ECE 6133
 Implementation of "Efficient Algorithms for Channel Routing" - Yoshimura \& Kuh

Channel Routing Problem

- Route between a top row and bottom row, pins with the same number have to be connected
- Using only two metal layers
- Overall area of the channel (ie height of the channel) has to be minimized.

The Algorithm

- $L=\{ \}$
- For z_{s} to z_{t} do :
- $L=L+\{$ nets that terminate at zone $z\}$
- $R=\{$ nets that begin at zone $z+1\}$
- Merge L and R so as to minimize the increase in the longest path in VCG
- $L=L-\{$ merged nets in previous step \}

The Algorithm (contd)

Merging is done heuristically

- Pair to be merged can be computed by knowing the longest source-node (u) and sink-node(d) paths for every node.
- By maximizing $f(m)$ and minimizing $g(n, m)$ the pair to be merged is obtained heuristically

Implementation

- If no cycles are present in the VCG, route the given problem without inserting any doglegs
- If VCG contains cycles, then break all nets into two terminal nets and perform channel routing.

Results - small circuit

No of nets = 10
Average netsize $=2$
Max density $=5$
No of tracks = 5
No of vias used $=22$

Results - Larger Circuit

No of nets = 60
Average netsize $=4$
Max density $=41$
No of tracks $=42$
No of vias used $=331$

Results

			CLE		YK	
Circuit	Nets	Max Den	No doglegs	Doglegs	No Doglegs	Doglegs
$d r 1$	10	5	5	5	5	5
$d r 6$	15	9	-	12	-	13
$d r 2$	20	14	-	14	-	16
$d r 7$	20	19	19	19	19	20
$d r 3$	30	20	-	23	-	22
$d r 8$	40	22	23	23	22	22
$d r 4$	60	41	-	46	-	42

Reasons for discrepancies

- Too many doglegs worsen the solution (shown by dr7)
- With a lot of nets , merging of nets sometimes blocks the merging of other nets

- Suppose we merge nets a\&d ; b\&e

- Net f cannot be merged with either net c or net g as cycle will be formed in VCG
- On the other hand if we merge a\&d; c\&e, net f can be merged with net b

Solutions

- Inserting Doglegs only where necessary to break cycles in VCG, however potential improvement may be lost.
- Algorithm \#2 proposed by Yoshimura \& Kuh based on bipartite graph and matching of nets.

