
Terminal Propagation
- NANDAN BEDEKAR

- PRIYADARSHINI SAVAN ROSHAN

Objective

Brief Description

Overview of implementation

Implementation issues

Results

Brief Description
Algorithm for the placement of cells which targets wirelength
reduction

Uses recursive bi-partitioning for performing placement
We have used FM algorithm – move based
The results have been compared for different window sizes.

Overview of implementation
Locked cells were added for each partition which represents external
connection to the cells.

These locked cells have a fixed partition during FM algorithm and
thus, aren’t moved through the passes.
The terminals being propagated are limited by tuning a parameter
for each circuit.
Window size is varied from 0 to core width/height. When window
size is maximum, no terminals are propagated (mincut).

When window size is zero, all the terminals are propagated.

Overview of implementation
The IO cells are initially placed at the edges as specified. These IOs also act
as terminals are pull the cells towards themselves.
When the average number of cells in the partition reaches 50 to 100 we
stop partitioning.
Wirelength degradation was observed due to too much terminals being
propagated. So the number of terminals propagated was limited by a
threshold.
Once the partitions are created, cells are assigned to rows corresponding
to that partition randomly. Due to lack of time row balancing techniques
were not implemented.

Implementation Issues
KL could not be used because of its very high execution time. The runs of
KL would simply not finish for circuits benchmarks with high number of
cells.

When the partitions in the circuit become small the number of terminals
that are propagated for them become very large leading to very large cut
sizes. This led to the terminals dominating cutsizes and bad partitioning.

Significant challenges were faced in tuning the following parameters:
window size, max number of terminals per partition, scaling factor for the
max number of terminals per partition, number of steps, area constraint
for the fm algorithm.

Results

Name of trace file Number of cells Number of nets Runtime (in s)
structP 1920 1952 25.90207601
p2 3029 3014 75.49070811
biomedP 5742 6514 2411.632531
industry2 13419 12637 2715.305205
industry3 21923 15406 2722.885562

Runtime analysis for the complete algorithm:

Sheet1

										Wirelength

		Name of trace file		Number of cells		Number of nets		Runtime (in s)		Window = 1

		structP		1920		1952		25.9020760059

		p2		3029		3014		75.4907081127

		biomedP		5742		6514		2411.63253093

		industry2		13419		12637		2715.30520487

		industry3		21923		15406		2722.88556194

Results
Wirelength analysis for different percentage of window sizes (HPBB):

Wirelength for percent window size
0 percent 50 percent Mincut

structP 75267 73519 77441
p2 232872 229005 241483
biomedP 430287 419735 433179
industry2 1803850 1789820 1826460
industry3 3725490 3647360 3756640

Name of trace file

Sheet1

										Wirelength

		Name of trace file		Number of cells		Number of nets		Runtime		Window = 1

		structP		1920		1952		25.9020760059

		p2		3029		3014		75.4907081127

		biomedP		5742		6514		2411.63253093

		industry2		13419		12637		2715.30520487

		industry3		21923		15406		2722.88556194

		Name of trace file		Wirelength for percent window size

				0 percent		50 percent		Mincut

		structP		75267		73519		77441

		p2		232872		229005		241483

		biomedP		430287		419735		433179

		industry2		1803850		1789820		1826460

		industry3		3725490		3647360		3756640

		Name of trace file		Wirelength for percent window size

				0 percent		30 percent		40 percent		50 percent		60 percent		70 percent		80 percent		Mincut

		structP

		p2

		biomedP

		industry2

		industry3

Wirelengths for varying window sizes : structP

W L = 7 5 2 6 7 (W I N D OW = 0) W L = 7 3 5 1 9 (W I N D OW = 0 . 5) W L = 7 7 4 4 1 (W I N D OW = 1)

Wirelengths for varying window sizes : p2

W L = 2 3 2 8 7 2 (W I N = 0) W L = 2 2 9 0 0 5 (W I N = 0 . 5) W L = 2 4 1 4 8 3 (W I N = 1)

Wirelengths for varying window sizes : biomedP

W L = 4 3 0 2 8 7 (W I N = 0) W L = 4 1 9 7 3 5 (W I N = 0 . 5) W L = 4 3 3 1 7 9 (W I N = 1)

Wirelengths for varying window sizes : industry2

W L = 1 8 0 3 8 5 0 (W I N = 0) W L = 1 7 8 9 8 2 0 (W I N = 0 . 5) W L = 1 8 2 6 4 6 0 (W I N = 1)

W L = 3 7 2 5 4 9 0 (W I N = 0) W L = 3 6 4 7 3 6 0 (W I N = 0 . 5) W L = 3 7 5 6 6 4 0 (W I N = 1)

Wirelengths for varying window sizes : industry3

Detailed Routing
structP p2 biomedP

Detailed Routing
industry2 industry3

Conclusion
Terminal Propagation helps in reducing the wirelength, but the number of terminals that are
propagated need to be significantly limited to get good results.

Using FM instead of KL gives a significant improvement in runtime. Running big workloads with
KL is not a good idea as the runs will not end.

Significant tuning of parameters is required to get even better results for terminal propagation.

Row balancing for detailed placement is required if there are less number of cells per row. If
there are a lot of cells per row then random allocation of cells to rows takes care of row
balancing. The difference is evident from the detailed placements of structP and industry3.

	Terminal Propagation
	Objective
	Brief Description
	Overview of implementation
	Overview of implementation
	Implementation Issues
	Results
	Results
	Wirelengths for varying window sizes : structP
	Wirelengths for varying window sizes : p2
	Wirelengths for varying window sizes : biomedP
	Wirelengths for varying window sizes : industry2
	Slide Number 13
	Detailed Routing
	Detailed Routing
	Conclusion

