
1/2

Flow Based Min-Cut Balanced
Bipartitioning Implementation

Bon Woong Ku
Kyungwook Chang

Kartik Acharya

2/2
Contents

• Algorithm steps with a small circuit
– Max-flow computation engine = Dinic’s blocking flow algorithm

• How to handle unreachable nodes
• Our implementation features

– Speed and accuracy
• Partitioning, and skew impact result
• Possible extensions

3/2
1. Parsing and extracting netlist from .blif

• Cell’s weight = 1, Skew = 0%, ratio = 0.5

• Netlist extraction
– N1(0:2,3), N2(1:3,4), N3(2:5), N4(3:5), N5(4:5)

output

input1

input2

#0

#1

#2

#3

#4

#5

#0

#1

#2

#3

#4

#5
N1

N2

N3

N4

N5

4/2
2. Modeling the netlist to the flow network

• means unit capacity, means infinite capacity
• means actual cell nodes, means added nodes

#0

#1

#2

#3

#4

#5

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

5/2
3. Pick (S,T) pair, and max-flow computation

• Randomly pick a pair of cell node (S,T)
– S = #3, T = #0

• Find maximum flow network
• Cutsize = 1

#0

#1

#2

#3

#4

#5

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

6/2
4. s-t cut(X,X’) Bipartition and node collapsing

• X = {1,2,3,4,5,6,8,9,10,11,12,13,14,15} and X’ = {0,7}: unbalanced!
• Collapse all nodes in X’ to T
• Net(X,X’) = N1(0:2,3), adjacent node = #2

#0

#1

#2

#3

#4

#5

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

7/2
5. Max-flow computation

• After collapse #2 to X’
– S = #3, T = #0,#2,#7

• Find maximum flow network
• Cutsize = 2

#0,#2

#1

#3

#4

#5

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

8/2
6. Bipartition and collapsing nodes

• X = {1,3,4,5,6,8,9,10,12,14,15} and X’ = {0,2,7,11,13}: unbalanced!
• Collapse all nodes in X’ to T
• Net(X,X’) = N3(2:5), adjacent node = #5

#0,#2

#1

#3

#4

#5

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

9/2
7. Max-flow computation

• After collapse #5 to X’
– S = #3, T = #0,#2,#5,#7,#10,#11

• Find maximum flow network
• Cutsize = 3

#0,#2,#5

#1

#3

#4

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

10/2
8. Bipartition and collapsing nodes

• X = {3,6,8,12} and X’ = {0,1,2,4,5,7,9,10,11,13,14,15}: unbalanced!
• Collapse all nodes in X to S
• Net(X,X’) = N2(1:3,4) adjacent node = #1, #4
• Choose #1

#0,#2,#5

#1

#3

#4

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

11/2
9. Max-flow computation

• After collapse #1 to X
– S = #1,#3,#6,#8,#12 T = #0,#2,#5,#7,#10,#11

• Find maximum flow network
• Cutsize = 3

#0,#2,#5

#1, #3

#4

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

12/2
10. Bipartition and collapsing nodes

• X = {1,3,6,8,12} and X’ = {0,2,4,5,7,9,10,11,13,14,15}: unbalanced!
• Collapse all nodes in X to S
• Net(X,X’) = N2(1:3,4) adjacent node = #4

#0,#2,#5

#1, #3

#4

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

13/2
11. Max-flow computation

• After collapse #4 to X
– S = #1,#3,#4,#6,#8,#12 T = #0,#2,#5,#7,#10,#11

• Find maximum flow network
• Cutsize = 3

#0,#2,#5

#1, #3, #4

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

14/2
12. Final balanced bipartition

#0

#1

#2

#3

#4

#5

#6 #7

#8 #9

#10 #11

#12 #13

#14 #15

output

input1

input2

#0

#1

#2

#3

#4

#5

15/2
Handling unreachable nodes

• There were unreachable node groups in s13207, s9234 circuits
– We checked this by running DFS and BFS.
– Result: (G# = group#)

• s13207: G#1 = 8486, G#2 = 9, G#3 = 71, G#4 = 13, G#5 = 28, G#6=107
• s9234: G#1 = 5787, G#2 = 9, G#3 = 22, G#4 = 13, G#5 = 13

• However, it doesn’t matter in FBB algorithm once we choose the
S-T pair in the largest group

1. X is the set of reachable nodes from S through
augmenting path.
2. If there are unreachable nodes
in the network, it is always considered as X’.
3. Since small partition is collapsed into one nodes
when partition is not balanced, unreachable nodes
also would be collapsed into small partition

: Group#

16/2
Our implementation feature

• To make it fast
– We used Dinic’s blocking flow algorithm for max-flow computation

• It is suitable for sparse flow graph. A cell has limited number of nets
• Although time complexity is O(n2logn), it’s quite fast in practice

– We handled connectivity, capacity and flow of a graph using STL vectors,
Dinic’s algorithm, and collapsing node runs directly on the vectors
• Using matrix gives us O(n3)
• Time complexity is now O(n2logn)

– B17 bechmart partitioning runtime comparision
» Using matrix: 42260s, Our method: 4307s

– We picked up the adjacent node to be collapsed faster
• We didn’t checked the all possible adjacent node
• Instead, we checked the first reachable adjacent node

17/2
Our implementation feature

• To make it accurate
– Cycle removal

• When we collapse the nodes, it could be possible to make invalid flow graph

• With cycle removal, we can reach to node A now

– We completed basic FBB implementation
• We can give options including skew and balancing ratio to our program

A A A

18/2
Best partitioning result

• Ratio = 0.5, skew = 5%
S13207 S9234 b20_opt b22_opt b17_opt

Input # 31 36 32 32 37

Output # 121 39 32 22 46

Cell # 8696 5808 11979 17351 22854

Best cut size 98 160 365 980 811

Partition 1 4185 2759 6208 8683 11539

Partition 2 4511 3049 5771 8668 11315

Execution time(s) 4 9 5 100 140

Worst cut size 375 530 2260 3662 3678

Partition 1 4131 3020 5720 8244 11452

Partition 2 4565 2788 6259 9107 11402

Execution time(s) 98 19 122 327 474

Average cut size 204 271 1390 2047 1726

Execution time(s) 19 11 91 192 228

Cell# / (cut size X time) 2.24 1.95 0.09 0.04 0.06

19/2
Skew impact result

• Benchmark: S9234, #cell = 5808

172
110 116

85

478
520

414

333
359

297
245

195

0

100

200

300

400

500

600

0% 5% 10% 20%

CU
T
SI
ZE

SKEW

CUT SIZE RESULT

best cutsize worst cutsize

average cutsize Linear (average cutsize)

0

2

4

6

8

10

12

14

16

0% 5% 10% 20%

AV
ER

AG
E
RU

N
TI
M
E
(S
)

SKEW

AVERAGE RUNTIME RESULT

20/2
Expecting extensions

• Compare with KL, FM partitioning result
• Show the impact of s-t selection on cutsize

– Random s-t selection
– Max-min-path s-t selection using modified Dijkstra’s algorithm

• Modified Dijkstra’s algorithm finds min-path to all other nodes from source,
with same time complexity of Dijkstra’s algorithm

• We choose a sink which has maximum min-path from source

