Implementation of the Stockmeyer Algorithm

ECE 6133
Amanda Cummings

The Algorithm itself

- The goal of the algorithm is to find the optimal orientation of the blocks in the floorplan for the minimal area.
- Often used as a post-process to further optimize the area objective

How it was implemented

- Will use the example on pg 65 in the book.
- Polish expression for the book example is " 3 -7-H-5-I-V-8-2-H-V-4-V-6-V-H".
\circ The slicing tree and the original floorplan:

Figure 3.1. A slicing tree and its floorplan. Note that the lower left corner of each block is placed at the lower left corner of its room.

Polish Expression

- Postorder traversal
- Assume that $x y H$ means x is top and y is bottom, and $x y V$ means x is left and y is right
- The area of the cut $x y H$ has a width $=$ $\max (\mathrm{Wx}, \mathrm{Wy})$ and a height $=\mathrm{Hx}+\mathrm{Hy}$
- The area of the cut xyV has a width $=\mathrm{Wx}+$ Wy and a height $=\max (\mathrm{Hx}, \mathrm{Hy})$

Inputs into Stockmeyer Code

- The input is a .ple file
- The first line has the polish expression of the floorplan consisting of blocks starting a 0 and the '-' delimeter
- The rest of the lines contain the width and height of a block separated by a space
- $2^{\text {nd }}$ line has the width and height of block $0,3^{\text {rd }}$ line has the width and height of block I, etc.

Parse Input file

- My code takes the polish expression string out to parse
- Then, it places all of the widths and heights into a vector of pairs.
- wh[0].first $=$ width of block 0
- wh[0].second $=$ height of block 0

Start to build a Tree

- Created a structure called node that will be used to build a tree
- While loop with the condition of the polish expression string does not equal null, then parse the string using the '-' delimeter
- If the parse is an H or a V , then it is a root, and special calculations need to happen
- Else create a leaf with NULL left and right pointers

Connecting the root nodes to its children

- Postorder expression gives you left,right,root:

$$
3-7-\mathrm{H}-5-1-\mathrm{V}-8-2-\mathrm{H}-\mathrm{V}-4-\mathrm{V}-6-\mathrm{V}-\mathrm{H}
$$

H
Right node $=7$
Left node $=3$

$$
\text { Temporary Vector }=\left[\begin{array}{c}
\mathrm{H} \\
7 \\
\end{array}\right]
$$

Calculations Needed

- First, sort width and height combinations (stored in a vector) of the children according to the root
- H sorts into decreasing widths
- V sorts into increasing widths
- Calculate width and height combinations of the root and store in a vector
- Store information of what child combinations created the root combination in a separate vector

Calculations (cont'd)

Table 3.1. Summary of the bottom-up dimension computation in Stockmeyer algorithm. The minimum area floorplan is $13 \times 9=117$.

Node	Dir	Dimensions
a	ver	$L=\{(2,3),(3,2)\}$
		$R=\{(2,4),(4,2)\}$
		$D=\{(4,4),(6,3),(7,2)\}$
b	hor	$L=\{(4,2),(2,4)\}$
		$R=\{(3,1),(1,3)\}$
		$D=\{(4,3),(3,5),(2,7)\}$
c	ver	$L=\{(4,4),(6,3),(7,2)\}$
		$R=\{(2,7),(3,5),(4,3)\}$
		$D=\{(6,7),(7,5),(8,4),(10,3)\}$
d	ver	$L=\{(6,7),(7,5),(8,4),(10,3)\}$
		$R=\{(3,5)(5,3)\}$
		$D=\{(9,7),(10,5),(13,4),(15,3)\}$
f	ver	$L=\{(9,7),(10,5),(13,4),(15,3)\}$
		$R=\{(3,5)(5,3)\}$
		$D=\{(12,7),(13,5),(18,4),(20,3)\}$
e	hor	$L=\{(3,3)\}$
		$R=\{(2,1)(1,2)\}$
		$D=\{(3,4)\}$
g	hor	$L=\{(3,4)\}$
		$R=\{(20,3),(18,4),(13,5),(12,7)\}$
		$D=\{(20,7),(18,8),(13,9),(12,11)\}$

New Area and traversal

- Once all of the width and height calculations are done, sort through the Main Root's width and height combinations to get the minimum area
- Traverse back down the tree to change the orientations of the leaves that is needed to obtain the
- Calculate the coorinates of the leaves while traversing back down the tree

New Area and traversal (cont'd)

Plotting Floorplan

- Not part of the Stockmeyer Algorithm!
- Output the old coordinates, old width and heights, and block number into a .txt file
- Output the new coordinates, new width and heights, and block number into a .txt file
- Use Matlab to plot

Floorplan of Example

- The blocks that rotated were $6,2,5$ and 7

Original

Results

\# Blocks	Original Area	New Area	\% improvement	Performance Time	\# Blocks Rotated	Blocks rotated
5	65	65	0	0.009017778	1	0
10	147	95	35.37414966	0.009522222	4	1, 3, 5, 7
30	1075	748	30.41860465	0.010381111	8	$\begin{gathered} 2,15,16,18,22 \\ 23,24,27,28 \end{gathered}$
100	7119	4264	40.10394718	0.015953333	38	$\begin{gathered} 1,2,3,5,7,8,10, \\ 11,16,18,21,23, \\ 26,32,33,41,42, \\ 49,50,54,55,62, \\ 63,64,66,68,74, \\ 75,76,77,78,80, \\ 81,82,87,90,91, \\ 96 \end{gathered}$
150	14104	8316	41.0380034	0.018414444	56	$\begin{gathered} 3,7,8,10,18,20, \\ 23,25,31,32,34, \\ 35,39,44,45,46, \\ 47,58,63,64,65, \\ 66,70,71,72,73, \\ 74,78,79,82,83, \\ 85,86,88,91,97, \\ 98,99,102,105, \\ 113,114,118, \\ 119,121,124, \\ 134,135,137, \\ 139,141,142, \\ 143,144,146, \\ 147 \end{gathered}$

5 Block Problem

IO Block Problem

Modified

30 Block Problem

IO0 Block Problem

I 50 Block Problem

Conclusion

- The Stockmeyer Algorithm can improve the area significantly, or not at all, depending on the original placement and the critical path
- If critical path is already minimized, then the area will stay the same.
- Wire routing would become a significant real world problem that the algorithm does not take into account

Any Questions?

Sources

- Lim, Sung Kyu, "Practical Problems in VLSI Physical Design Automation"
- L. Stockmeyer, "Optimal Orientation of Cells in Slicing Floorplan Designs"

