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1.  Introduction 

Various approaches, such as slicing floorplans and sequence pair annealing, have 

been presented by prior research to attack the issue of minimizing the area of a group of 

rectangular blocks.  Though these algorithms are effective at obtaining fairly efficient 

layouts, they are very inefficient.  Sequence pair annealing, for instance, is limited by the 

O(n2) repetitive reconstruction of its dynamic data structures, a horizontal and vertical 

constraint graph. 

In this paper, we present two alternative approaches to VLSI floorplanning.  First 

is an enhancement of the simulated annealing algorithm, which anneals the graphs rather 

than the sequence pair, saving the graph reconstruction costs.  The other is a new 

algorithm termed contiguous placement.  This approach fits blocks in the floorplan as to 

minimize the surrounding white-space. 

Before discussing these new methods, however, we must first address traditional 

annealing and its limitations in Section 2.  We then present enhanced annealing in 

Section 3 and contiguous placement in Section 4.  In Section 5, we present our 

performance improvements.  These include how the annealing enhancements improve the 

layout size while reducing run time by more than a factor of twenty, and how contiguous 

placement can achieve 96% efficiency in just a few seconds.  Finally, we summarize with 

our concluding Section 6. 

Various appendices are also included for further information.  Appendix A 

explains how to use the floorplan simulator and Appendix B shows how to use the output 

file viewer.  Appendix C shows some sample annealing layouts, and Appendix D shows 

sample contiguous placement layouts. 
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2.  Traditional Annealing 

Traditional Annealing is a method for doing incremental optimization to a data 

structure to exploit the ability of computers to attempt many different configurations 

quickly.  For a sequence pair driven floorplanner, traditional annealing involves applying 

the annealing  concept to a sequence pair in an attempt to produce a more optimal 

floorplan. 

Every step in the annealing process involves either a swap of two blocks in either 

or both the positive and negative sequence pair or a rotation of a block.  In traditional 

annealing, the sequence pair is modified, or the data structure holding the sizes of the 

blocks  is modified.  The graph corresponding to the sequence pair is  rebuilt at a cost of 

O(n2) and Dijkstra's algorithm is run on the graph to determine the longest path at a cost 

of O(n).  Figure 1 illustrates this process; red arrows indicate costly O(n2) operations, and 

green arrows indicate simpler O(n) operations, and blue represent trivial O(1) operations.  

At each temperature range in the annealing process, the number of swaps/rotations made 

is directly proportional to the number of blocks in the sequence pair, leading the cost of 

annealing to be O(n3). 

 

Figure 1: Traditional annealing flow chart 

 

Numerical results for traditional annealing are shown in the Results section, and 

sample floorplan illustrations are shown in Appendix C.
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3.  Enhanced Annealing 

If the allowed types of changes to a sequence pair are limited to swapping only 

two blocks tha t are adjacent in the pair itself, then the only effect the swap will have on 

the graph is to break the connection between the blocks in either the horizontal or  

vertical graph and then build a connection between them on the  opposite graph. 

The cost of rebuilding a graph from a sequence pair is O(n^2), but the cost of 

breaking a connection can be brought down to an O(1) operation.  Finding a node in the 

graph can be made an O(1) operation by having the nodes held in an array indexed by 

their block numbers.  Finding the connection is O(M) where M is the number of 

connections.  In general, sequence pair graphs are  sparsely connected, and this can be 

assumed to be an O(1) operation. Adding a connection can be made an O(1) operation as 

well, thus removing the O(n^2) cost of rebuilding the graph.  Figure 2 shows the flow of 

enhanced annealing.  Blue arrows have replaced all other types of operations, meaning all 

functions have been reduced to O(1). 

 

Figure 2: Enhanced annealing flow chart 

 

To remove the cost of running Dijkstra's on the changed graph, each node can 

maintain a list of the maximum path up to that node as well as a list of path lengths for all 

the nodes that lead up to it.  Breaking or adding requires removing the associated path 

length and if the maximum path length to the "after" (above or  right) is changed, then the 
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"after" node maximum length must be updated, and those lengths must be propagated 

forward in the graph. 

Any change in the graph that does not change the maximum path at the "after" 

node requires a time of O(1) to update the length information and is simply added in 

when the connections are built or broken.  If the maximum length is changed, then any 

nodes that are "after" the node must have the length of the "previous" node updated, and 

if their maximum length changes, that information must be recursively forwarded.  

Because the nodes tend to be sparsely connected, the cost of having to forward the new 

lengths is still fairly small and can be assumed to be O(1).  The worst possible case would 

be a sequence pair that is nothing but left to right, and swapping the farthest left pair.  In 

that case,  the cost would still be O(1), but it would exist at every node, making the worst 

case O(n). 

Rotating a block is much more costly than a pair swap.  Rotating a block is 

guaranteed to change the cost of any path that contains it, and the information must be 

forwarded immediately to all of the blocks "after" it. 

The data structures required for efficient annealing are shown in Table 1: 

 
Table 1: Data structures for efficient annealing. 

After[ numBlocks ][ ] List of nodes connected "previous" to each node. 
The first index is the block number, the second 
array is a list of the blocks connected which is 
terminated by -1. 

Before[ numBlocks ][ ] Same as Before, only "after" connections 

BeforeLengths[ numBlocks ][ ] Holds the lengths of each path in the Before[ ][ ]. 

BeforeMax[ numBlocks ] Holds the maximum path at each block 

Sequence Pair [4] [ numblocks ] [0] = positive list 
[1] = negative list 
[2] = inverted positive array (index is the 
        block number, value is the location) 
[3] = inverted negative array (index is the  
        block number, value is the location) 

 

Numerical results for enhanced annealing are shown in the Results section, and 

sample floorplan illustrations are shown in Appendix C. 
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4.  Contiguous Placement 

Contiguous placement was inspired by the popular video game Tetris.  The 

challenge of the game is to quickly stack oddly shaped pieces as to avoid white-spaces 

between them.  Points are awarded for each white-space-free row achieved.  Most players 

adopt a simple strategy of leveling off the pieces as a flat surface gives many more 

opportunities for tight piece placement. 

We adopt this strategy to VLSI floorplanning with some slight modifications.  

The goal of our algorithm is to place blocks in a contiguous row at the bottom of the 

layout, then level off the layout with another complimentary row of new blocks, then we 

begin again.  Thus every two rows form pairs which fit together as best as possible. 

The best way to create these complimentary rows is to form trapezoids (Figure 3).  

To minimize the gap between row-pairs, we would like both rows to contain roughly 

equal height blocks.  Thus we place the shortest blocks in row 1, next shortest in row 2, 

and so on.  It is not important that each row contain an equal number of blocks or that the 

rows are of equal length; this will be addressed via mutations. 

 

Figure 3: Geometric goal of contiguous placement layout 

To compress the rows, we must make them trapezoidal.  So we now sort the odd 

rows in descending order, and sort the even rows in ascending order.  Finally we flip the 

even rows upside down and squeeze the complimentary rows together until they touch.   

This leaves us with our initial placement.  A sample initial placement for a 50 block 

floorplan is shown in Figure 4.  Note that due to the quick and crude bucket sorting of 

blocks into shortest, next shortest, and so on, the rows are not even close to even length.  

ROW 1 

ROW 2 

ROW 3 

ROW 4 
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This yields an inefficient layout  since each row shorter than the maximum must have 

white-space to fill the gap. 

 

Figure 4: Sample initial placement for 50 block floorplan. 

To address this row length issue, we now apply mutations.  We have four 

different kinds, two for growing the shortest row and two for shortening the longest row: 

• Grow( ): adds blocks to the shortest row by moving the tallest blocks 

from the row below and the shortest blocks from the row above. 

• GrowRotate( ):  adds blocks to the shortest row by finding blocks in 

larger-than-average rows that could be rotated 90 degrees to fit this 

row’s height range. 

• Shrink( ) :  reduces the length of the longest row by moving the tallest 

blocks in the row up and the shortest blocks down one row. 

• ShrinkRotate( ) :  finds blocks in the longest row that could be rotated 

and moved to a smaller-than-average row. 

Since we don’t want to create any mutation cycles, we keep two locks for each 

block.  We lock the move_lock when a block is moved from one row to another, and lock 

the rotate_lock when a block is rotated and moved.  A block is not allowed to participate 

in the respective mutation if its lock is set. 

 Mutations are very quick to even the rows out even though there is nothing 

preventing a mutation from making the floorplan less efficient.  Figure 5 shows a 50-

block layout after just 4 mutations.  This layout is 90% efficient after just milliseconds of 
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computation.  Unlike annealing, the power of contiguous placement is not found in 

careful modification of a single floorplan, but of rapidly mutating thousands of initial 

floorplans in short order.  Different initial floorplans are found each time by randomly 

rotating the blocks, then resorting them into rows.   

 
Figure 5:  Sample 50 block floorplan after 4 mutations. 

The pseudocode algorithm for contiguous placement is shown below.  The reader 

should note that we only mutate 20 times before starting over with a new initial 

placement.  This is purely an empirical optimization since we converge so quickly to an 

optimal solution.  Usually after 10 mutations or so, the best layout has been achieved and 

the number of locked blocks prohibits further beneficial changes to the floorplan.  To 

assure we do not miss a good layout, the algorithm proceeds through 20 mutations or 

until all blocks are locked, whichever comes first. 

 

contiguous_placement( ) { 
 while (keep_going) { 

    randomly_rotate( blocks ); 
    rows = initial_placement( blocks ); 
    for i from 0 to 20 { 
     mutate( rows ); 
     squeeze( rows ); 
     check_for_new_winner(); 
    } 
   } 

} 
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Contiguous placement usually achieves 90% efficient layouts in under half a 

second and 96% in less than a 10 seconds.  This accomplishment is due to a few basic 

reasons: 

1) The initial placement tends to be very good, achieving around 80% in a 

negligible amount of time. 

2) The only data structures used are static arrays.  No graphs, linked lists, 

trees, vectors, or such are used. 

3) Mutations are very simple, occupying less than 30 lines of code with no 

more than 2 loops inside of one another.  The longest part of the algorithm 

is squeezing complimentary rows together, which is still just a simple loop 

of subtract-and-compares. 

4) Items 2 and 3 mean that each run takes less than 10 milliseconds on a 

modern PC.  This allows numerous runs to fully explore the solution 

space. 

 

Numerical results for contiguous placement are shown in the Results section, and 

sample floorplan illustrations are shown in Appendix D. 

 

Results and Discussion 

Numerical results are presented in 3 tables, one for each algorithm.  Each table 

shows run time, floorplan area, area efficiency, and area-time metric for each benchmark. 

Later in this section, we present graphs which can more clearly compare the algorithms. 

Table 2 presents the statistics for traditional annealing.  If one compares these 

results to the other algorithms, these numbers seem quite low.  This is a result of the 

O(n3) order of the algorithm.  These numbers would be even worse had a true dynamic 

graph structure been used rather than a modified adjacency matrix.  This advantage is 

given to traditional annealing as a handicap; the help is not sufficient though for it to 

compete with enhanced annealing or contiguous placement. 
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Table 2: Results for traditional annealing 

Benchmark Time (sec) Area Efficiency Sqrt(A*A*T) 

M10 0.03 6480 49 1122 

M20 0.10 17228 54 5448 

M30 0.31 40180 43 22371 

M40 0.79 41736 56 37143 

M50 1.62 67077 42 85428 

M60 3.21 83050 38 148680 

M70 5.42 96960 37 225690 

M80 8.71 131860 31 389222 

M90 13.8 144982 43 537274 

M100 19.8 178035 38 793785 

M110 27.6 187200 40 983290 

M120 40.2 191345 42 1212560 

M130 53.1 239370 37 1744053 

M140 70.9 226546 40 1908669 

M150 95.2 238797 38 2330407 

 

Table 3 shows the results for enhanced annealing.  These numbers are 

significantly faster than traditional annealing while producing better final floorplans. 

Table 3: Results for enhanced annealing 

Benchmark Time (sec) Area Efficiency Sqrt(A*A*T) 

M10 0.02 4032 79 570 

M20 0.03 13938 66 2454 

M30 0.04 27630 63 5472 

M40 0.08 35979 65 10176 

M50 0.14 45843 52 17214 

M60 0.23 49585 63 23832 

M70 0.41 66822 53 42839 

M80 0.43 78680 53 51594 

M90 0.74 117782 53 101388 

M100 1.11 125125 54 131887 

M110 1.31 190475 39 218175 

M120 2.13 159036 51 232269 

M130 2.45 179880 50 272387 

M140 2.23 182229 50 272309 

M150 3.96 168752 53 335643 
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The final table, Table 4, has the results for contiguous placement.  These results 
are by far the best of all three algorithms due to various factors mentioned in Section 4. 

Table 4: Results for contiguous placement 

Benchmark Time (sec) Area Efficiency Sqrt(A*A*T) 

M10 0.65 3551 90 2863 

M20 2.80 9703 95 16236 

M30 5.21 18271 95 41703 

M40 3.67 24546 95 47024 

M50 2.41 29753 95 46198 

M60 2.45 32473 95 51363 

M70 1.68 37398 95 52624 

M80 5.31 43050 96 99202 

M90 0.89 65126 96 61543 

M100 0.41 69245 96 44801 

M110 6.11 76246 97 188469 

M120 2.52 83356 96 133701 

M130 9.97 90372 97 285353 

M140 2.71 93155 97 153352 

M150 2.55 92388 97 147531 

 

Two graphs are presented which compare these algorithms.  First Figure 6 shows 

best efficiency achieved in 10 seconds or less.  The faster runs of enhanced annealing 

allow it to explore a larger solution space than traditional annealing.  Contiguous  

placement finds 96% layouts for most benchmark circuits, so it tops this graph with ease. 
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Figure 6: Efficiency achieved after 10 seconds. 
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The second graph compares the algorithms with the  sqrt(area*area*time) metric.  

For the annealings, we analyze after one run.  For contiguous, we give it a less than 10 

seconds to find the best layout.  Figure 7 is really where traditional annealing looks 

terrible, with numbers that skyrocket into the millions with larger and larger circuits.  

Better annealing schedules may bring these numbers down a bit, but they will always be 

much worse than enhanced annealing since both would benefit equally from such 

enhancements.  Finally, contiguous placement does not show much better results than 

enhanced annealing due to the peculiarity of this particular metric. 
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Figure 7: Area-time metric after one run (annealings) or ten seconds (CP) 

 

Conclusion 

As is clear from the previous section, these two algorithms make VLSI 

floorplanning more efficient, allowing more of the solution space to be explored within a 

given amount of time.  From a different perspective, these ideas allow similar results to 

traditional annealing be achieved in far less time.  In either case, the weakness in 

performance of traditional floorplanning techniques is apparent. 

Enhanced annealing shows that static data structures in concert with direct graph 

manipulation can remove the largest performance barrier in annealing.  Though unable to 

directly perform ‘large’ swaps, enhanced annealing can still perform the sequence of 

small swaps in less time than normal annealing would take to rebuild the graph from the 
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single large swap.  Thus any performance limitations of enhanced annealing are directly 

related to the actual algorithm itself, not the limitations of the data structures. 

A new algorithm, contiguous placement, is introduced as a rapid way to produce 

tight floorplans.  Using inspiration from existing game theory, this method creates pairs 

of rows that fit tightly together.  Good initial layouts, fast mutations, and quick result 

convergence mean that contiguous placement can rapidly evaluate numerous random 

points in the solution space, taking only a few milliseconds per point.  Resultant layouts 

generally achieve 96% efficiency within seconds. 

These approaches vary significantly in structure, algorithm, and speed, but they 

share a common goal: to outperform traditional sequence pair annealing.  Both achieve 

this goal with ease, showing that there is room for even further improvement in modern 

VLSI floorplanning. 
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Appendix A:  Instructions on program usage 

Since the code is written in Java, at least version 1.2 of the JRE (Java Runtime 
Environment) must be installed for execution.  Typing java –version at a prompt will 
display if the JRE is installed on a computer and what version it is.  If neccesary, a JRE 
for most operating systems can be downloaded for free at 
http://java.sun.com/j2se/1.4/download.html.  Note that our program is precompiled in a 
platform-independent form, so the java compiler is not needed. 
 

All three algorithms for VLSI floorplanning (annealing, enhanced annealing, and 
contiguous placement) are each accessible through the same executable.  There are a 
variety of program switches that select not only the algorithm, but also various behavioral 
options : 
 

-i filename Selects filename as the input file of blocks. (required) 
-o filename Uses filename as the output file. 
  
-r runs Specifies number of runs for algorithm. (-r, -g, or –t required) 
-t target_eff Keeps doing runs until target_eff (as a percent) is reached.  Writes the 

output file (if –o selected), then proceeds to look for target_eff+1. 
(-r, -g, or –t required) 

  
-a Uses traditional annealing algorithm (default) 
-e Uses enhanced annealing algorithm 
-c Uses contiguous placement algorithm 
  
-d Turns on debug output 
-g Uses GUI to animate algorithm (-r, -g, or –t required) 

 
It is strongly suggested that –t be used with contiguous placement as its runs are 

very quick (<5ms) and relatively insignificant.  The –t option is also valid with the 
annealing algorithms, but the runs option may be more useful in these cases. 

  Also note that the GUI is technically ‘upside-down’, using the top-left as the 
origin.  This is only a visual peculiarity and does not affect any results. 

 
Example executions: 
 
To run the program using the traditional annealing algorithm with the GUI on the input 
file m100.blk and produce the output file m100.fout : 

java ChrisPeter –a –g –i m100.blk –o m100.fout 

To run the program using the contiguous placement algorithm to start looking for the  
target efficiency of 95% with debug on, input file m100.blk, and no output file: 

 java ChrisPeter –c –d –t 95 –i m100.blk 
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Appendix B: Instructions on Output Viewer usage 

 
Also included in the code package is a small utility which reads .fout files and displays 
the floorplan using the GUI.  This is handy for verifying that a particular floorplan is 
valid (has no overlaps and such). 
 
The usage is very simple: 
 
 java OutputViewer filename 
 
When the GUI is displayed, hit the “exit” button to close. 
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Appendix C: Sample Simulated Annealing Floorplans  

 

 
m50.blk – 62%  efficient 

 
 

 
m100.blk – 54%  efficient 

 
m150.blk – 53% efficient 
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Appendix D: Sample Contiguous Placement Floorplans  

 
 

 
m20.blk – 95% efficient  

m50.blk – 96% efficient 
 
 

 
m90.blk – 97% efficient 

 
 
 

 
m120.blk – 97% efficient 

 
 

 
m150 – 97% efficient 

 
 
 


