
Saad Bin Nasir
ECE-6133 Final Project

EIGER 
(EIG ALGORITHM IMPLEMENTATION)



THE ALGORITHM

 Input = netlist

 Adjacency (A) and degree (D) matrices are computed

 Get laplacian (L) = A-D matrix

 Eigenvector corresponding to 2nd smallest eigenvalue of L 
gives a 1-dimensional placement of nodes

 ratio cut heuristic is computed within area skew constraint 

 Output = partition corresponding to minimum ratio cut



IMPLEMENTATION
 Matrices => Matlab should be the first choice

 Use power of matlab
 Vectorization – minimize # of loops required
 Pre-allocation – saves huge amounts of runtime

 Making “A” and “D” matrices from netlist takes time

 Simplest model (V=149 nodes) took no time!

 10000 node netlist never finished! 



It turns out Matrices are big!

*From Cody Planteen’s slide



A closer look reveals!

 Special structures in Matrices (Toeplitz, Hermition, 
Symmetric,etc)

 Dimensional Analysis! 
 Is it low rank? Seemingly, yes
 Positive definite? No but Eigenvalues ≥ 0 so it is semi positive 

definite



Sparse and Symmetric



Implementation
 Sparse Algebra
 store only non-zero enteries, rest are assumed 0 by default
 Three vector required for one matrix
 row vector, column vector and the value vector

 Trade offs
 saves memory
 algorithm translation required
 could be slow

 matrix operations require more time
 specialized eigenvalue calculation engine required



Storage Requirement Comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

fract p2 industry3

linear

sparse

173 KB
31KB 71 MB

1.3 MB

1810 MB

240MB

Storage gain = f (sparsity) = f (# of non-zero enteries)



Implementation Trade-off
 Use linear algebra for speed

 Use sparse algebra for space 

 mixed approach gives the required balance
 Trade-off memory for precision
 laplacian matrix requires large memory
 Perform sparse computations till eigenvector calculation
 Precision needed for eigenvalue/eigenvector calculation 

(Matlab uses ARPACK)
 Perform ratio cut heuristics on full laplacian matrix (stored in 

lower precision, 32-bit floating point)



1-Dimensional placement

Validity : ∑ (placement value)2 =1



ratio cut/cut size plot

Industry3.hgr Total nodes = 15406



Results!

Design Total 
Cells

Left
Partition

Right
Partition 

Area 
Skew(%)

Run
Time(s)

Cut size Ratio 
Cut

fract 149 75 74 0.67 0.42 23.75 4.3e-3

p1 902 455 447 0.88 0.569 84.7857 4.16e-4

structP 1952 985 967 0.92 1.19 174.25 1.83e-4

p2 3029 1529 1500 0.95 24.34 313.29 1.36e-4

biomedP 6514 3289 3225 0.98 49.46 1.85e+3 1.74e-4

industry2 13419 6709 6710 0.0074 61.85 720.5 1.6e-5

industry3 15406 7780 7626 0.99 78.64 1.86e+3 3.14e-4

ibm01 14111 7125 6986 0.98 43.85 380.6 7.64e-6



Comparison
Design Runtime(s) (this work) Runtime(s) (Cody’s Work)

fract 0.42 0

p1 0.569 0

structP 1.19 8

p2 24.34 28

biomedP 49.46 279

Industry2 61.85 2094

industry3 78.64 -

ibm01 43.85 2153

For smaller designs - linear matrix computations are fast
For larger designs – using power of sparsity pays dividends



Conclusion and Extensions
 Significant gains in runtime and storage requirements 

achieved using a combination of linear and sparse algebra

 Optimized package can be written in a language like C

 Gives motivation and insights in to exploring the usage of 
sparse algebra based mathematics into solving the problems 
of physical design of VLSI

 Exciting mathematics being developed for low rank matrices
 Randomization, compressed sensing, etc



Questions?

Thank you


