
Saad Bin Nasir
ECE-6133 Final Project

EIGER 
(EIG ALGORITHM IMPLEMENTATION)



THE ALGORITHM

 Input = netlist

 Adjacency (A) and degree (D) matrices are computed

 Get laplacian (L) = A-D matrix

 Eigenvector corresponding to 2nd smallest eigenvalue of L 
gives a 1-dimensional placement of nodes

 ratio cut heuristic is computed within area skew constraint 

 Output = partition corresponding to minimum ratio cut



IMPLEMENTATION
 Matrices => Matlab should be the first choice

 Use power of matlab
 Vectorization – minimize # of loops required
 Pre-allocation – saves huge amounts of runtime

 Making “A” and “D” matrices from netlist takes time

 Simplest model (V=149 nodes) took no time!

 10000 node netlist never finished! 



It turns out Matrices are big!

*From Cody Planteen’s slide



A closer look reveals!

 Special structures in Matrices (Toeplitz, Hermition, 
Symmetric,etc)

 Dimensional Analysis! 
 Is it low rank? Seemingly, yes
 Positive definite? No but Eigenvalues ≥ 0 so it is semi positive 

definite



Sparse and Symmetric



Implementation
 Sparse Algebra
 store only non-zero enteries, rest are assumed 0 by default
 Three vector required for one matrix
 row vector, column vector and the value vector

 Trade offs
 saves memory
 algorithm translation required
 could be slow

 matrix operations require more time
 specialized eigenvalue calculation engine required



Storage Requirement Comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

fract p2 industry3

linear

sparse

173 KB
31KB 71 MB

1.3 MB

1810 MB

240MB

Storage gain = f (sparsity) = f (# of non-zero enteries)



Implementation Trade-off
 Use linear algebra for speed

 Use sparse algebra for space 

 mixed approach gives the required balance
 Trade-off memory for precision
 laplacian matrix requires large memory
 Perform sparse computations till eigenvector calculation
 Precision needed for eigenvalue/eigenvector calculation 

(Matlab uses ARPACK)
 Perform ratio cut heuristics on full laplacian matrix (stored in 

lower precision, 32-bit floating point)



1-Dimensional placement

Validity : ∑ (placement value)2 =1



ratio cut/cut size plot

Industry3.hgr Total nodes = 15406



Results!

Design Total 
Cells

Left
Partition

Right
Partition 

Area 
Skew(%)

Run
Time(s)

Cut size Ratio 
Cut

fract 149 75 74 0.67 0.42 23.75 4.3e-3

p1 902 455 447 0.88 0.569 84.7857 4.16e-4

structP 1952 985 967 0.92 1.19 174.25 1.83e-4

p2 3029 1529 1500 0.95 24.34 313.29 1.36e-4

biomedP 6514 3289 3225 0.98 49.46 1.85e+3 1.74e-4

industry2 13419 6709 6710 0.0074 61.85 720.5 1.6e-5

industry3 15406 7780 7626 0.99 78.64 1.86e+3 3.14e-4

ibm01 14111 7125 6986 0.98 43.85 380.6 7.64e-6



Comparison
Design Runtime(s) (this work) Runtime(s) (Cody’s Work)

fract 0.42 0

p1 0.569 0

structP 1.19 8

p2 24.34 28

biomedP 49.46 279

Industry2 61.85 2094

industry3 78.64 -

ibm01 43.85 2153

For smaller designs - linear matrix computations are fast
For larger designs – using power of sparsity pays dividends



Conclusion and Extensions
 Significant gains in runtime and storage requirements 

achieved using a combination of linear and sparse algebra

 Optimized package can be written in a language like C

 Gives motivation and insights in to exploring the usage of 
sparse algebra based mathematics into solving the problems 
of physical design of VLSI

 Exciting mathematics being developed for low rank matrices
 Randomization, compressed sensing, etc



Questions?

Thank you


