
A* Routing Steiner Trees

Kevin Morgan
ECE 6133

Georgia Institute of Technology

A* Search Basics
• Heuristic Graph Search Algorithm
• Basic Idea:

– Expand search nodes based on heuristic
measurement of cost to a target

– If a less costly path than the one currently be
searched is found, begin searching it

hgf cost

g = cost to get from source to current node
h = predicted cost from current node to target

A* Algorithm Details (2-Terminal)
openSet = priority queue on f cost
s = source node
t = target node
s.f = g + h(s, t) // g = 0
while(openSet is not empty):

v = openSet.pop() // item with lowest f cost
if(v is closed):

continue // already been searched
if(v == t):

// found a target, backtrace through parents to source
return backtrace(t)

v.closed = true
for each neighbor, n, of v:

if(n cannot be searched):
continue // obstacles

n.parent = v
n.g = v.g + dist(n, v)
n.h = h(n, t) // distance from n to t
n.f = n.g + n.h
openSet.add(n)

// If open set is empty and we haven’t found the target
return failure

A* Algorithm Example

Result

A* Algorithm for Multiple Terminals

• A* algorithm can be extended to routing multiple
terminals:
1. Route the source to an initial target
2. For all remaining targets connect the closest

target to the tree to the closest point on the tree

Improving A*-Multi Results

• A* Multi-terminal algorithm can be extended to
achieve “better” or morphed trees

• Critical Nodes:
– Delay/Wirelength improvement [1]
– Simply the order in which nodes are routed - more critical

nodes are routed first and generally have the “best” paths
– Implications when considering the delay of a route

• Biasing:
– Wirelength improvement technique [1]
– “Exact” biasing [1] based on a center of mass measurement

• Relatively expensive calculation
– My Improvement: Approximate biasing based on relative

node counts
• Advantage - can be precomputed for a given tree

Biasing

• Method for breaking critical ties - when f cost and path length
are both the same when comparing two nodes

• “Exact” biasing is ~O(3*t) for every expanded node [1]
• Approximate biasing is a one time computation cost of O(t2)

– Can bound radius though it does not improve run time

Good
WL = 7

Not as Good
WL = 8

A* Router Implementation

• Programmed in C
– ~2500 Lines of Code
– Major Data Structures:

• Set: Hash Table based
• Priority Queue: Binary (Min) Heap based

• Supports:
– Routing on uniform and Hanan grids
– Adding random obstacles to a uniform grid
– Biasing and critical nodes

• Requires libpng
• Data taken on version compiled with -O3 flag

Example Routes: 5 Nodes, 10x10 Grid
Uniform Grid
Exact Biasing

No Critical Nodes

Hanan Grid
Exact Biasing

No Critical Nodes

WL = 19
Runtime = 0.270 ms
Routing: 0.170 ms

Grid Construction: 0.100 ms

WL = 18
Runtime = 0.145 ms
Routing: 0.100 ms

Grid Construction: 0.045 ms

Example Routes: 20 Nodes, 10x10 Grid
Uniform Grid
Exact Biasing

No Critical Nodes

WL = 35
Runtime = 0.820 ms
Routing: 0.720 ms

Grid Construction: 0.100 ms

WL = 35
Runtime = 0.675 ms
Routing: 0.575 ms

Grid Construction: 0.100 ms

Uniform Grid
Exact Biasing

Random Critical Nodes

Example Routes: 20 Nodes, 10x10 Grid
Uniform Grid
Exact Biasing

No Critical Nodes

WL = 35
Runtime = 0.605 ms
Routing: 0.505 ms

Grid Construction: 0.100 ms

Uniform Grid
Approximate Biasing

No Critical Nodes

WL = 35
Runtime = 0.820 ms
Routing: 0.720 ms

Grid Construction: 0.100 ms

Example Routes: 100 Nodes, 30x30 Grid

Uniform Grid
Approximate Biasing

Random Critical Nodes

WL = 265
Runtime = 9.94 ms
Routing: 9.10 ms

Grid Construction: 0.840 ms

Example Routes: 20 Nodes, 10x10 Grid, Random
Obstacles

Uniform Grid
Exact Biasing

No Critical Nodes

WL = 36
Runtime = 0.884 ms
Routing: 0.784 ms

Grid Construction: 0.100 ms

Uniform Grid
Exact Biasing

No Critical Nodes

WL = 35
Runtime = 0.820 ms
Routing: 0.720 ms

Grid Construction: 0.100 ms

Example Routes: 100 Nodes, 30x30 Grid, Random
Obstacles

Uniform Grid
Approximate Biasing

Random Critical Nodes

WL = 261
Runtime = 213.7 ms
Routing: 212.9 ms

Grid Construction: 0.825 ms

Runtime Performance

of Nodes
Average
Runtime
(UEC)

Average
Runtime
(UAC)

Average
Runtime
(HEC)

Average
Runtime
(HAC)

5 0.110 ms 0.100 ms 0.066 ms 0.053 ms

10 0.250 ms 0.170 ms 0.135 ms 0.132 ms

20 0.500 ms 0.320 ms 0.443 ms 0.283 ms

50 5.58 ms 2.81 ms 4.53 ms 2.75 ms

100 17.3 ms 5.99 ms 13.78 ms 7.98 ms

500 262 ms 111 ms 262 ms 108 ms

1000 965 ms 337 ms 1120 ms 386 ms

U: Uniform Grid
H: Hanan Grid
E: Exact Bias
A: Approximate Bias
C: Random Critical Nodes

Times are average
runtimes (grid generation
and routing) of many
random node sets

Runtime Performance

Questions?

References

[1] R. Hentschke, J. Narasimhan, M. Johann, and R. Reis, “Maze
Routing Steiner Trees with Delay Versus Wire Length Tradeoff,” in
IEEE Transactions on VLSI Systems, vol. 17, no. 8, pp. 1073 –
1086, August 2009.

