
STOCKMEYER ALGORITHM

ECE 6133 : FINAL PROJECT

SUJAY KHOLE

1. Given a slicing floor-plan, find out the optimal orientation
of each module with a goal of minimizing the area of the
floor-plan.

2. Can be used to improve the quality of certain algorithms
which only determine the relative positions of modules
without considering their orientations.

3. Used mostly as a post-processing step. Improvement
depends upon whether the critical path is affected.
(Explained in conjunction with the results)

1. Develop a C++ Implementation of the Stockmeyer’s
Algorithm.

2. Five initial floorplans provided. 5_block.ple, 10_block.ple,
30_block.ple, 100_block.ple, 150_block.ple.

3. Using C++ code, determine the optimal rotation of each
block to reduce the total area of the floorplan.

4. Determine the statistics such as Area improvement, number
of block rotated and runtime.

5. Redirect the output into a .txt file in a suitable format such
that MATLAB can be invoked to display the initial and the
final floorplans in a GUI.

1. C++ was used because of the powerful Standard Template
Library.

2. Stack: A Stack was used to push and pop the nodes of a parse
tree while it was being generated from the Polish Expression.

3. Vectors: Used to store the dimension list of each node in the
parse tree. Provides combined features of an array and the
queue data-structure.

4. Pairs: A natural choice available in the STL to store the width-
height pairs associated with every module. Forms an element
of a nodes dimension list.

5. Binary Parse Tree: To process the given Polish expression

1. If there are N modules, modules are numbered from 0 to N-1

2. The first line contains the Polish Expression. It is read into a
String variable so that a parse tree can be generated later.

3. Line 2 onwards contains the width height pair separated by a
space . There is one width height pair per line
For example
Line 2 has width height of module 0
Line 3 has width height of module 1
Line N+1 has width height of last module N-1

4. The width- height pair are stored in an Array of “pair” .
wh_pair[0].first = width of module 0.
wh_pair[0].second = height of the module 0.

1. Consider a Polish Expression. 2-1-0-H-V-3-V-4-V

2. Module numbering begins from 0 . Nodes are separated by “ – “

3. Cut “t-b-H”: module t goes to the top and b to the bottom.

4. Cut “l-r-V”: module l goes to the left and r to the right

H
b

t

Hb

Wb

Ht

Wt
Joining modules t and
b leads to the new
dimension with

Width = max(Wt, Wb)
Height = Ht + Wt

V

Hr

Wr

Hl

Wl

l r

Width = Wl + Wr
Height = Max(Hl, Hr)

1. Start with a binary slicing tree representation of the given
polish expression.

2. Visiting the leaf nodes (modules) first. Depending on the shape
of the module, add the width-height pair for the possible
orientations of the module

A square module with
a single orientation. A rectangular module with two

(5,5) orientations. (5,10) & (10,5)

5

5

5

10

10

5

3. Calculate the list of dimension pairs for each non-leaf node all
the way up to the root node.

1. This kind of sorting of the children of an H-node or V-node
helps reduce the time and memory requirements.

2. To see how this helps consider the following H-cut with the
dimensions of its children sorted into descending widths.

In a Naive Implementation, we would
have combined
(5,1) & (3,1) = (5,2)
(5,1) & (1,3) = (5,4) ….unnecessary!!
(1,5) & (3,1) = (3,6)
(1,5) & (1,3) = (1,8)

3. If left_node.width > right_node.width then the rest of the
dimensions created using left node will give a higher area
(Due to the decreasing widths/increasing heights relationship.)

{(5,1),(1,5)} {(3,1),(1,3)}

H

01

{(5,2),(3,6),(1,8)}

1. Start processing the Polish Expression from Left to Right.
If the node is a module, initialize its dimension list depending
upon whether it’s a square or rectangular module.

2. The node is then pushed onto a Stack. It has no children nodes.

3. For a V or H node, the top of the Stack is popped and attached
as a right child. The one below is attached as the left child.

4. Its dimension list is built by considering one element at a time
from both its children. Separate calculations need to be done
for an H node vs. a V node.

5. For an H-node sort the dimension list of both children into
decreasing order of widths & increasing widths for a V-node.

1. Consider a Polish Expression. 2-1-0-H-V-3-V-4-V

2

1

0

1-0-H

STACK FOR
BUILDING THE

PARSE TREE

{(3,3)} {(5,1),(1,5)}

{(3,1),(1,3)}

{(1,8),(3,6),(5,2)}

{(4,8),
(6,6),
(8,3)}

{(1,5)}

{(4,4)}

{(9,8),(11,6),(13,5)}

{(5,8),(7,6),
(9,5)}

1. It is just not sufficient to combine two dimension from children
to form a dimension pair in the parent’s list.

2. It is also essential to maintain the left and right child dimension
pointer that led to forming a particular parent list dimension.

3. Once we reach the top node, we have all possible width- height
pairs that may give an improvement in the area .

4. Of all the width–height pair at the top node, one with the least
area is selected.

5. Using the left and right child dimension pointers traverse
down back the tree to change the orientation of the
leaves(modules) that result in the minimum area dimensions at
top node.

Example: 2-1-0-H-V-3-V-4-V

{(3,3)} {(5,1),(1,5)} {(3,1),(1,3)}

{(1,8),(3,6),(5,2)}

{(4,8), (6,6),(8,3)} {(1,5)}

{(5,8),(7,6),(9,5)}
{(4,4)}

{(9,8),(11,6),(13,5)}

1. The co-ordinates are determined during a top down traversal
of the parse tree.

2. The top/root node is assigned (x,y) = (0,0)

3. For a parent H node:
1. Right child’s coordinates = parent H node’s coordinates.
2. Left child: x- coordinate = parent’s X coordinate.

y- coordinate = parent’s Y coordinate+ right child’s height

4. For a parent V node:
1. Left child’s coordinates = parent V node’s coordinates.
2. Right child: y- coordinate = parent’s Y coordinate.

x- coordinate = parent’s X coordinate+ left child’s width

1. Floor plan before and after application of Stockmeyer
Algorithm is generated by writing a MATLAB script file.

2. The output from C++ program was stored in a .txt file in a
predetermined format as follows.

0 0 3 3 2 0
3 0 3 1 0 1
3 1 5 1 1 0
8 0 1 5 3 0
9 0 4 4 4 0

…. …. ….
…. …. ….

X
co-ordinate

Y
co-ordinate Width Height

Module
No.

1= Rotated
0=Not rotated

RESULTS

AND

FLOORPLANS

Input
filename

Original
Area

New
Area

%
improvement
in area

No. of
modules
Rotated

Modules rotated

5_block.ple 65 65 0 % 1 0

10_block.ple 147 95 35.3741% 4 1,3,5,7

30_block.ple 1075 748 30.4186% 9 2,15,16,18,22,23,24,27,28

100_block.ple 7119 4264 40.1039% 38 1,2,3,5,7,8,10,11,16,18,28,23,2
6,32,33,41,42,49,50,54,55,62,6
3,64,66,68,74,75,76,77,78,80,8
1,82,87,90,91,96

150_block.ple 14104 8316 41.0380% 56 3,7,8,10,18,20,23,25,31,32,34,
35,39,44,45,46,47,58,63,64,65,
66,70,71,72,73,74,78,79,82,83,
85,86,88,91,97,98,99,102,105,
113,114,118,119,121,124,134,
135,137,139,141,142,143,144,
146,147

1. The runtime measurements were made on an Intel Core i-5
laptop with 8GB of RAM.

2. In order to have a reliable reading, an average of 10 values was
taken for each floorplan.

Input Filename Runtime in msec

5_block.ple 0.568 ms

10_block.ple 0.7262ms

30_block.ple 1.1202ms

100_block.ple 1.78ms

150_block.ple 2.6928ms

A
R

EA
 B

EF
O

R
E

=
65

A
R

EA
 A

FT
ER

 =
 6

5 NO IMPROVEMENT!! (5_block.ple)

Example: 10_block.ple

Modules 1 and 5 that
lie on the vertical
critical path have
rotated.

Module 7 that lies on
the horizontal critical
path has rotated

30_block.ple

100_block.ple

150_block.ple

1. Stockmeyer Algorithm provides an optimum Solution if it
exists.

2. It provides area improvement if the modules that lie on the
critical path rotate.

3. The algorithm may provide improvement when combined
with other heuristic floorplanners (Simulated Annealing on the
Polish Expression)

1. Larry Stockmeyer, “Optimal orientation of cells in slicing
floorplan designs”.

2. Lim, Sung Kyu, “ Practical Problems in VLSI Physical Design
Automation”

3. Class notes for ECE 6133 Spring 2013, Professor Lim, Sung
Kyu.

4. Sample Project Slides and Reports,
http://users.ece.gatech.edu/limsk/course/ece6133/

