
Clustering
ECE6133

Physical Design Automation of VLSI Systems

Prof. Sung Kyu Lim
School of Electrical and Computer Engineering

Georgia Institute of Technology

Practical Problems in VLSI Physical Design

Circuit Clustering
Grouping cells to form bigger cells

Why do we do this?

A
D

E

F

C
B

Cluster A with its
“closest neighbor”

A
D

E

F

C
B

AC

D

E

F

B

Update the
circuit netlist

Practical Problems in VLSI Physical Design

Circuit Clustering
Motivation

Reduce the size of flat netlists
Identify natural circuit hierarchy

Objectives
Maximize the connectivity of each cluster
Minimize the size, delay, and density of clustered circuits

Practical Problems in VLSI Physical Design

Clustering vs Partitioning
Differences and similarities

Divide cells into groups under area constraint A
Clustering if A is small; partitioning otherwise
Clustering = pre-process of partitioning

Clustering Metrics
Absorption, Density, Rent Parameter, Ratio Cut, Closeness,
Connectivity, etc….

Partitioning Metrics
Cutsize and delay

Practical Problems in VLSI Physical Design

Density Metric
Desire high “density” in each cluster

Applied to a single cluster

C1

e6

e3 e5

e4
e1 v1

v2

v3

e2

)()()(
)()()()(/)()(

321

543
1

1 1
vsvsvs
ewewewvsewCDEN

Ce Cv ++
++

== ∑ ∑
∈ ∈

Practical Problems in VLSI Physical Design

Previous Works
Cutsize-oriented

(K, I)-connectivity algorithms [Garber-Promel-Steger 1990]
Random-walk based algorithm [Cong et al 1991; Hagen-Kahng 1992]
Multicommodity-Flow based algorithm [Yeh-Cheng-Lin 1992]
Clique based algorithm [Bui 1989; Cong-Smith 1993]
Multi-level clustering [Karypis-Kumar, DAC97; Cong-Lim,
ASPDAC’00]

Delay-oriented
For combinational circuits: [Lawler-Levitt-Turner 1969; Murgai-
Brayton-Sanjiovanni 1991; Rajaraman-Wong 1995; Cong-Ding 1992]
For sequential circuits: [Pan et al, TCAD’99; Cong et al, DAC’99]
Signal flow based clustering [Cong-Ding, DAC’93; Cong et al
ICCAD’97]

Practical Problems in VLSI Physical Design

Lawler’s Labeling Algorithm
Assumption:

Cluster size ≤ K; intra-cluster delay = 0; inter-cluster delay = 1

Objective: Find a clustering of minimum delay
Phase 1: Label all nodes in topological order

For each PI node v, L(v)= 0;
For each non-PI node v

p = maximum label of predecessors of v
Xp = set of predecessors of v with label p
if |Xp| < K then L(v) = p; else L(v) = p+1

Phase 2: Form clusters
Start from PO to generate necessary clusters
Nodes with the same label form a cluster

p-1

Xp
p-1

v

p-1

p

p

Practical Problems in VLSI Physical Design

Rajaraman-Wong Algorithm
First optimal algorithm that solves delay-oriented
clustering problem under general delay model
Given

DAG, cluster size limit

Find
Optimal clustering that minimizes maximum PI-PO path delay

Delay model
Node delay = d, intra-cluster delay = 0; inter-cluster delay = D
Better than “unit delay model” used in Lawler

Node duplication is allowed

Practical Problems in VLSI Physical Design

Rajaraman-Wong Algorithm
Initialization phase

Compute n × n matrix Δ(x,v): all-pair max-delay value from
output of x to output of v, using node delay only
Set label(PI) = delay(PI), label(non-PI) = 0

Labeling Phase
Compute label based on topological order of the nodes
Label denotes max delay from any PI to the node
Clustering info is also computed during labeling

Clustering Phase
Actual grouping and duplication occur
Done based on reserve topological order

Practical Problems in VLSI Physical Design

Labeling for Node v

Practical Problems in VLSI Physical Design

What is going on?

Practical Problems in VLSI Physical Design

Clustering Phase

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (1/8)

Perform RW clustering on the following di-graph.
Inter-cluster delay = 3, node delay = 1
Size limit = 4
Topological order T = [d,e,f,g,h,i,j,k,l] (not unique)

Rajaraman-Wong Algorithm

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (2/8)

Max Delay Matrix
All-pair delay matrix Δ(x,y)

Max delay from output of the PIs to output of destination

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (3/8)

Label and Clustering Computation
Compute l(d) and cluster(d)

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (4/8)

Label Computation
Compute l(i) and cluster(i)

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (5/8)

Labeling Summary
Labeling phase generates the following information.

Max label = max delay= 8

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (6/8)

Clustering Phase
Initially L = POs = {k,l}.

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (7/8)

Clustering Summary
Clustering phase generates 8 clusters.

8 nodes are duplicated

Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (8/8)

Final Clustering Result
Path c-e-g-i-k has delay 8 (= max label)

Practical Problems in VLSI Physical Design

Probing Further
Rajaraman-Wong Algorithm

[Yang and Wong, 1994]: finds set of nodes to be replicated so
that cutsize is minimized
[Vaishnav and Pedram, 1995]: minimizes power under delay-
optimal clustering properties
[Yang and Wong, 1997]: performed delay-optimal clustering
under area and/or pin constraint
[Pan et at, 1998]: performed delay-optimal clustering with
retiming for sequential circuits
[Cong and Romesis, 2001]: developed heuristic for two-level
delay-oriented clustering problem

Multi-level Paradigm
• Combination of Bottom-up and Top-down Methods

– From coarse-grain into finer-grain optimization
– Successfully used in partial differential equations, image

processing, combinatorial optimization, etc, and circuit
partitioning.

Coarsening Uncoarsening

Initial Partitioning

General Framework
• Step 1: Coarsening

– Generate hierarchical representation of the netlist

• Step 2: Initial Solution Generation
– Obtain initial solution for the top-level clusters
– Reduced problem size: converge fast

• Step 3: Uncoarsening and Refinement
– Project solution to the next lower-level (uncoarsening)
– Perturb solution to improve quality (refinement)

• Step 4: V-cycle
– Additional improvement possible from new clustering
– Iterate Step 1 (with variation) + Step 3 until no further gain

V-cycle Refinement
• Motivation

– Post-refinement scheme for multi-level methods
– Different clustering can give additional improvement

• Restricted Coarsening
– Require initial partitioning
– Do not merge clusters in different partition
– Maintain cutline: cutsize degradation is not possible

• Two Strategies: V-cycle vs. v-cycle
– V-cycle: start from the bottom-level
– v-cycle: start from some middle-level
– Tradeoff between quality vs. runtime

Application in Partitioning
• Multi-level Partitioning

– Coarsening engine (bottom-up)
• Unrestricted and restricted coarsening
• Any bottom-up clustering algorithm can be used
• Cutsize oriented (MHEC, ESC) vs. delay oriented (PRIME)

– Initial partitioning engine
• Move-based methods are commonly used

– Refinement engine (top-down)
• Move-based methods are commonly used
• Cutsize oriented (FM, LR) vs. delay oriented (xLR)

• State-of-the-art Algorithms
– hMetis [DAC97] and hMetis-Kway [DAC99]

hMetis Algorithm
• Best Bipartitioning Algorithm [DAC97]

– Contribution: 3 new coarsening schemes for hypergraphs

Original Graph Edge Coarsening

Edge Coarsening = heavy-edge maximal matching
1. Visit vertices randomly
2. Compute edge-weights (=1/(|n|-1)) for all unmatched neighbors
3. Match with an unmatched neighbor via max edge-weight

hMetis Algorithm (cont)

• Best Bipartitioning Algorithm [DAC97]
– Contribution: 3 new coarsening schemes for hypergraphs

Hyperedge Coarsening Modified Hyperedge Coarsening

Hyperedge Coarsening = independent hyperedge merging
1. Sort hyperedges in non-decreasing order of their size
2. Pick an hyperedge with no merged vertices and merge

Modified Hyperedge Coarsening = Hyeredge Coarsening + post process
1. Perform Hyperedge Coarsening
2. Pick a non-merged hyperedge and merge its non-merged vertices

hMetis-Kway Algorithm
• Multiway Partitioning Algorithm [DAC99]

– New coarsening: First Choice (variant of Edge Coarsening)
• Can match with either unmatched or matched neighbors

– Greedy refinement
• On-the-fly gain computation
• No bucket: not necessarily the max-gain cell moves
• Save time and space requirements

Original Graph First Choice

hMetis Results
• Bipartitioning on ISPD98 Benchmark Suite

1.61

1.21
1.03 1

0

0.4

0.8

1.2

1.6

Sc
al

ed
 C

ut
siz

e

FM LR LR/ESC hMetis

hMetis-Kway Results
• Multiway Partitioning on ISPD98 Benchmark Suite

1.2
1.03

1.19
1.02

1.18
1.01

1.15

0.97

0

0.2

0.4

0.6

0.8

1

1.2

Sc
ale

d
Cu

ts
ize

2way 8way 16way 32way

hMetis-Kway
KPM/LR
LR/ESC-PM

Practical Problems in VLSI Physical Design Multi-level Coarsening (1/11)

Perform Edge Coarsening (EC)
Visit nodes and break ties in alphabetical order
Explicit clique-based graph model is not necessary

Multi-level Coarsening Algorithm

Practical Problems in VLSI Physical Design Multi-level Coarsening (2/11)

Edge Coarsening

Practical Problems in VLSI Physical Design Multi-level Coarsening (3/11)

Edge Coarsening (cont)

Practical Problems in VLSI Physical Design Multi-level Coarsening (4/11)

Obtaining Clustered-level Netlist
of nodes/hyperedges reduced: 4 nodes, 5 hyperedges

Practical Problems in VLSI Physical Design Multi-level Coarsening (5/11)

Hyperedge Coarsening
Initial setup

Sort hyper-edges in increasing size: n4, n5, n1, n2, n3, n6

Unmark all nodes

Practical Problems in VLSI Physical Design Multi-level Coarsening (6/11)

Hyperedge Coarsening

Practical Problems in VLSI Physical Design Multi-level Coarsening (7/11)

Hyperedge Coarsening

Practical Problems in VLSI Physical Design Multi-level Coarsening (8/11)

Obtaining Clustered-level Netlist
of nodes/hyperedges reduced: 6 nodes, 4 hyperedges

Practical Problems in VLSI Physical Design Multi-level Coarsening (9/11)

Modified Hyperedge Coarsening
Revisit skipped nets during hyperedge coarsening

We skipped n1, n2, n3, n6

Coarsen un-coarsened nodes in each net

Practical Problems in VLSI Physical Design Multi-level Coarsening (10/11)

Modified Hyperedge Coarsening

Practical Problems in VLSI Physical Design Multi-level Coarsening (11/11)

Obtaining Clustered-level Netlist
of nodes/hyperedges reduced: 5 nodes, 4 hyperedges

