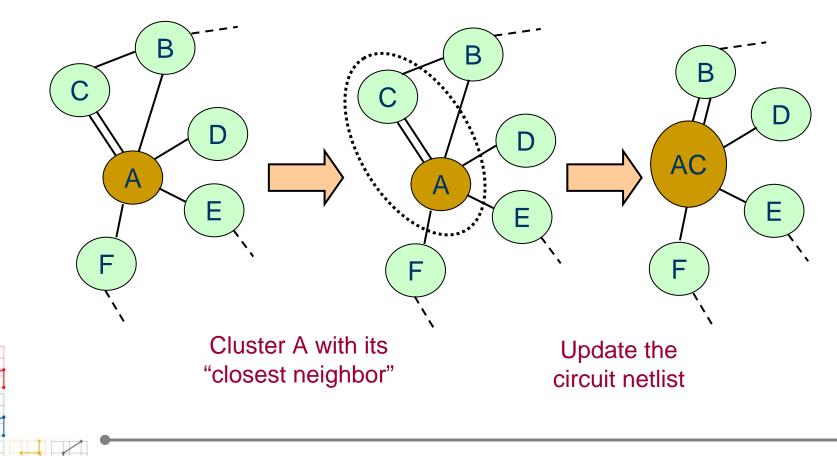
Clustering

ECE6133 Physical Design Automation of VLSI Systems

Prof. Sung Kyu Lim School of Electrical and Computer Engineering Georgia Institute of Technology

Circuit Clustering

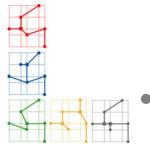
- Grouping cells to form bigger cells
 - Why do we do this?



Practical Problems in VLSI Physical Design

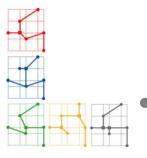
Circuit Clustering

- Motivation
 - Reduce the size of flat netlists
 - Identify natural circuit hierarchy
- Objectives
 - Maximize the connectivity of each cluster
 - Minimize the size, delay, and density of clustered circuits



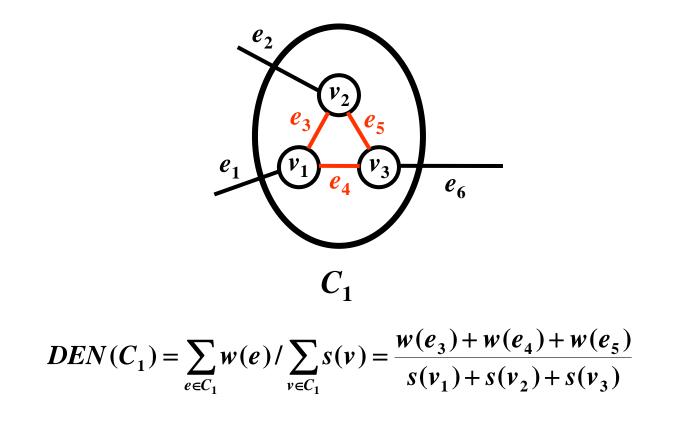
Clustering vs Partitioning

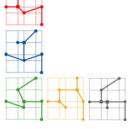
- Differences and similarities
 - Divide cells into groups under area constraint *A*
 - Clustering if A is small; partitioning otherwise
 - Clustering = pre-process of partitioning
- Clustering Metrics
 - Absorption, Density, Rent Parameter, Ratio Cut, Closeness, Connectivity, etc....
- Partitioning Metrics
 - Cutsize and delay



Density Metric

- Desire high "density" in each cluster
 - Applied to a single cluster

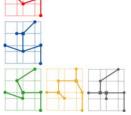




Practical Problems in VLSI Physical Design

Previous Works

- Cutsize-oriented
 - (K, I)-connectivity algorithms [Garber-Promel-Steger 1990]
 - Random-walk based algorithm [Cong et al 1991; Hagen-Kahng 1992]
 - Multicommodity-Flow based algorithm [Yeh-Cheng-Lin 1992]
 - Clique based algorithm [Bui 1989; Cong-Smith 1993]
 - Multi-level clustering [Karypis-Kumar, DAC97; Cong-Lim, ASPDAC'00]
- Delay-oriented
 - For combinational circuits: [Lawler-Levitt-Turner 1969; Murgai-Brayton-Sanjiovanni 1991; Rajaraman-Wong 1995; Cong-Ding 1992]
 - For sequential circuits: [Pan et al, TCAD'99; Cong et al, DAC'99]
 - Signal flow based clustering [Cong-Ding, DAC'93; Cong et al ICCAD'97]



Lawler's Labeling Algorithm

- Assumption:
 - Cluster size \leq K; intra-cluster delay = 0; inter-cluster delay = 1

p-1

Хр

p-1

p-1

- Objective: Find a clustering of minimum delay
- Phase 1: Label all nodes in topological order
 - For each PI node v, L(v)=0;
 - For each non-PI node *v*
 - p = maximum label of predecessors of v
 - Xp = set of predecessors of v with label p
 - if |Xp| < K then L(v) = p; else L(v) = p+1
- Phase 2: Form clusters
 - Start from PO to generate necessary clusters
 - Nodes with the same label form a cluster

Rajaraman-Wong Algorithm

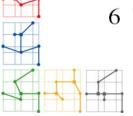
- First optimal algorithm that solves delay-oriented clustering problem under general delay model
- Given
 - DAG, cluster size limit
- Find
 - Optimal clustering that minimizes maximum PI-PO path delay
- Delay model
 - Node delay = d, intra-cluster delay = 0; inter-cluster delay = D
 - Better than "unit delay model" used in Lawler
- Node duplication is allowed

Rajaraman-Wong Algorithm

- Initialization phase
 - Compute $n \times n$ matrix $\Delta(x, v)$: all-pair max-delay value from output of x to output of v, using node delay only
 - Set label(PI) = delay(PI), label(non-PI) = 0
- Labeling Phase
 - Compute label based on topological order of the nodes
 - Label denotes max delay from any PI to the node
 - Clustering info is also computed during labeling
- Clustering Phase
 - Actual grouping and duplication occur
 - Done based on reserve topological order

Labeling for Node v

- 1 We compute the sub-graph rooted at v, denoted G_v , that includes all the predecessors of v.
- 2 We compute $l_v(x)$ for each node $x \in G_v \setminus \{v\}$, where $l_v(x) = l(x) + \Delta(x, v)$. l(x) denotes the current label for x, and $\Delta(x, v)$ is an entry of the Δ matrix mentioned above.
- 3 We sort all nodes in $G_v \setminus \{v\}$ in decreasing order of their l_v -values and put them into a set S.
- 4 We remove a node from S one-by-one in the sorted order and add it to the cluster for v, denoted cluster(v), until the size constraint is violate.
- 5 We compute two values l_1 and l_2 . If cluster(v) contains any PI nodes, the maximum l_v value among these PI nodes becomes l_1 . If S is not empty after filling up cluster(v), the maximum $l_v + D$ among the nodes remaining in S becomes l_2 , where D is the inter-cluster delay.
- 6 The new label for v is the maximum between l_1 and l_2 .



What is going on?

v). By the definition of ℓ_v , $\ell_v(u)$ is a lower bound on the delay along any path from a primary input to v that passes through u. The greater the value of $\ell_v(u)$, the more the need to include u in cluster(v). Hence, we try to cluster v with as many high ℓ_v -valued nodes as the capacity constraint permits. After building cluster(v), v is labeled by considering all possible paths from an input to the output of v. All of the paths can be divided into two categories:

1) Paths that lie entirely in cluster(v). Such paths start from a primary input that is in cluster(v), and never exit the cluster. The maximum delay along any such path is

$$\ell_1(v) = \max \{\ell_v(u) \mid u \in cluster(v) \cap \mathcal{PI}\}.$$
 (1)

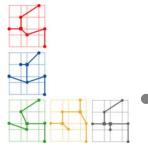
2) Paths that cross the "boundary" of cluster(v). Among these paths, the maximum delay is

$$\ell_2(v) = \max \left\{ \ell_v(u) + D \,|\, u \in G_v \setminus cluster(v) \right\}.$$
 (2)

Practical Problems in VLSI Physical Design

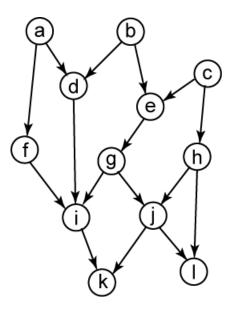
Clustering Phase

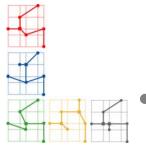
- 1 We first put all PO nodes in a set L. We then remove a node from L and form its cluster.
- 2 Given a node v, we form a cluster by grouping all nodes in cluster(v), which was computed during the labeling phase.
- 3 We then compute input(v), the set of input nodes of cluster(v).
- 4 We remove a node x from input(v) one-by-one and add it to L if we have not formed the cluster for x yet.
- 5 We repeat the entire process until L becomes empty.



Rajaraman-Wong Algorithm

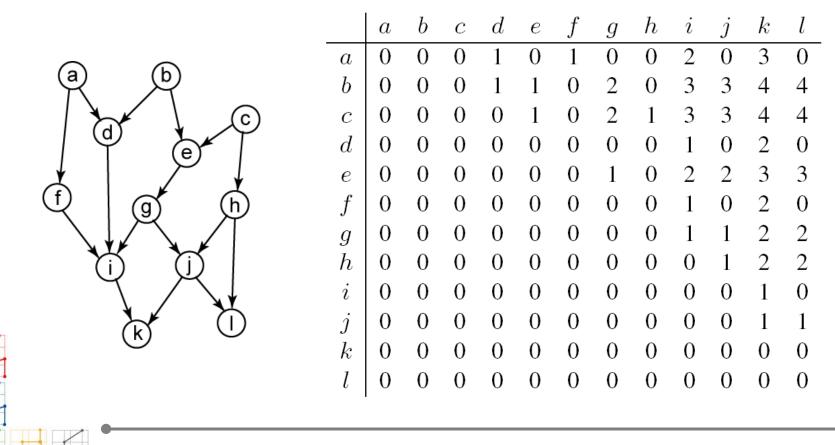
- Perform RW clustering on the following di-graph.
 - Inter-cluster delay = 3, node delay = 1
 - Size limit = 4
 - Topological order T = [d, e, f, g, h, i, j, k, l] (not unique)





Max Delay Matrix

- All-pair delay matrix $\Delta(x, y)$
 - Max delay from output of the PIs to output of destination



Label and Clustering Computation

• Compute *l*(*d*) and *cluster*(*d*)

First, $G_d = \{a, b, d\}$. By definition l(a) = l(b) = 1. Thus,

$$l_d(a) = l(a) + \Delta(a, d) = 1 + 1 = 2$$

$$l_d(b) = l(b) + \Delta(b, d) = 1 + 1 = 2$$

Then we have $S = \{a, b\}$ (recall that S contains $G_d \setminus \{d\}$ with their l_d values sorted in a decreasing order). Since both a and b can be clustered together with d while not violating the size constraint of 4, we form

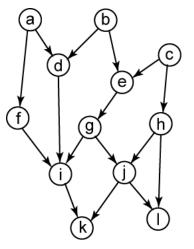
$$cluster(d) = \{a, b, d\}$$

Since both a and b are PI nodes, we see that

$$l_1 = \max\{l_d(a), l_d(b)\} = 2$$

Since S is empty after clustering, l_2 remains zero. Thus,

$$l(d) = \max\{l_1, l_2\} = 2$$



Label Computation

■ Compute *l*(*i*) and *cluster*(*i*)

node i: $G_i = \{a, b, c, d, e, f, g, i\}$ (see Figure 1.3). Thus,

$$\begin{split} l_i(a) &= l(a) + \Delta(a, i) = 1 + 2 = 3\\ l_i(b) &= l(b) + \Delta(b, i) = 1 + 3 = 4\\ l_i(c) &= l(c) + \Delta(c, i) = 1 + 3 = 4\\ l_i(d) &= l(d) + \Delta(d, i) = 2 + 1 = 3\\ l_i(e) &= l(e) + \Delta(e, i) = 2 + 2 = 4\\ l_i(f) &= l(f) + \Delta(f, i) = 2 + 1 = 3\\ l_i(g) &= l(g) + \Delta(g, i) = 3 + 1 = 4 \end{split}$$

f(h) = 4

 $\overline{}$

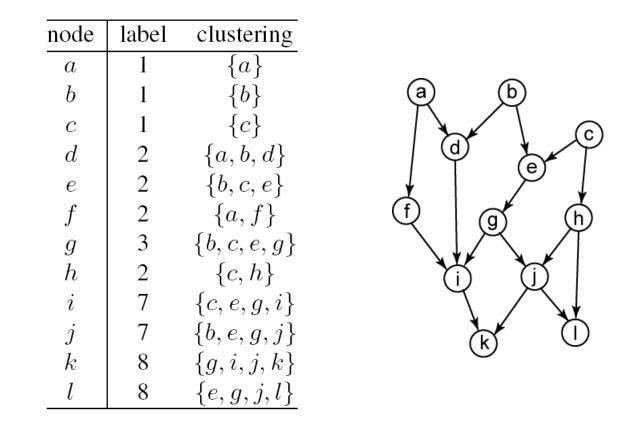
 $S = \{g, e, c, b, a, d, f\}$, and we form $cluster(i) = \{i, g, e, c\}$.¹ Note that c is PI, so $l_1 = l_i(c) = 4$. Since $S = \{b, a, d, f\} \neq \emptyset$ after clustering, we have $l_2 = l_i(m(S)) + D = l_i(b) + D = 4 + 3 = 7$ (recall that m(S) is the node in S with the maximum value of l_i value). Thus, $l(i) = \max\{l_1, l_2\} = 7$.

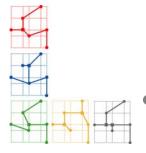
Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (4/8)

Labeling Summary

Labeling phase generates the following information.

Max label = max delay= 8

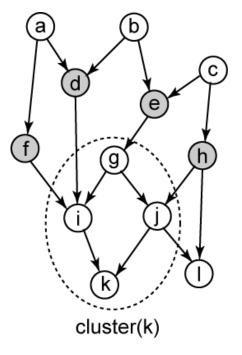


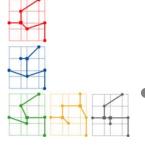


Clustering Phase

• Initially $L = POs = \{k, l\}$.

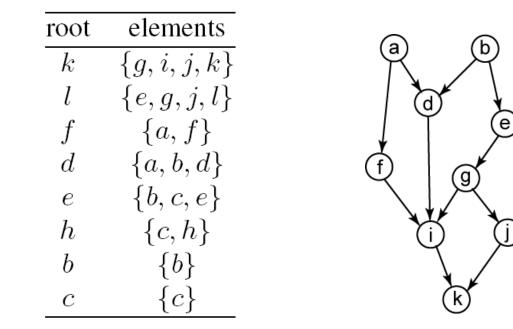
remove k from L, and add cl(k) to $S = \{cl(k)\}$. According to Table 1.1, we see that $cl(k) = \{g, i, j, k\}$. Then, $I[cl(k)] = \{f, d, e, h\}$ as illustrated in Figure 1.4. Since S does not contain clusters rooted at f, d, e, and h, we have $L = \{l\} \cup \{f, d, e, h\} = \{l, f, d, e, h\}$.

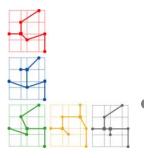




Clustering Summary

- Clustering phase generates 8 clusters.
 - 8 nodes are duplicated

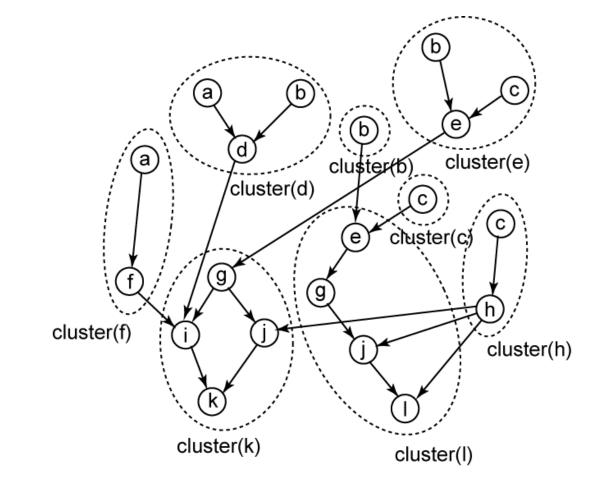


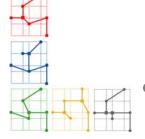


С

Final Clustering Result

• Path c-e-g-i-k has delay 8 (= max label)

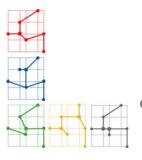




Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (8/8)

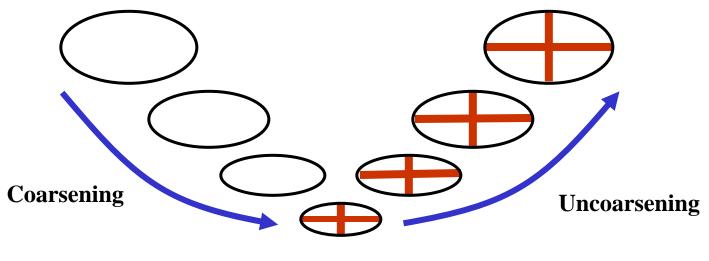
Probing Further

- Rajaraman-Wong Algorithm
 - [Yang and Wong, 1994]: finds set of nodes to be replicated so that cutsize is minimized
 - [Vaishnav and Pedram, 1995]: minimizes power under delayoptimal clustering properties
 - [Yang and Wong, 1997]: performed delay-optimal clustering under area and/or pin constraint
 - Pan et at, 1998]: performed delay-optimal clustering with retiming for sequential circuits
 - [Cong and Romesis, 2001]: developed heuristic for two-level delay-oriented clustering problem



Multi-level Paradigm

- Combination of Bottom-up and Top-down Methods
 - From coarse-grain into finer-grain optimization
 - Successfully used in partial differential equations, image processing, combinatorial optimization, etc, and circuit partitioning.



Initial Partitioning

General Framework

- Step 1: Coarsening
 - Generate hierarchical representation of the netlist
- Step 2: Initial Solution Generation
 - Obtain initial solution for the top-level clusters
 - Reduced problem size: converge fast
- Step 3: Uncoarsening and Refinement
 - Project solution to the next lower-level (uncoarsening)
 - Perturb solution to improve quality (refinement)
- Step 4: V-cycle
 - Additional improvement possible from new clustering
 - Iterate Step 1 (with variation) + Step 3 until no further gain

V-cycle Refinement

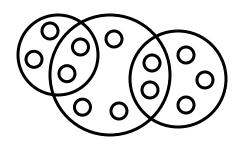
- Motivation
 - Post-refinement scheme for multi-level methods
 - Different clustering can give additional improvement
- Restricted Coarsening
 - Require initial partitioning
 - Do not merge clusters in different partition
 - Maintain cutline: cutsize degradation is not possible
- Two Strategies: V-cycle vs. v-cycle
 - V-cycle: start from the bottom-level
 - v-cycle: start from some middle-level
 - Tradeoff between quality vs. runtime

Application in Partitioning

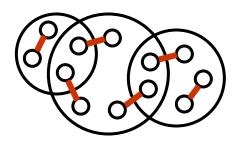
- Multi-level Partitioning
 - Coarsening engine (bottom-up)
 - Unrestricted and restricted coarsening
 - Any bottom-up clustering algorithm can be used
 - Cutsize oriented (MHEC, ESC) vs. delay oriented (PRIME)
 - Initial partitioning engine
 - Move-based methods are commonly used
 - Refinement engine (top-down)
 - Move-based methods are commonly used
 - Cutsize oriented (FM, LR) vs. delay oriented (xLR)
- State-of-the-art Algorithms
 - hMetis [DAC97] and hMetis-Kway [DAC99]

hMetis Algorithm

- Best Bipartitioning Algorithm [DAC97]
 - Contribution: 3 new coarsening schemes for hypergraphs



Original Graph



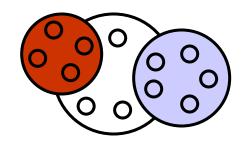
Edge Coarsening

Edge Coarsening = heavy-edge maximal matching

- 1. Visit vertices randomly
- **2.** Compute edge-weights (=1/(|n|-1)) for all unmatched neighbors
- 3. Match with an unmatched neighbor via max edge-weight

hMetis Algorithm (cont)

- Best Bipartitioning Algorithm [DAC97]
 - Contribution: 3 new coarsening schemes for hypergraphs



Hyperedge Coarsening

Modified Hyperedge Coarsening

Hyperedge Coarsening = independent hyperedge merging

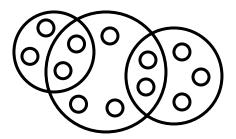
- 1. Sort hyperedges in non-decreasing order of their size
- 2. Pick an hyperedge with no merged vertices and merge

Modified Hyperedge Coarsening = Hyeredge Coarsening + post process

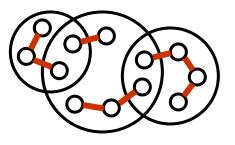
- **1. Perform Hyperedge Coarsening**
- 2. Pick a non-merged hyperedge and merge its non-merged vertices

hMetis-Kway Algorithm

- Multiway Partitioning Algorithm [DAC99]
 - New coarsening: First Choice (variant of Edge Coarsening)
 - Can match with either unmatched or matched neighbors



Original Graph

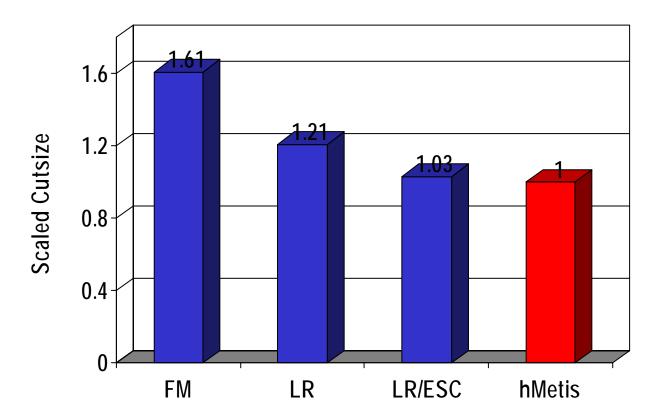


First Choice

- Greedy refinement
 - On-the-fly gain computation
 - No bucket: not necessarily the max-gain cell moves
 - Save time and space requirements

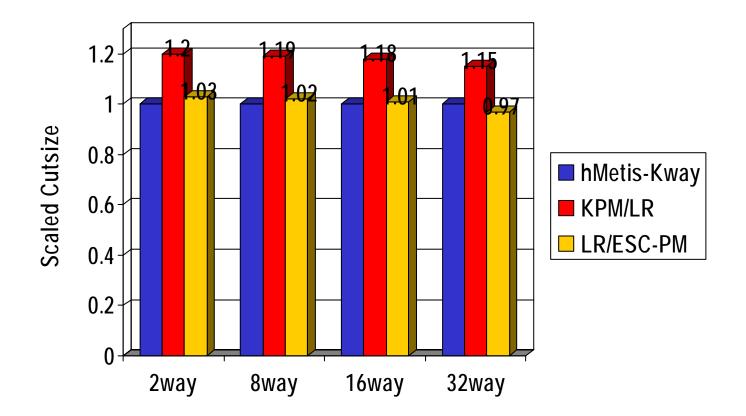
hMetis Results

• Bipartitioning on ISPD98 Benchmark Suite



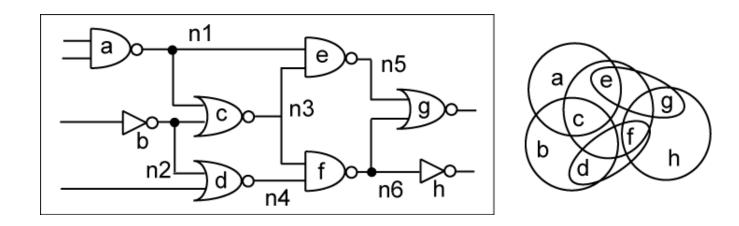
hMetis-Kway Results

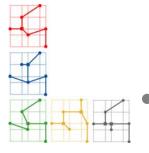
• Multiway Partitioning on ISPD98 Benchmark Suite



Multi-level Coarsening Algorithm

- Perform Edge Coarsening (EC)
 - Visit nodes and break ties in alphabetical order
 - Explicit clique-based graph model is not necessary



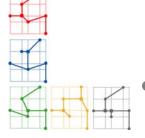


Multi-level Coarsening (1/11)

Edge Coarsening

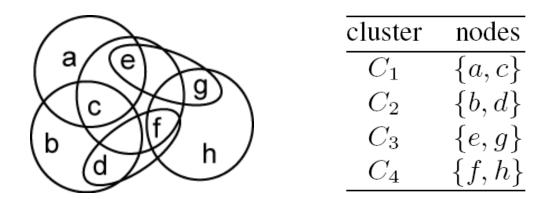
- (a) visit *a*: Note that *a* is contained in n_1 only. So, $neighbor(a) = \{c, e\}$. The weight of $(a, c) = 1/(|n_1| - 1) = 0.5$. The weight of $(a, e) = 1/(|n_1| - 1) = 0.5$. Thus, we break the tie based on alphabetical order. So, *a* merges with *c*. We form $C_1 = \{a, c\}$ and mark *a* and *c*.
- (b) visit b: Note that b is contained in n_2 only. So, $neighbor(b) = \{c, d\}$. Since c is already marked, b merges with d. We form $C_2 = \{b, d\}$ and mark b and d.
- (c) since c and d are marked, we skip them.





Edge Coarsening (cont)

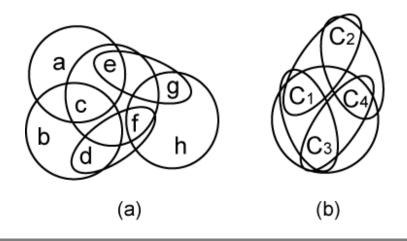
- (d) visit e: the unmarked neighbors of e are g and f. We see that w(e,g) = 1 and w(e, f) = 0.5. So, e merges with g. We form $C_3 = \{e, g\}$ and mark e and g.
- (e) visit f: Node f is contained in n_3 , n_4 , and n_6 . So, $neighbor(f) = \{c, d, e, g, h\}$. But, the only unmarked neighbor is h. So, f merges with h. We form $C_4 = \{f, h\}$ and mark f and h.
- (f) since g and h are marked, we skip them.

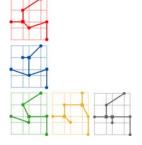


Obtaining Clustered-level Netlist

of nodes/hyperedges reduced: 4 nodes, 5 hyperedges

net	gate-level	cluster-level	final	cluster	nodes
$\overline{n_1}$	$\{a, c, e\}$	$\{C_1, C_1, C_3\}$	$\{C_1, C_3\}$	C_1	$\{a, c\}$
n_2	$\{b,c,d\}$	$\{C_2, C_1, C_2\}$	$\{C_1, C_2\}$	C_2	$\{b, d\}$
n_3	$\{c, e, f\}$	$\{C_1, C_3, C_4\}$	$\{C_1, C_3, C_4\}$	C_3	$\{e,g\}$
n_4	$\{d, f\}$	$\{C_2, C_4\}$	$\{C_2, C_4\}$	C_4	$\{f,h\}$
n_5	$\{e,g\}$	$\{C_3, C_3\}$	Ø		
n_6	$\{f,g,h\}$	$\{C_4, C_3, C_4\}$	$\{C_3, C_4\}$		



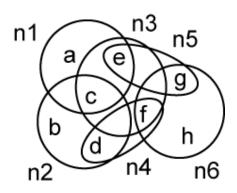


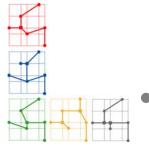
Practical Problems in VLSI Physical Design

Multi-level Coarsening (4/11)

Hyperedge Coarsening

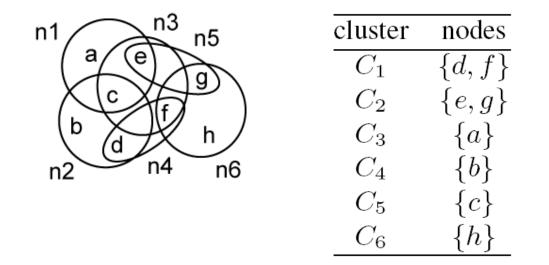
- Initial setup
 - Sort hyper-edges in increasing size: n_4 , n_5 , n_1 , n_2 , n_3 , n_6
 - Unmark all nodes

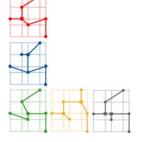




Hyperedge Coarsening

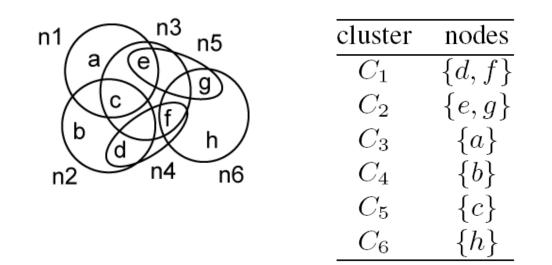
- (a) visit $n_4 = \{d, f\}$: since d and f are not marked yet, we form $C_1 = \{d, f\}$ and mark d and f.
- (b) visit $n_5 = \{e, g\}$: since e and g are not marked yet, we form $C_2 = \{e, g\}$ and mark e and g.
- (c) visit $n_1 = \{a, c, e\}$: since e is already marked, we skip n_1 .

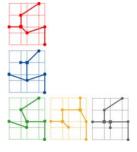




Hyperedge Coarsening

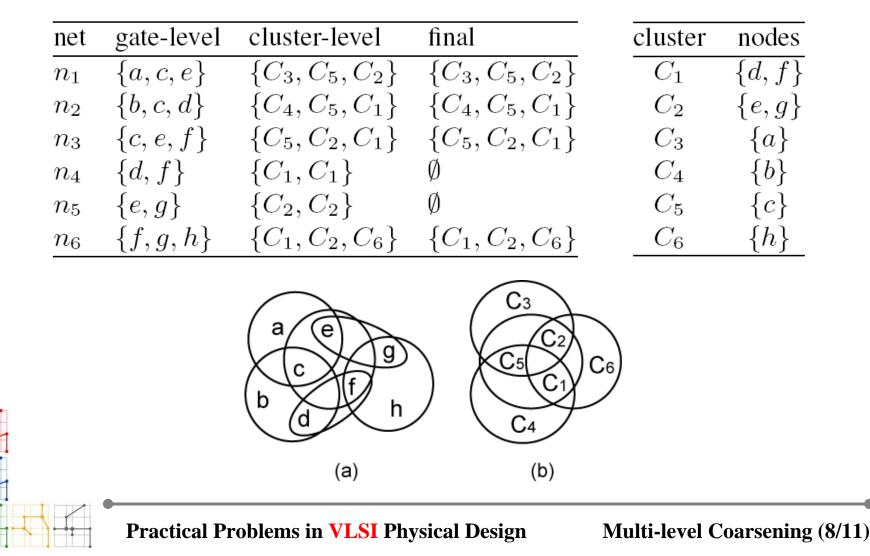
- (d) visit $n_2 = \{b, c, d\}$: since d is already marked, we skip n_2 .
- (e) visit $n_3 = \{c, e, f\}$: since e and f are already marked, we skip n_3 .
- (f) visit $n_6 = \{f, g, h\}$: since f and g are already marked, we skip n_6 .





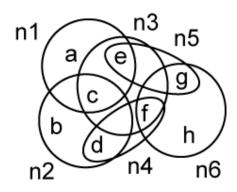
Obtaining Clustered-level Netlist

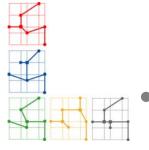
of nodes/hyperedges reduced: 6 nodes, 4 hyperedges



Modified Hyperedge Coarsening

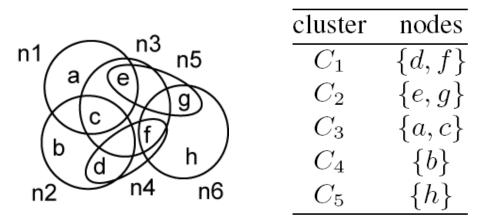
- Revisit skipped nets during hyperedge coarsening
 - We skipped n_1, n_2, n_3, n_6
 - Coarsen un-coarsened nodes in each net

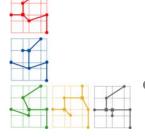




Modified Hyperedge Coarsening

- (a) visit $n_1 = \{a, c, e\}$: since e is already marked during HEC, we group the remaining unmarked nodes a and c. We form $C_3 = \{a, c\}$ and mark a and c.
- (b) visit $n_2 = \{b, c, d\}$: since d is marked during HEC and c during MHEC as above, we form $C_4 = \{b\}$ and mark b.
- (c) visit $n_3 = \{c, e, f\}$: all nodes are already marked, so we skip n_3 .
- (d) visit $n_6 = \{f, g, h\}$: since f and g are already marked, we form $C_5 = \{h\}$ and mark h.





Practical Problems in VLSI Physical Design

Obtaining Clustered-level Netlist

of nodes/hyperedges reduced: 5 nodes, 4 hyperedges

