
MIN-CUT
PLACEMENT WITH
TERMINAL
PROPAGATION

- Mayura Oak
- Melonia Mendonca

Objectives:

• Brief description

• Overview of Implementation

• Implementation issues

• Results

• Future scope

Brief Description

• Algorithm for placement of cells which
targets wirelength reduction.

• Uses partitioning for performing placement
• We implemented the KL Algorithm - swap

based
• 3 Types of Partitioning:

a. Depth First
b. Breadth First without terminal propagation
c. Breadth First with terminal Propagation

Overview of Implementation

Recursion for Depth First Partitioning:
• recursive calls to self by each partition

Queue for Breadth First Partitioning:
• A queue is maintained to store data for each partition such as cells and

number of cells in that partition and whether the partition was horizontal or
vertical

• Each finished partition is pushed in from the back of the queue and new
partition for subpartitioning is taken from the front of the queue. The
previous partition is deleted from the queue.

A

A1A2

A2A11A12

A A1 A2 A2

A11

A12

Overview of Implementation

Adding Anchor nodes for Terminal Propagation:
• The Anchor nodes were added in each partition which

represented the external connection to the cells in that
connection.

• If node 'a' has connection to external cells b, c, d which
lie on the left side of the partition, then one anchor node
will be added to left partition and weight of the edge
connecting a and anchor node will be sum of the
weights of the edges connecting a and b,c,d.

• These anchor nodes are always locked and thus can't
be swapped into another partition by KL.

Implementation Issues

• We selected KL algorithm as the partitioning algorithm because of
simplicity of implementation and as it gives better area balance. But
the time complexity of KL is O(n^3), thus its run time increases
exponentially as the number of cells and number of partitions. Thus
unfortunately we could not perform experiments on bigger circuits
such as ibm01.hgr

• Initially a binary tree was maintained to store all the partitions
performed, and to check which of them fall outside the window, the
tree was traversed till it reaches the leaves. This implementation
was complex. Instead we made an array which stores x & y co-
ordinates and checked it against window size constraint which was
also in terms of x & y to determine whether that cell lies outside the
window.

Results

Results

libboard: A vector Graphics C++ Library used for plotting. Results for p2.hgr for 8x8 grid & 50%
window size:

Without Terminal Propagation (WL = 13925) With Terminal Propagation(WL
= 12698)

Results

Run Time Analysis:

fract.hgr

Analysis of varying window size as
a percentage of room size.

Results

Summary:

Future Scope

• Reduce run time by further optimizing the
code

• Keep bound on number of external
connections that are considered for terminal
propagation so that they don't overpower
internal connections

Thank you!

Questions?

