
Naïve 1-Steiner by Kahng/Robins
Felix Wu



Implementation

• Prim’s MST Algorithm
• Runs MST Algorithm exhaustively on Steiner 

points
• Possibilities:
▫ Adjacency Matrix
▫ Adjacency List
▫ Use Heap to keep track of all connecting edges to 

MST



What is a Fibonacci Heap?

• A heap is a ordered tree
• Fibonacci Heap is a collection of min-heap trees 

with a pointer to the minimum root node



• Edges are kept as heap nodes in the tree
• We know what endpoints are closest to our 

current MST
• Amortized Runtime: O(E + V log V)





WL = 21



Red point is Steiner point
with best gain

WL = 19



WL = 18





WL: 242



WL: 240



WL: 239

Problem?



WL: 238

Problem?



WL: 219
After 22
Passes
(Iterations)



s

This problem may affect
Radius drastically



s

This problem may affect
Radius drastically



Total Run Time – 2516 ms
First pass - 1683 ms (~67% of run time)
Lowest Wirelength - 219

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
im

e 
S

p
en

t 
in

 E
ac

h
 P

as
s 

(m
s)

Time Spend In Each Pass (ms)



Slight Modification

• Observation: gain is small per iteration (~1,2)
• Shuffle the Steiner set and break loop 

immediately after finding positive gain
• No need to compute MST for every Steiner point
• Disadvantage:
▫ May lead to inconsistent results



Comparisons
Original (WL = 219, 2516ms) Modified (WL = 220, 2030ms)



Total Run Time (Avg/5 Runs)– 2030 ms
Ranged from 1764 ms to 2228 ms
Lowest Wirelength (Avg) – 219.4

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e 
S

p
en

t 
in

 E
ac

h
 P

as
s 

(m
s)

Time Spent in Each Pass (ms)



Improvements

• Make 1-Steiner radius-sensitive


