Multi net routing: Steiner Min/Max Trees

Sowmiya Sivanandham
Vidyasagar Mukala
Presentation Outline

• Overview of SMMT algorithm
• SMMT Phase – Prim’s algorithm
• SP Phase – Floyd’s algorithm
• Implementation details
• Experimental Results
• Demo
Overview of SMMT

- Routes multiple nets one-by-one
- Rip-up and re-routing
- Order in which nets are routed is important
- Given an undirected, edge-weighted graph $G(V,E)$ and a net n that contains a subset of nodes D, SMMT of n is a Steiner tree of n, where maximum weight among all edges in the tree is minimized
- Edge weight is equivalent to usage which reflects congestion
SMMT Cont’d

– SMMT phase (Reduces the maximum weight among all edges)
 For each un-routed net from list of ordered nets,
 • Build MST for the routing graph
 • Remove 1-degree Steiner nodes which results in SMMT
 • If wirelength of SMMT is less than \((c_j \times \text{HPBB})\), update the routing graph with the SMMT, else discard it.
 Multiple passes helps routing nets that failed in the previous passes

– SP Phase (Reduces wire length)
 For each net from list of ordered nets,
 • Rip-up from routing graph
 • Build Shortest Path tree between nodes of the net
 • If wirelength of SP tree is less than wirelength of SMMT, accept SP tree, else discard it.
MST – Prim’s Algorithm

Consider weighted graph $G = (V, E)$

Begin with $U = \{1\}$

Add one edge from $(V-U)$ to U at a time

Find the shortest edge that connects U and $(V-U)$ and add the vertex to U

Repeat until $U = V$
Implementation – Prim’s

Graph is represented using Adjacency Matrix
C[u][v] - Cost of going from node ‘u’ to node ‘v’
Lowcost[x] - Contains lowest cost through which nodes in U-V are connected to U
Closest[x] – Contains the node in {U} that is closest to node‘x’

Initialize Lowcost[i] = C[1,i]
Closest[i] = 1 // U = {1}
min = Min (Lowcost (2 to n)) //say kth node has Low cost

Add node k to U and make Lowcost[k] = ∞

Update Lowcost and Closest Arrays
for (j = 2 to n)
 If (C[k,j] < Lowcost[j])
 Lowcost[j] = C[k,j]
 Closest[j] = k
end
Prim’s Algorithm - Example

<table>
<thead>
<tr>
<th>C[u][v]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>3</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>4</td>
<td>2</td>
<td>∞</td>
<td>6</td>
</tr>
</tbody>
</table>

Graph (V,E)
Example Cont’d

<table>
<thead>
<tr>
<th>U = ${1}$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowcost</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Closest</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$\min = 1; \ k = 3$

<table>
<thead>
<tr>
<th>U = ${1,3}$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowcost</td>
<td>5</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Closest</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

$\min = 4; \ k = 6$

<table>
<thead>
<tr>
<th>U = ${1,3,6}$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowcost</td>
<td>5</td>
<td>∞</td>
<td>2</td>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>Closest</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

$\min = 2; \ k = 4$
Example Cont’d

<table>
<thead>
<tr>
<th>(U = {1,3,6,4})</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowcost</td>
<td>5</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>6</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Closest</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\(\text{min} = 5 \; ; \; k = 2 \)

<table>
<thead>
<tr>
<th>(U = {1,3,6,4,2})</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowcost</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>3</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Closest</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\(\text{min} = 3 \; ; \; k = 5 \)
Example Cont’d

<table>
<thead>
<tr>
<th>U = {1,3,6,4,2,5}</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowcost</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Closest</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

MST of Graph (V,E)
SP – Floyd’s Algorithm $O(n^3)$

All pairs Shortest Path Solution
C[u][v] - Represents the cost of going from node ‘u’ to node ‘v’
A[u][v] – Shortest distance to go from node ‘u’ to ‘v’
P[u][v] – Stores information of intermediate node connecting node ‘u’ and node ‘v’

for (i = 1 to n)
 for(j = 1 to n)
 A[i][j] = C[i][j]
 P[i][j] = 0
 end
end

for(i = 1 to n)
 A[i][i] = 0
end

for (k = 1 to n)
 for (i = 1 to n)
 for(j = 1 to n)
 P[i][j] = k
 end
 end
 end
end
Implementation Details

Adjacency Matrix for Routing Grid

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>9</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Implementation Cont’d

• Use of 3 states for weights:
 – INF → Edge cannot exist
 – 0 → Edge can exist but no net has been routed
 – n → Edge can exist and has nets routed along that edge

• Accessing each node in the routing grid
 – \(k = x \times \text{MAX} + y \)
 Where,
 • (x,y) -> co-ordinate of the vertex
 • MAX -> Maximum size of routing grid

• Size of routing grid
 – Use of MAX and actual_MAX (Static arrays)
Experimental Analysis

<table>
<thead>
<tr>
<th>Number of nets</th>
<th>Number of terminals</th>
<th>Grid size</th>
<th>Wire length</th>
<th>Maximum Edge usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>31</td>
<td>8</td>
<td>71</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
<td>10</td>
<td>258</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>87</td>
<td>13</td>
<td>313</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>133</td>
<td>16</td>
<td>465</td>
<td>18</td>
</tr>
</tbody>
</table>
Inference

• Routing results are dependent on the constraint c_j
 – Smaller $c_j \rightarrow$ tighter constraint \rightarrow Routing efficiency decreases

• Congestion is dependent on grid size
 – Smaller grid with more nets increases congestion (increases maximum edge weight)
 – SMMT tries to reduce the usage (reduces congestion)
 – SP tries to reduce wire length at the cost of usage (increases congestion)
 – Multiple passes increases routing efficiency at the cost of runtime
 • During each pass, the underlying routing grid is different, although the same net is routed again
 • Hence, those nets for which routing failed in the previous passes also become routable
Routing Efficiency Vs Passes (cj = 1)

- **SMMT Pass 1:**
 - Routing in SMMT phase for net 0: **not accepted**
 - Routing in SMMT phase for net 1: **not accepted**
 - Routing in SMMT phase for net 2: **not accepted**
 - Routing in SMMT phase for net 3: **not accepted**
 - Routing in SMMT phase for net 4: accepted
 - Routing in SMMT phase for net 5: **not accepted**
 - Routing in SMMT phase for net 6: **not accepted**
 - Routing in SMMT phase for net 7: accepted
 - Routing in SMMT phase for net 8: **not accepted**
 - Routing in SMMT phase for net 9: **not accepted**

- **SMMT Pass 2:**
 - Routing in SMMT phase for net 0: **not accepted**
 - Routing in SMMT phase for net 1: **not accepted**
 - Routing in SMMT phase for net 2: **not accepted**
 - Routing in SMMT phase for net 3: **not accepted**
 - Routing in SMMT phase for net 4: accepted
 - Routing in SMMT phase for net 5: **not accepted**
 - Routing in SMMT phase for net 6: accepted
 - Routing in SMMT phase for net 7: accepted
 - Routing in SMMT phase for net 8: accepted
 - Routing in SMMT phase for net 9: **not accepted**
SMMT Pass 3:
Routing in SMMT phase for net 0: **not accepted**
Routing in SMMT phase for net 1: **not accepted**
Routing in SMMT phase for net 2: **not accepted**
Routing in SMMT phase for net 3: **not accepted**
Routing in SMMT phase for net 4: accepted
Routing in SMMT phase for net 5: **not accepted**
Routing in SMMT phase for net 6: accepted
Routing in SMMT phase for net 7: accepted
Routing in SMMT phase for net 8: accepted
Routing in SMMT phase for net 9: **not accepted**

SP Phase:
Routing in SMMT phase for net 0: **not accepted**
Routing in SMMT phase for net 1: accepted
Routing in SMMT phase for net 2: **not accepted**
Routing in SMMT phase for net 3: accepted
Routing in SMMT phase for net 4: accepted
Routing in SMMT phase for net 5: accepted
Routing in SMMT phase for net 6: accepted
Routing in SMMT phase for net 7: accepted
Routing in SMMT phase for net 8: accepted
Routing in SMMT phase for net 9: accepted
Routing Efficiency Vs Passes (cj = 3)

SMMT Pass 1:
Routing in SMMT phase for net 0: accepted
Routing in SMMT phase for net 1: **not accepted**
Routing in SMMT phase for net 2: accepted
Routing in SMMT phase for net 3: accepted
Routing in SMMT phase for net 4: accepted
Routing in SMMT phase for net 5: accepted
Routing in SMMT phase for net 6: accepted
Routing in SMMT phase for net 7: accepted
Routing in SMMT phase for net 8: accepted
Routing in SMMT phase for net 9: accepted

SMMT Pass 2:
Routing in SMMT phase for net 0: accepted
Routing in SMMT phase for net 1: **not accepted**
Routing in SMMT phase for net 2: accepted
Routing in SMMT phase for net 3: accepted
Routing in SMMT phase for net 4: accepted
Routing in SMMT phase for net 5: accepted
Routing in SMMT phase for net 6: accepted
Routing in SMMT phase for net 7: accepted
Routing in SMMT phase for net 8: accepted
Routing in SMMT phase for net 9: accepted
Illustration Cont’d

SMMT Pass 3:
Routing in SMMT phase for net 0: accepted
Routing in SMMT phase for net 1: **not accepted**
Routing in SMMT phase for net 2: accepted
Routing in SMMT phase for net 3: accepted
Routing in SMMT phase for net 4: accepted
Routing in SMMT phase for net 5: accepted
Routing in SMMT phase for net 6: accepted
Routing in SMMT phase for net 7: accepted
Routing in SMMT phase for net 8: accepted
Routing in SMMT phase for net 9: accepted

SP Phase:
Routing in SMMT phase for net 0: accepted
Routing in SMMT phase for net 1: accepted
Routing in SMMT phase for net 2: accepted
Routing in SMMT phase for net 3: accepted
Routing in SMMT phase for net 4: accepted
Routing in SMMT phase for net 5: accepted
Routing in SMMT phase for net 6: accepted
Routing in SMMT phase for net 7: accepted
Routing in SMMT phase for net 8: accepted
Routing in SMMT phase for net 9: accepted
SMMT Vs SP

<table>
<thead>
<tr>
<th>NET</th>
<th>MAX E WGT</th>
<th>WIRELENGTH</th>
<th>MAX E WGT</th>
<th>WIRELENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>N/R</td>
<td>1</td>
<td>N/R</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>N/R</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>N/R</td>
<td>1</td>
<td>N/R</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>N/R</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>N/R</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>N/R</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Results – Phase I (SMMT)

SMMT - Phase I Net #1
(1,1) (2,2) (4,0) (4,4)

(20) (21) (22) (23) (24)

(15) (16) (17)-- 1--(18)-- 1--(19)

(10) (11) (12) (13) (14)

(5)-- 1--(6) (7) (8) (9)

(0)-- 1--(1)-- 1--(2)-- 1--(3)-- 1--(4)

Net 1 result after Phase I
Results – Phase II (SP)

Net 1: WL of SP(9) is less than WL of MST(12)

SHORTEST PATH – PHASE II

(20) (21) (22) (23) (24)

(15) (16) (17) (18) (19)

(10) (11) (12) 1--(13) 1--(14)

(5) (6) 1--(7) (8) (9)

(0) (1) (2) 1--(3) 1--(4)

Net 1 result after Phase II
Results – Final Grid

Final Grid
Thank You!