes in the MST.

Iterate through the points in the Hanan grid to find a Steiner
point which gives best gain in the wirelength.

Repeat the process with subsequent MSTs and keep adding
Steiner points till there is no improvement in the Wirelenth

Random Variant
• Instead of choosing the best gain Steiner point

in each iteration, just add any random steiner
point.

• Final solution may have some redundant
Steiner points with degree less than 3.

• The redundant points can be removed.

• Time spent on each step is less, but more
Steiner points added.

Speed Up
• Initial Time Complexity of whole code: O (N5)

• After using adjacency list, the time complexity
of Prim function became: O(N log N)

• After the First iteration, the Hanan grid points
that gave no gain were removed.

• This tremendously boosted the speed from
O(N5) to O(N2 log N)

Implementation Chellenges
• Verification of output
(MATLAB GUI was used)

• Choosing the correct data structures

• Speeding up the code

Results: Wirelength Improvement
Testbench Wirelength

PRIM KRUSKAL

Initial
MST

Final (Basic) Final (Random
Variant)

Initial
MST

Final (Basic) Final
(Random
Variant)

Points_10_5 21 18 18 21 18 18

Points_10_10 24 20 20 24 20 20

Points_10_20 37 34 34 37 34 34

Points_30_50 183 163 163 183 163 163

Points_100_100 242 220 220 242 220 220

Results: Percentage Improvement in WL

Testbench % reduction in Wirelength from
Initial MST to Final RMST

Points_10_5 14.29
Points_10_10 16.66
Points_10_20 8.1
Points_30_50 10.92
Points_30_100 9.1

Execution Time

Testbench Execution time (ms)
PRIM KRUSKAL

Basic Random Variant Final (Basic) Final
(Random
Variant)

Points_10_5 0 0 0 0
Points_10_10 0 0 0.010 0
Points_10_20 0.030 0.030 0.040 0.040
Points_30_50 1.600 1.63 2.300 1.810
Points_100_100 14.720 13.880 19.030 18.070

10_5 (Prim, Basic)

Before = 21 After = 18

Steiner Points = 2

10_10 (Prim, Basic)

Before = 24 After = 20

Steiner Points = 3

10_20 (Prim, Basic)

Before = 37 After = 34

Steiner Points = 3

30_50 (Prim, Basic)

Before = 183 After = 163

Steiner Points = 15

30_100 (Prim, Basic)

Before = 242 After = 220

Steiner Points = 21

10_5 (Kruskal, Basic)

Before = 21 After = 18

Steiner Points = 2

10_10 (Kruskal, Basic)

Before = 24 After = 20

Steiner Points = 3

10_20 (Kruskal, Basic)

Before = 37 After = 34

Steiner Points = 3

30_50 (Kruskal, Basic)

Before = 183 After = 163

Steiner Points = 15

30_100 (Kruskal, Basic)

Before = 242 After = 220

Steiner Points = 21

10_5 (Prim, Random)

Before = 21 After = 18
Total Steiner Points = 3

10_10 (Prim, Random)

Before = 24 After = 20

Steiner Points = 4

10_20 (Prim, Random)

Before = 37 After = 34

Steiner Points = 3

30_50 (Prim, Random)

Before = 183 After = 163

Steiner Points = 20

30_100 (Prim, Random)

Before = 242 After = 220

Steiner Points = 22

10_5 (Kruskal, Random)

Before = 21 After = 18

Steiner Points = 3

10_10 (Kruskal, Random)

Before = 24 After = 20

Steiner Points = 4

10_20 (Kruskal, Random)

Before = 37 After = 34

Steiner Points = 3

30_50 (Kruskal, Random)

Before = 183 After = 163

Steiner Points = 20

30_100 (Kruskal, Random)

Before = 242 After = 220

Steiner Points = 22

THANK YOU

	1-Steiner Routing using Kahng and Robins Algorithm�
	Goals
	PRIM’s Algorith for MST
	Steiner Point
	Kahng and Robins Algorithm
	Random Variant
	Speed Up
	Implementation Chellenges
	Results: Wirelength Improvement
	Results: Percentage Improvement in WL
	Execution Time
	10_5 (Prim, Basic)
	10_10 (Prim, Basic)
	10_20 (Prim, Basic)
	30_50 (Prim, Basic)
	30_100 (Prim, Basic)
	10_5 (Kruskal, Basic)
	10_10 (Kruskal, Basic)
	10_20 (Kruskal, Basic)
	30_50 (Kruskal, Basic)
	30_100 (Kruskal, Basic)
	10_5 (Prim, Random)
	10_10 (Prim, Random)
	10_20 (Prim, Random)
	30_50 (Prim, Random)
	30_100 (Prim, Random)
	10_5 (Kruskal, Random)
	10_10 (Kruskal, Random)
	10_20 (Kruskal, Random)
	30_50 (Kruskal, Random)
	30_100 (Kruskal, Random)
	Slide Number 32

