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Implementation

• Prim’s MST Algorithm
• Runs MST Algorithm exhaustively on Steiner 

points
• Possibilities:
▫ Adjacency Matrix
▫ Adjacency List
▫ Use Heap to keep track of all connecting edges to 

MST



What is a Fibonacci Heap?

• A heap is a ordered tree
• Fibonacci Heap is a collection of min-heap trees 

with a pointer to the minimum root node



• Edges are kept as heap nodes in the tree
• We know what endpoints are closest to our 

current MST
• Amortized Runtime: O(E + V log V)
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Total Run Time – 2516 ms
First pass - 1683 ms (~67% of run time)
Lowest Wirelength - 219
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Slight Modification

• Observation: gain is small per iteration (~1,2)
• Shuffle the Steiner set and break loop 

immediately after finding positive gain
• No need to compute MST for every Steiner point
• Disadvantage:
▫ May lead to inconsistent results



Comparisons
Original (WL = 219, 2516ms) Modified (WL = 220, 2030ms)



Total Run Time (Avg/5 Runs)– 2030 ms
Ranged from 1764 ms to 2228 ms
Lowest Wirelength (Avg) – 219.4
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Improvements

• Make 1-Steiner radius-sensitive


