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Introduction 
 

The overall purpose of the project is to achieve a minimum floorplanning layout 
given an unordered set of randomly sized blocks. This layout is to be a non-slicing 
floorplan. As a secondary objective, the algorithm is to run in a time efficient manner. 
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Problem Formulation 
 
 There are two main types of layouts, slicing floorplan and non-slicing floorplan. 
While the runtime of slicing floorplan algorithms may be shorter than that of non-slicing 
algorithms, the use of the former restricts the solution space to a small subset of possible 
floorplan solutions. It is important to note that in most cases this subset will not contain 
the global minimum floorplan solution. 
 
 There are several ways to represent non-slicing floorplan designs and many more 
algorithms which then operate upon these representations to derive quality floorplan 
solutions. Some examples of non-slicing floorplan representation techniques are sequence 
pair, bounded slicing grid, corner block list, transitive closure graph, O-tree, and B*-tree. 
The most commonly used algorithm applicable to non-slicing floorplan area 
minimization is simulated annealing. 
 
 This project incorporates a sequence pair representation of non-slicing floorplans 
and utilizes a simulated annealing algorithm to minimize the floorplan layout area. Since 
the sequence pair floorplan representation is a p-admissible solution set, it is known that 
the solution space is finite and every solution is feasible. While the global minimum 
solution can be represented by a sequence pair floorplan representation and thus able to 
be found by simulated annealing, it is prudent to instead choose a high quality solution 
whose quality is limited only by time constraints. 
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Program Development 
  

The floorplanning program was coded using C++ in an object orientated fashion. 
The use of the object oriented programming techniques allowed for efficient data 
structure definition and facilitated high-level data manipulation. During the course of 
program development, the use of abstraction was vital in maintaining a level of hierarchy 
within the program structure. 

 
The program was divided into the following four class structures: block, graph, 

best, and oven (see Figure 1). The block class contains all the geometrical information 
regarding each block, its sequence pair locations, as well as fanin information. The graph 
class contains the sequence pairs, bounding box information, and the last movement 
information. The best class contains the block placement information corresponding to 
only the minimum bounding box area solution found overall. The oven class contains the 
temperature and ramp rate information. Each class also contains the appropriate 
manipulative and accessor functionality.  

 

 
Figure 1 - Class Hierarchy 
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Algorithm Discussion / Implementation Issues 
 
1. Program Input / Output Characteristic 

 
The input to the floorplanning program is a block description file (*.blk) which 

contains the number of blocks and the dimensions of each one of the blocks. Following 
the layout optimization, the program is to output a layout description file (*.out). The 
layout description file consists of the bounding box width and height, the runtime, the 
sequence pairs, and the block (x,y) coordinate, width, and height information. 

 
2. Graph Construction 

 
2.1. Fanin Collection 

 
 This routine consists of two main methods: populating the horizontal graph and 
populating the vertical graph. The procedure to populate the horizontal graph is shown in 
Figure 2. The outer loop traverses the positive loci vector. Each positive loci element is 
tested against the negative loci vector in a linear order. If the current positive loci element 
is the same as the one being tested against in the negative loci, go to the next element in 
the positive loci vector because the rest of the elements cannot fanin into the current 
element. If the block is not the same, compare the locations in the positive loci to 
determine if the block is a fanin. This procedure eliminates some of the comparisons that 
would be necessary in a brut force algorithm. We can also skip the first block because we 
know it can not have any fanins. 

 The procedure to populate the vertical graph is almost the same as that of the one 
that populates the horizontal graph. The main difference is that the positive loci is 
traversed in reverse order Also the comparison of the locations in the positive loci is 
flipped. The pseudo code for this can be seen in Figure 3. We again con skip the first 
element to be tested since it can not have fanins. 

 
 
 
 

for (i=1;i<positive_loci.size();i++){ 
 pos_block=positive_loci[i]; 
 neg_block=negative_loci[j]; 

j=0; 
 while(pos_block != neg_block)  

{ 
if (neg_block.get_positive_loci_loc() < 
pos_block.get_positive_loci_loc()) { 

   pos_block.add_horz_fanin(neg_block); 
  } 
  j++; 
  neg_block=negative_loci[j]; 
 } 
} 

Figure 2 - Populate Horizontal Graph 
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Figure 3 - Populate Vertical Graph 

 
2.2. Topographical Sorting 
 

The topographical sort routine implemented in the program is not really a 
topographical sort routine at all, at least in the classical sense. A typical topographical 
sort routine begins with a set of vertices and directed edges and essentially returns an 
ordering of vertices that has the property that the directed edges of each vertex are only 
directed toward vertices of higher order. Instead of doing this classical topographical sort 
(which is runtime expensive), the algorithm takes advantage of the fact that the sequence 
pair description of the graph reveals all the necessary information to compile a 
topographical sorted list based on the sequence pair information alone, without the 
extraneous compilation and sorting of corresponding edge information. The horizontal 
graph of blocks in topological order is found by sorting the sums of the indices of the 
positive and negative loci locations with respect to each block. Similarly, the vertical 
graph of blocks in topological order is found by sorting the differences of the indices of 
the positive and negative loci locations with respect to each block. This effective 
circumvention of traditional topographical sort methods results in significant runtime 
savings.  
 
2.3. Longest Path Calculation 
 

With the horizontal and vertical fanins for each block collected and the 
topographical ordering of the blocks known in both the horizontal and vertical directions, 
the longest horizontal and vertical path algorithms are very straightforward and mutually 
independent. In addition to calculating the longest paths, the algorithm also calculates the 
(x,y) coordinates of each block in the layout for the given sequence pair. The pseudo 
code for each of these routines is also given in Figure 4 and Figure 5. 

 

for (i=positive_loci.size()-2;i>=0;i--){ 
pos_block=positive_loci[i]; 

 neg_block=negative_loci[j]; 
 while(pos_block.get_positive_loci_loc() != neg_block.get_positive_loci_loc() ) 

{ 
  if (neg_block.get_positive_loci_loc() > 

pos_block.get_positive_loci_loc())  
{ 

   pos_block.add_vert_fanin(neg_block); 
  } 
  j++; 
  neg_block=negative_loci[j]; 
 } 
 j=0; 
} 
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3. Simulated Annealing 
 

The basic simulated annealing algorithm models the annealing process used in metals 
and glass. The elements are heated up to a point where they move freely. When they 
move freely they are able to rearrange themselves into a different configuration. This new 
configuration is random and not always better. As the temperature cools, the elements 
slow down in their movement and begin to stabilize; only making small adjustments. The 
simulated annealing algorithm tries to mimic this natural procedure to come up with a 
good solution to a particular problem. 

 

Figure 4 - Horizontal Vertical Path Routine 

int longest_vert_path() { 
 for (i=0;i<vert_graph_length;i++) { 
  cur_block=vert_graph[i]; 
  max_path_length=0; 
  while (vert_fanin != empty) { 
  new_path_length=hora_fanin.y_coord; 
  if (new_path_length>max_path_length){ 
   max_path_length=new_path_length; }} 
 temp=_block.height+max_path_length; 
 cur_block.x=temp; 
 if (global_max<temp) global_max=temp; } 
return global_max; } 

int longest_horz_path() { 
 for (i=0;i<horz_graph_length;i++) { 
  cur_block=horz_graph[i]; 
  max_path_length=0; 
  while (horz_fanin != empty) { 
  new_path_length=hora_fanin.x_coord; 
  if (new_path_length>max_path_length){ 
   max_path_length=new_path_length; }} 
 temp=_block.width+max_path_length; 
 cur_block.x=temp; 
 if (global_max<temp) global_max=temp; } 
return global max; } 

Figure 5 - Vertical Horizontal Path Routine 
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 The simulated annealing algorithm can be broken into three main areas: choosing 
how many moves to make at a certain temperature, when to allow a non-advancing move, 
and when to stop the entire annealing process. The pseudo code for this process can be 
found in Figure 6. The outer loop determines how long the entire annealing process runs. 
The annealing process ends when the ratio of the number of rejected moves to the 
number of total moves for the previous temperature is greater the 95%, or the annealing 
process has reached its final cooling temperature. The next loop determines how many 
moves occur at a specific temperature. The temperature will be reduced when a specified 
number of non-advancing moves have been completed or the total number of moves at 
the temperature is greater then a set value. At each temperature level all moves that 
provide advances are allowed, and some non-advancing moves are allowed based on the 
current temperature and a random factor. This allows for uphill movement to escape local 
minima.  
 
3.1. Movement Selection 
  

There are three possible moves in the program: swap positive loci, swap negative 
loci, and rotate – each self-explanatory. The movement selection is such that the 
sequence pair swaps occur more often at higher temperatures and less often at lower 

Figure 7 - Annealing Routine 
Void anneal(int k,int tempratio) { 

int scorechange,MT=1,M,N,uphill,reject=0,test=0, bestscore=0,currscore=0,backup=0; 
     bool done=0; 
     N=num_of_blocks*k; 
     bestscore=current_graph_area; 
     while ( ((reject/MT) < 0.95) && (oven != done)){ 
          MT=0; reject=0; uphill=0; 
          while ( (uphill < N) && (MT < 2*N) ) {    
               M=getmove(); 
               switch (M) { 
               case 1 : swap_pos_loci; 
                 break; 
               case 2 : swap_neg_loci; 
                 break; 
               case 3 :  rotate; 
               default: break; 
               } 
               MT++; currscore=new_bounding_box_area; scorechange=bestscore-currscore; 
               if ((scorechange > 0) || ( rand < exp(scorechange/tempratio*currtemp) ))  { 
                    if (scorechange <0) uphill++; 
                    if (bestscore > currscore) { 
                         bestscore = currscore; 
                         if (best_best > currscore){ 
                          backup graph; 
                              best_best=currscore; 
                         } 
                    } 
               } 
               else { 
                   g.revert_move(); 
                   reject++; 
               } 
          } 
     oven cool;     } 
} 

Figure 6 - Simulated Annealing Algorithm 
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temperatures, vice-versa for rotation. Since positive and negative loci swaps are 
essentially the same “size” move, given that a sequence pair type move is chosen, there is 
a 50% probability of choosing either a positive or negative loci swap, regardless of 
temperature. 
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Experimental Results 
 
 
 The following results are based on the average of ten runs, with -r set to five 
annealing runs per input file. 
 

Figure 8 shows the average bounding box improvement for five runs of the 
program. As can be seen by the figure, the difference in bounding box area between the 
initial solution and the simulated annealing solution is significant. 
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Figure 9 shows the average amount of white space within the final bounding box 
area of the simulated annealing solution. On average, about 10% of the floorplan layout 
was white space. Note that this could be improved upon if program time was extended. 
Preliminary testing has shown that as low as 2.2% white space can be had if the time 
constraint is relaxed. 

 

Figure 8 - Bounding Box Area Improvement 
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Figure 9 - Percentage of White Space 

 
Figure 10 shows the average amount of runtime required for program execution. 

This is the average time required to produce the average percentage white space numbers 
in the previous figure. 
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Figure 10 - Runtime Requirement 
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 Figure 11 shows the average cost across the input block files. It was this number 
that was sought to be minimized during the course of parameter tuning. The metric 
served as a balance between the primary objective of the program (to minimize the 
floorplan layout area) and the primary constraint (runtime). 
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Figure 11 - Average Cost (used during parameter tuning) 
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Conclusions 
 

Overall the project was very successful. Low floorplan layout areas were achieved 
in a fairly time efficient manner. For example, the runtimes for 10 and 20 block input 
files would take a fraction of a second, while 140 and 150 block input files would take at 
maximum around 20 minutes. An average 9-10% whitespace was encountered across the 
entire spectrum of block quantity input files. (Note: These numbers are for five runs of 
simulated annealing) 
 
 The code itself, object orientated C++ class structures, is highly adaptable to 
future modifications. 
 
 
P.S. The longest path algorithm was updated since the data included in this report was 
taken. The average program runtime with the new version of this algorithm is only 95% 
of the original runtime. 
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Extensions 
 
 To improve the runtime and thus allow the faster traversal of the solution space, 
several possible extensions to this work are listed as follows: 
 
Block Trip Distance: Take into account block area when swapping blocks in sequence 
pairs. Allow larger blocks to move less far than smaller blocks. Relate the relative 
distance a block with a certain area can move based on the current annealing temperature. 
 
Large Block “Sluggishness”: Allow larger blocks to be very mobile only at higher 
temperatures and reduce their mobility at lower temperatures. At low temperature, allow 
smaller blocks to move more readily than larger blocks. 
 
Low vs. High Aspect Ratio Rotations: Make the rotations of high aspect ratio block less 
likely and temperature dependent. 
 
Swap Near Blocks: By swapping blocks which are closely located, less fanin/fanout 
information is changed. In the ideal case, swapping adjacent blocks would result in do 
fanin/fanout recalculation. 
 
Longest Path Positive Short-Circuit: By rotating a block near the end of the topographical 
sorted list of blocks in either the horizontal or vertical directions, the new longest path 
(and thus new (x,y) coordinates) could be calculated from only that block onward. In the 
case where you were to swap two blocks, could start from the block earlier in the 
topographical sorted list of blocks in either the horizontal or vertical directions and 
proceed forward. This would be useful in cases where the block(s) occurred in the latter 
portions of the sequence pairs. 
 
Longest Path Negative Short-Circuit: By rotating a block near the beginning of the 
topographical sorted list of blocks in either the horizontal or vertical directions, the new 
longest path (and thus new (x,y) coordinates) could be calculated from only that block 
backward. In the case where you were to swap two blocks, could start from the block 
later in the topographical sorted list of blocks in either the horizontal or vertical 
directions. This would be useful in cases where the block(s) occurred in the earlier 
portions of the sequence pairs. Note that the origins would undergo a shift and have to be 
shifted back to the origin once at the end of the algorithm. 
 
Within Window Swaps: Implement a moving, variable-size window which would move 
across the floorplan layout. The move selection routine would only be allowed to select 
blocks from within the window to swap or rotate. The window size and movement rate 
would be temperature dependent. 
 
Temperature staging: Investigate the use of multiple temperature ramp stages. 
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Appendix: Sample Floorplan Layouts 
 

 
Figure 12. m10.blk 

 
Figure 13. m20.blk 

 
Figure 14. m30.blk 

 
Figure 15. m40.blk 
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Figure 16. m50.blk 

 
Figure 17. m60.blk 

 
Figure 18. m70.blk 
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Figure 19. m80.blk 

 
Figure 20. m90.blk 

 
Figure 21. m100.blk 
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Figure 22. m110.blk 

 
Figure 23. m120.blk 
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Figure 24. m130.blk 

 
Figure 25. m140.blk 
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Figure 26. m150.blk 

 

 
Figure 27. m10.blk w/ ~ 2% white space 

 
Figure 28. m20.blk best w/ ~ 4% white space 

 
Figure 29. m40.blk best w/ ~ 6% white space 

 
 
 
 
[Disclaimer: No doglegs were abused during the compilation of this report.] 


