
Floorplan design of VLSI
circuits using Simulated
Annealing

Gaurav Rajasekar
Muneeb Zia

Introduction
 Initial floor-plan is represented by a string called the Polish

Expression.

 Eg.
 E = 16H2V75VH34HV

 A Normalized Polish Expression is one in which there are no
consecutive operators of the same type (H or V respectively).

 Enables construction of a unique slicing floor-plan.

Problem Formulation
 Normalized Polish Expression string given.

 A ‘cost’ function needs to be calculated and minimized.
 Ø = A + λW.
 A: area of the smallest rectangle
 W: overall wiring length
 λ: user-specified parameter (in our case it’s 0)

 An iterative process needs to be implemented to introduce
perturbations into the Polish Expression and ‘anneal’ it in a
process analogous to how a metal is annealed.

 Language used : C++

Types of Moves
 Three types of moves:

 M1 (Operand Swap): Swap two adjacent operands in the polish
expression.

 M2 (Chain Invert): Complement a chain in the polish expression.

 M3 (Operator/Operand Swap): Swap two adjacent operands and
operators.

 Balloting property is maintained during M1 and M2 moves but
it may be violated during the M3 move.

Placement on Floorplan
Width and Height calculation:

 Block Placement on the Floorplan:

 3 on top and 4 below it. 7 on the left and 5 on the right.

Implementation
Language used : C++

Data Structure used: Vector
We use a vector each to store the input Polish Expression,

the widths of the blocks and the heights of the blocks.

Why?
 Vector functions are easier in C++ than operating on structs

and tree nodes.
 Easier to add, swap or delete nodes.
 Struct usage would have required a boolean operator to tell you

if it’s a numerical / H / V node.
 Less memory used for each node.
 Here the P.E. is stored in a vector of integers not as characters.

Input Parsing
 Preprocessing involves separating the nodes from the

hyphenated string and passing it into a vector.

 The H and V nodes are replaced by two arbitrarily chosen
negative numbers -4 and -7 to differentiate them from the rest
of the numbered nodes and to keep the vector elements to
an integer data-type only.

 The widths and heights are segregated and put into 2
separate vectors.

Widths and heights are arranged in increasing numeric order
i.e. width of 0th block is first and so on.

Process

Parse the input
file

Create width,
height and a
numeric PE

vector

Calculate initial
floorplan area

Annealing starts Calculate cost
function

Move M1

Recalculate
cost

If gain, then
accept. Else
Reject Move.

Move M2

Recalculate
cost

If gain, then
accept. Else
Reject Move.

Move M3 Check for
Balloting Property

Recalculate
cost

If gain, then
accept. Else
Reject Move.

Final Floorplan

Annealing Process
 While rejection probability < 95%

AND
Temperature is greater than the threshold provided

 While uphill < N where N = k*n
AND
Moves tried (MT) < 2*N

 Random moves between M1, M2 and M3 are chosen and
Polish Expression is modified.
 Cost for each new expression is calculated.
 If ∆Cost < 0 then New Expression = Best
 Else Reject the move and increment an uphill counter

 Cool. ;)

2-1-0-H-V-3-V-4-V Width & Height Vectors

 Look for the first H or V, then
perform the respective operation
for H or V for the previous 2 entries
in the Polish Expression.
 Remove the 3 nodes and replace

them by a single new block.
 Append new block’s width and height at

the end of the width and height vectors.

0
1
2
3
4

Area computation

0
1
2
3
4

2-1-0-H-V-3-V-4-V Width & Height Vectors

2-5-V-3-V-4-V

0
1
2
3
4
5

Area computation

0
1
2
3
4
5

2-5-V-3-V-4-V Width & Height Vectors

6-3-V-4-V

0
1
2
3
4
5
6

Area computation

0
1
2
3
4
5
6

6-3-V-4-V Width & Height Vectors

7-4-V

0
1
2
3
4
5
6
7

Area computation

0
1
2
3
4
5
6
7

7-4-V Width & Height Vectors

8

Wherein 8 is the overall
floorplan area.

0
1
2
3
4
5
6
7
8

Area computation

0
1
2
3
4
5
6
7
8

Results
Circuit Initial Area Minimum Final Area after

Annealing
5_block.ple 65 55

10_block.ple 147 119

30_block.ple 1075 903

100_block.ple 7119 6592

150_block.ple 14104 13114

Conclusion
 The runtime depends on the parameters that we’re

supplying:
 Cooling Ratio
 Epsilon (Minimum Temperature)
 ‘k’ limits the moves tried
 Number of Iterations (Limits runtime)

 Our code seems to give greater floorplan area gains in larger
designs.

Possible Extensions
We could include a constraint on our floorplan’s aspect ratio.

 If we could get a HotSpot model of the floorplan we could
include temperature of the blocks as one of the criteria during
calculation of the cost function to perform temperature aware
floorplanning of circuits.
 Add Maximum temperature to the objective function.

 Incorporating Genetic Algorithm
 The Crossover operations of GA can enable faster searching of a

wider solution space than what’s possible by using Simulated
Annealing alone.

