ECE 6133 Implementation of "Efficient Algorithms for Channel Routing" - Yoshimura & Kuh

Channel Routing Problem

 Route between a top row and bottom row, pins with the same number have to be connected

• Using only two metal layers

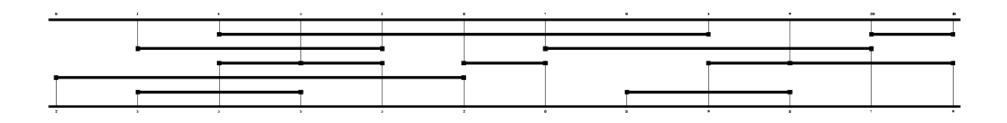
• Overall area of the channel (ie height of the channel) has to be minimized.

The Algorithm

- L = { }
- For z_s to z_t do :
- L = L + {nets that terminate at zone z}
- R = {nets that begin at zone z+1 }
- Merge L and R so as to minimize the increase in the longest path in VCG
- L = L { merged nets in previous step }

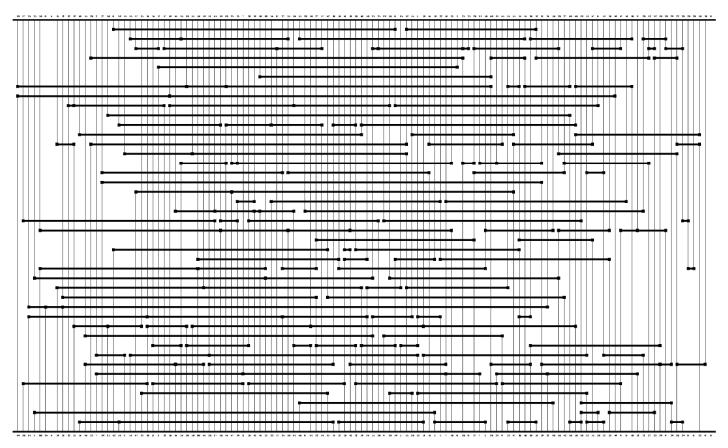
The Algorithm (contd)

Merging is done heuristically


- Pair to be merged can be computed by knowing the longest source-node (u) and sink-node(d) paths for every node.
- By maximizing f(m) and minimizing g(n,m) the pair to be merged is obtained heuristically

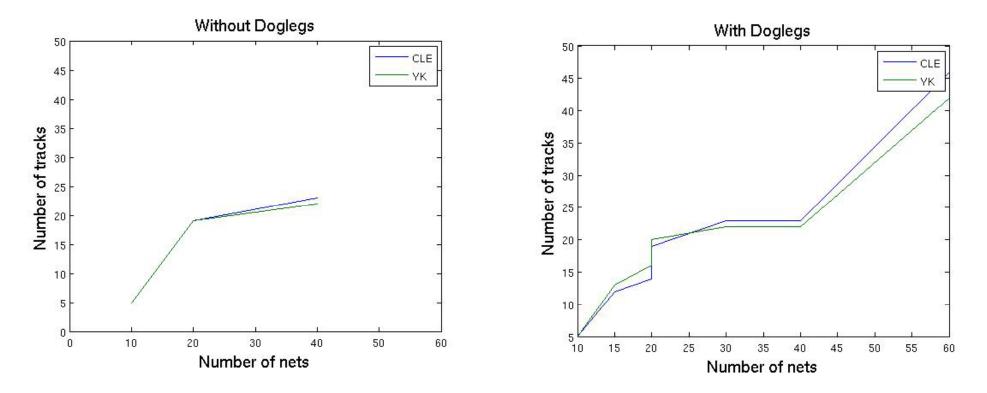
Implementation

• If no cycles are present in the VCG, route the given problem without inserting any doglegs

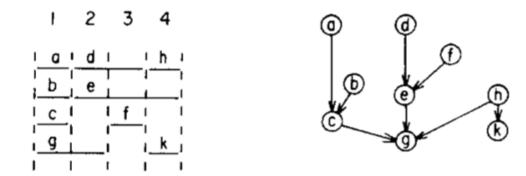

• If VCG contains cycles, then break all nets into two terminal nets and perform channel routing.

Results – small circuit

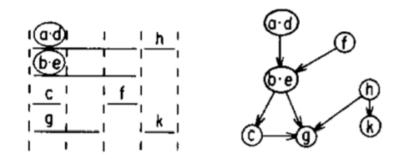
No of nets = 10 Average netsize = 2 Max density = 5 No of tracks = 5 No of vias used = 22


Results – Larger Circuit

No of nets = 60 Average netsize = 4 Max density = 41 No of tracks = 42 No of vias used = 331


Results

Circuit	Nets	Max Den	CLE		YK	
			No doglegs	Doglegs	No Doglegs	Doglegs
dr1	10	5	5	5	5	5
dr6	15	9	-	12	-	13
dr2	20	14	-	14	-	16
dr7	20	19	19	19	19	20
dr3	30	20	-	23	-	22
dr8	40	22	23	23	22	22
dr4	60	41	-	46	-	42



Reasons for discrepancies

- Too many doglegs worsen the solution (shown by dr7)
- With a lot of nets, merging of nets sometimes blocks the merging of other nets

Suppose we merge nets a&d ; b&e

- Net f cannot be merged with either net c or net g as cycle will be formed in VCG
- On the other hand if we merge a&d; c&e, net f can be merged with net b

Solutions

- Inserting Doglegs only where necessary to break cycles in VCG, however potential improvement may be lost.
- Algorithm #2 proposed by Yoshimura & Kuh based on bipartite graph and matching of nets.