EIGER
(EIG A GORIHM IVPLEMENTATION)
Saad Bin Nasir
ECE-6133 Final Project

THE ALGORITHM

- Input $=$ netlist
- Adjacency (A) and degree (D) matrices are computed
- Get laplacian (L) = A-D matrix
- Eigenvector corresponding to $2^{\text {nd }}$ smallest eigenvalue of L gives a 1-dimensional placement of nodes
- ratio cut heuristic is computed within area skew constraint
- Output $=$ partition corresponding to minimum ratio cut

IMPLEMENTATION

- Matrices $=>$ Matlab should be the first choice
- Use power of matlab
- Vectorization - minimize \# of loops required
- Pre-allocation - saves huge amounts of runtime
- Making "A" and "D" matrices from netlist takes time
- Simplest model (V=149 nodes) took no time!
- 10000 node netlist never finished!

Implementation error!!!

It turns out Matrices are big!

A closer look reveals!

- Special structures in Matrices (Toeplitz, Hermition, Symmetric, etc)
- Dimensional Analysis!
- Is it low rank? Seemingly, yes
- Positive definite? No but Eigenvalues ≥ 0 so it is semi positive definite

Sparse and Symmetric

Implementation

- Sparse Algebra
- store only non-zero enteries, rest are assumed 0 by default
- Three vector required for one matrix
- row vector, column vector and the value vector
- Trade offs
- saves memory
- algorithm translation required
- could be slow
- matrix operations require more time
- specialized eigenvalue calculation engine required

Storage Requirement Comparison

\square linear
\square sparse

Storage gain $=\mathrm{f}($ sparsity $)=\mathrm{f}(\#$ of non-zero enteries $)$

Implementation Trade-off

- Use linear algebra for speed
- Use sparse algebra for space
- mixed approach gives the required balance
- Trade-off memory for precision
- laplacian matrix requires large memory
- Perform sparse computations till eigenvector calculation
- Precision needed for eigenvalue/eigenvector calculation (Matlab uses ARPACK)
- Perform ratio cut heuristics on full laplacian matrix (stored in lower precision, 32-bit floating point)

1-Dimensional placement

Validity: $\sum(\text { placement value })^{2}=1$

ratio cut/cut size plot

Results!

Design	Total Cells	Left Partition	Right Partition	Area Skew(\%)	Run Time(s)	Cut size	Ratio Cut
fract	149	75	74	0.67	0.42	23.75	$4.3 \mathrm{e}-3$
p1	902	455	447	0.88	0.569	84.7857	$4.16 \mathrm{e}-4$
structP	1952	985	967	0.92	1.19	174.25	$1.83 \mathrm{e}-4$
p2	3029	1529	1500	0.95	24.34	313.29	$1.36 \mathrm{e}-4$
biomedP	6514	3289	3225	0.98	49.46	$1.85 \mathrm{e}+3$	$1.74 \mathrm{e}-4$
industry2	13419	6709	6710	0.0074	61.85	720.5	$1.6 \mathrm{e}-5$
industry3	15406	7780	7626	0.99	78.64	$1.86 \mathrm{e}+3$	$3.14 \mathrm{e}-4$
ibm01	14111	7125	6986	0.98	43.85	380.6	$7.64 \mathrm{e}-6$

Comparison

Design	Runtime(s) (this work)	Runtime(s) (Cody's Work)
fract	0.42	0
p1	0.569	0
structP	1.19	8
p2	24.34	28
biomedP	49.46	279
Industry2	61.85	2094
industry3	78.64	-
ibm01	43.85	2153

For smaller designs - linear matrix computations are fast For larger designs - using power of sparsity pays dividends

Conclusion and Extensions

- Significant gains in runtime and storage requirements achieved using a combination of linear and sparse algebra
- Optimized package can be written in a language like C
- Gives motivation and insights in to exploring the usage of sparse algebra based mathematics into solving the problems of physical design of VLSI
- Exciting mathematics being developed for low rank matrices
- Randomization, compressed sensing, etc

Questions?

Thank you

