

Two Efficient Algorithms for VLSI Floorplanning

Chris Holmes
Peter Sassone

ECE 8823A
July 26, 2002

 1

Table of Contents

1. Introduction

2. Traditional Annealing

3. Enhanced Annealing

4. Contiguous Placement

5. Results and Discussion

6. Conclusions

Appendices:

A. Instructions on program usage

B. Instructions on output viewer usage

C. Sample annealing floorplans

D. Sample contiguous placement floorplans

 2

1. Introduction

Various approaches, such as slicing floorplans and sequence pair annealing, have

been presented by prior research to attack the issue of minimizing the area of a group of

rectangular blocks. Though these algorithms are effective at obtaining fairly efficient

layouts, they are very inefficient. Sequence pair annealing, for instance, is limited by the

O(n2) repetitive reconstruction of its dynamic data structures, a horizontal and vertical

constraint graph.

In this paper, we present two alternative approaches to VLSI floorplanning. First

is an enhancement of the simulated annealing algorithm, which anneals the graphs rather

than the sequence pair, saving the graph reconstruction costs. The other is a new

algorithm termed contiguous placement. This approach fits blocks in the floorplan as to

minimize the surrounding white-space.

Before discussing these new methods, however, we must first address traditional

annealing and its limitations in Section 2. We then present enhanced annealing in

Section 3 and contiguous placement in Section 4. In Section 5, we present our

performance improvements. These include how the annealing enhancements improve the

layout size while reducing run time by more than a factor of twenty, and how contiguous

placement can achieve 96% efficiency in just a few seconds. Finally, we summarize with

our concluding Section 6.

Various appendices are also included for further information. Appendix A

explains how to use the floorplan simulator and Appendix B shows how to use the output

file viewer. Appendix C shows some sample annealing layouts, and Appendix D shows

sample contiguous placement layouts.

 3

2. Traditional Annealing

Traditional Annealing is a method for doing incremental optimization to a data

structure to exploit the ability of computers to attempt many different configurations

quickly. For a sequence pair driven floorplanner, traditional annealing involves applying

the annealing concept to a sequence pair in an attempt to produce a more optimal

floorplan.

Every step in the annealing process involves either a swap of two blocks in either

or both the positive and negative sequence pair or a rotation of a block. In traditional

annealing, the sequence pair is modified, or the data structure holding the sizes of the

blocks is modified. The graph corresponding to the sequence pair is rebuilt at a cost of

O(n2) and Dijkstra's algorithm is run on the graph to determine the longest path at a cost

of O(n). Figure 1 illustrates this process; red arrows indicate costly O(n2) operations, and

green arrows indicate simpler O(n) operations, and blue represent trivial O(1) operations.

At each temperature range in the annealing process, the number of swaps/rotations made

is directly proportional to the number of blocks in the sequence pair, leading the cost of

annealing to be O(n3).

Figure 1: Traditional annealing flow chart

Numerical results for traditional annealing are shown in the Results section, and

sample floorplan illustrations are shown in Appendix C.

SeqPair 1

n2

n

layout

… SeqPair

graph

layout

n2

n

1

Rebuild
graph

Rebuild
graph

Re-do
 Dijkstra

Re-do
 Dijkstra

swap swap

Traditional
Annealing

 4

3. Enhanced Annealing

If the allowed types of changes to a sequence pair are limited to swapping only

two blocks tha t are adjacent in the pair itself, then the only effect the swap will have on

the graph is to break the connection between the blocks in either the horizontal or

vertical graph and then build a connection between them on the opposite graph.

The cost of rebuilding a graph from a sequence pair is O(n^2), but the cost of

breaking a connection can be brought down to an O(1) operation. Finding a node in the

graph can be made an O(1) operation by having the nodes held in an array indexed by

their block numbers. Finding the connection is O(M) where M is the number of

connections. In general, sequence pair graphs are sparsely connected, and this can be

assumed to be an O(1) operation. Adding a connection can be made an O(1) operation as

well, thus removing the O(n^2) cost of rebuilding the graph. Figure 2 shows the flow of

enhanced annealing. Blue arrows have replaced all other types of operations, meaning all

functions have been reduced to O(1).

Figure 2: Enhanced annealing flow chart

To remove the cost of running Dijkstra's on the changed graph, each node can

maintain a list of the maximum path up to that node as well as a list of path lengths for all

the nodes that lead up to it. Breaking or adding requires removing the associated path

length and if the maximum path length to the "after" (above or right) is changed, then the

SeqPair 1

graph

1

1

layout

… SeqPair

graph

layout

1

1

1

Change
graph

Change
graph

Update
Dijkstra

Update
Dijkstra

swap swap

Enhanced
Annealing

 5

"after" node maximum length must be updated, and those lengths must be propagated

forward in the graph.

Any change in the graph that does not change the maximum path at the "after"

node requires a time of O(1) to update the length information and is simply added in

when the connections are built or broken. If the maximum length is changed, then any

nodes that are "after" the node must have the length of the "previous" node updated, and

if their maximum length changes, that information must be recursively forwarded.

Because the nodes tend to be sparsely connected, the cost of having to forward the new

lengths is still fairly small and can be assumed to be O(1). The worst possible case would

be a sequence pair that is nothing but left to right, and swapping the farthest left pair. In

that case, the cost would still be O(1), but it would exist at every node, making the worst

case O(n).

Rotating a block is much more costly than a pair swap. Rotating a block is

guaranteed to change the cost of any path that contains it, and the information must be

forwarded immediately to all of the blocks "after" it.

The data structures required for efficient annealing are shown in Table 1:

Table 1: Data structures for efficient annealing.

After[numBlocks][] List of nodes connected "previous" to each node.
The first index is the block number, the second
array is a list of the blocks connected which is
terminated by -1.

Before[numBlocks][] Same as Before, only "after" connections

BeforeLengths[numBlocks][] Holds the lengths of each path in the Before[][].

BeforeMax[numBlocks] Holds the maximum path at each block

Sequence Pair [4] [numblocks] [0] = positive list
[1] = negative list
[2] = inverted positive array (index is the
 block number, value is the location)
[3] = inverted negative array (index is the
 block number, value is the location)

Numerical results for enhanced annealing are shown in the Results section, and

sample floorplan illustrations are shown in Appendix C.

 6

4. Contiguous Placement

Contiguous placement was inspired by the popular video game Tetris. The

challenge of the game is to quickly stack oddly shaped pieces as to avoid white-spaces

between them. Points are awarded for each white-space-free row achieved. Most players

adopt a simple strategy of leveling off the pieces as a flat surface gives many more

opportunities for tight piece placement.

We adopt this strategy to VLSI floorplanning with some slight modifications.

The goal of our algorithm is to place blocks in a contiguous row at the bottom of the

layout, then level off the layout with another complimentary row of new blocks, then we

begin again. Thus every two rows form pairs which fit together as best as possible.

The best way to create these complimentary rows is to form trapezoids (Figure 3).

To minimize the gap between row-pairs, we would like both rows to contain roughly

equal height blocks. Thus we place the shortest blocks in row 1, next shortest in row 2,

and so on. It is not important that each row contain an equal number of blocks or that the

rows are of equal length; this will be addressed via mutations.

Figure 3: Geometric goal of contiguous placement layout

To compress the rows, we must make them trapezoidal. So we now sort the odd

rows in descending order, and sort the even rows in ascending order. Finally we flip the

even rows upside down and squeeze the complimentary rows together until they touch.

This leaves us with our initial placement. A sample initial placement for a 50 block

floorplan is shown in Figure 4. Note that due to the quick and crude bucket sorting of

blocks into shortest, next shortest, and so on, the rows are not even close to even length.

ROW 1

ROW 2

ROW 3

ROW 4

 7

This yields an inefficient layout since each row shorter than the maximum must have

white-space to fill the gap.

Figure 4: Sample initial placement for 50 block floorplan.

To address this row length issue, we now apply mutations. We have four

different kinds, two for growing the shortest row and two for shortening the longest row:

• Grow(): adds blocks to the shortest row by moving the tallest blocks

from the row below and the shortest blocks from the row above.

• GrowRotate(): adds blocks to the shortest row by finding blocks in

larger-than-average rows that could be rotated 90 degrees to fit this

row’s height range.

• Shrink() : reduces the length of the longest row by moving the tallest

blocks in the row up and the shortest blocks down one row.

• ShrinkRotate() : finds blocks in the longest row that could be rotated

and moved to a smaller-than-average row.

Since we don’t want to create any mutation cycles, we keep two locks for each

block. We lock the move_lock when a block is moved from one row to another, and lock

the rotate_lock when a block is rotated and moved. A block is not allowed to participate

in the respective mutation if its lock is set.

 Mutations are very quick to even the rows out even though there is nothing

preventing a mutation from making the floorplan less efficient. Figure 5 shows a 50-

block layout after just 4 mutations. This layout is 90% efficient after just milliseconds of

 8

computation. Unlike annealing, the power of contiguous placement is not found in

careful modification of a single floorplan, but of rapidly mutating thousands of initial

floorplans in short order. Different initial floorplans are found each time by randomly

rotating the blocks, then resorting them into rows.

Figure 5: Sample 50 block floorplan after 4 mutations.

The pseudocode algorithm for contiguous placement is shown below. The reader

should note that we only mutate 20 times before starting over with a new initial

placement. This is purely an empirical optimization since we converge so quickly to an

optimal solution. Usually after 10 mutations or so, the best layout has been achieved and

the number of locked blocks prohibits further beneficial changes to the floorplan. To

assure we do not miss a good layout, the algorithm proceeds through 20 mutations or

until all blocks are locked, whichever comes first.

contiguous_placement() {
 while (keep_going) {

 randomly_rotate(blocks);
 rows = initial_placement(blocks);
 for i from 0 to 20 {
 mutate(rows);
 squeeze(rows);
 check_for_new_winner();
 }
 }

}

 9

Contiguous placement usually achieves 90% efficient layouts in under half a

second and 96% in less than a 10 seconds. This accomplishment is due to a few basic

reasons:

1) The initial placement tends to be very good, achieving around 80% in a

negligible amount of time.

2) The only data structures used are static arrays. No graphs, linked lists,

trees, vectors, or such are used.

3) Mutations are very simple, occupying less than 30 lines of code with no

more than 2 loops inside of one another. The longest part of the algorithm

is squeezing complimentary rows together, which is still just a simple loop

of subtract-and-compares.

4) Items 2 and 3 mean that each run takes less than 10 milliseconds on a

modern PC. This allows numerous runs to fully explore the solution

space.

Numerical results for contiguous placement are shown in the Results section, and

sample floorplan illustrations are shown in Appendix D.

Results and Discussion

Numerical results are presented in 3 tables, one for each algorithm. Each table

shows run time, floorplan area, area efficiency, and area-time metric for each benchmark.

Later in this section, we present graphs which can more clearly compare the algorithms.

Table 2 presents the statistics for traditional annealing. If one compares these

results to the other algorithms, these numbers seem quite low. This is a result of the

O(n3) order of the algorithm. These numbers would be even worse had a true dynamic

graph structure been used rather than a modified adjacency matrix. This advantage is

given to traditional annealing as a handicap; the help is not sufficient though for it to

compete with enhanced annealing or contiguous placement.

 10

Table 2: Results for traditional annealing

Benchmark Time (sec) Area Efficiency Sqrt(A*A*T)

M10 0.03 6480 49 1122

M20 0.10 17228 54 5448

M30 0.31 40180 43 22371

M40 0.79 41736 56 37143

M50 1.62 67077 42 85428

M60 3.21 83050 38 148680

M70 5.42 96960 37 225690

M80 8.71 131860 31 389222

M90 13.8 144982 43 537274

M100 19.8 178035 38 793785

M110 27.6 187200 40 983290

M120 40.2 191345 42 1212560

M130 53.1 239370 37 1744053

M140 70.9 226546 40 1908669

M150 95.2 238797 38 2330407

Table 3 shows the results for enhanced annealing. These numbers are

significantly faster than traditional annealing while producing better final floorplans.

Table 3: Results for enhanced annealing

Benchmark Time (sec) Area Efficiency Sqrt(A*A*T)

M10 0.02 4032 79 570

M20 0.03 13938 66 2454

M30 0.04 27630 63 5472

M40 0.08 35979 65 10176

M50 0.14 45843 52 17214

M60 0.23 49585 63 23832

M70 0.41 66822 53 42839

M80 0.43 78680 53 51594

M90 0.74 117782 53 101388

M100 1.11 125125 54 131887

M110 1.31 190475 39 218175

M120 2.13 159036 51 232269

M130 2.45 179880 50 272387

M140 2.23 182229 50 272309

M150 3.96 168752 53 335643

 11

The final table, Table 4, has the results for contiguous placement. These results
are by far the best of all three algorithms due to various factors mentioned in Section 4.

Table 4: Results for contiguous placement

Benchmark Time (sec) Area Efficiency Sqrt(A*A*T)

M10 0.65 3551 90 2863

M20 2.80 9703 95 16236

M30 5.21 18271 95 41703

M40 3.67 24546 95 47024

M50 2.41 29753 95 46198

M60 2.45 32473 95 51363

M70 1.68 37398 95 52624

M80 5.31 43050 96 99202

M90 0.89 65126 96 61543

M100 0.41 69245 96 44801

M110 6.11 76246 97 188469

M120 2.52 83356 96 133701

M130 9.97 90372 97 285353

M140 2.71 93155 97 153352

M150 2.55 92388 97 147531

Two graphs are presented which compare these algorithms. First Figure 6 shows

best efficiency achieved in 10 seconds or less. The faster runs of enhanced annealing

allow it to explore a larger solution space than traditional annealing. Contiguous

placement finds 96% layouts for most benchmark circuits, so it tops this graph with ease.

Efficiency

0

10

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

10 20 30 4 0 50 6 0 70 8 0 90 100 110 120 130 140 150

Number of Blocks

E
ff

ic
ie

n
cy

 (%
)

Annealing Enh. Annealing Contiguous

Figure 6: Efficiency achieved after 10 seconds.

 12

The second graph compares the algorithms with the sqrt(area*area*time) metric.

For the annealings, we analyze after one run. For contiguous, we give it a less than 10

seconds to find the best layout. Figure 7 is really where traditional annealing looks

terrible, with numbers that skyrocket into the millions with larger and larger circuits.

Better annealing schedules may bring these numbers down a bit, but they will always be

much worse than enhanced annealing since both would benefit equally from such

enhancements. Finally, contiguous placement does not show much better results than

enhanced annealing due to the peculiarity of this particular metric.

Area-time Metric

0

500000

1000000

1500000

2000000

2500000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of Blocks

Annealing Enh. Annealing Contiguous

Figure 7: Area-time metric after one run (annealings) or ten seconds (CP)

Conclusion

As is clear from the previous section, these two algorithms make VLSI

floorplanning more efficient, allowing more of the solution space to be explored within a

given amount of time. From a different perspective, these ideas allow similar results to

traditional annealing be achieved in far less time. In either case, the weakness in

performance of traditional floorplanning techniques is apparent.

Enhanced annealing shows that static data structures in concert with direct graph

manipulation can remove the largest performance barrier in annealing. Though unable to

directly perform ‘large’ swaps, enhanced annealing can still perform the sequence of

small swaps in less time than normal annealing would take to rebuild the graph from the

 13

single large swap. Thus any performance limitations of enhanced annealing are directly

related to the actual algorithm itself, not the limitations of the data structures.

A new algorithm, contiguous placement, is introduced as a rapid way to produce

tight floorplans. Using inspiration from existing game theory, this method creates pairs

of rows that fit tightly together. Good initial layouts, fast mutations, and quick result

convergence mean that contiguous placement can rapidly evaluate numerous random

points in the solution space, taking only a few milliseconds per point. Resultant layouts

generally achieve 96% efficiency within seconds.

These approaches vary significantly in structure, algorithm, and speed, but they

share a common goal: to outperform traditional sequence pair annealing. Both achieve

this goal with ease, showing that there is room for even further improvement in modern

VLSI floorplanning.

 14

Appendix A: Instructions on program usage

Since the code is written in Java, at least version 1.2 of the JRE (Java Runtime
Environment) must be installed for execution. Typing java –version at a prompt will
display if the JRE is installed on a computer and what version it is. If neccesary, a JRE
for most operating systems can be downloaded for free at
http://java.sun.com/j2se/1.4/download.html. Note that our program is precompiled in a
platform-independent form, so the java compiler is not needed.

All three algorithms for VLSI floorplanning (annealing, enhanced annealing, and
contiguous placement) are each accessible through the same executable. There are a
variety of program switches that select not only the algorithm, but also various behavioral
options :

-i filename Selects filename as the input file of blocks. (required)
-o filename Uses filename as the output file.

-r runs Specifies number of runs for algorithm. (-r, -g, or –t required)
-t target_eff Keeps doing runs until target_eff (as a percent) is reached. Writes the

output file (if –o selected), then proceeds to look for target_eff+1.
(-r, -g, or –t required)

-a Uses traditional annealing algorithm (default)
-e Uses enhanced annealing algorithm
-c Uses contiguous placement algorithm

-d Turns on debug output
-g Uses GUI to animate algorithm (-r, -g, or –t required)

It is strongly suggested that –t be used with contiguous placement as its runs are

very quick (<5ms) and relatively insignificant. The –t option is also valid with the
annealing algorithms, but the runs option may be more useful in these cases.

 Also note that the GUI is technically ‘upside-down’, using the top-left as the
origin. This is only a visual peculiarity and does not affect any results.

Example executions:

To run the program using the traditional annealing algorithm with the GUI on the input
file m100.blk and produce the output file m100.fout :

java ChrisPeter –a –g –i m100.blk –o m100.fout

To run the program using the contiguous placement algorithm to start looking for the
target efficiency of 95% with debug on, input file m100.blk, and no output file:

 java ChrisPeter –c –d –t 95 –i m100.blk

 15

Appendix B: Instructions on Output Viewer usage

Also included in the code package is a small utility which reads .fout files and displays
the floorplan using the GUI. This is handy for verifying that a particular floorplan is
valid (has no overlaps and such).

The usage is very simple:

 java OutputViewer filename

When the GUI is displayed, hit the “exit” button to close.

 16

Appendix C: Sample Simulated Annealing Floorplans

m50.blk – 62% efficient

m100.blk – 54% efficient

m150.blk – 53% efficient

 17

Appendix D: Sample Contiguous Placement Floorplans

m20.blk – 95% efficient

m50.blk – 96% efficient

m90.blk – 97% efficient

m120.blk – 97% efficient

m150 – 97% efficient

