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Practical Problems in VLSI Physical Design

Circuit Clustering
Grouping cells to form bigger cells

Why do we do this?
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Practical Problems in VLSI Physical Design

Circuit Clustering
Motivation

Reduce the size of flat netlists
Identify natural circuit hierarchy

Objectives
Maximize the connectivity of each cluster
Minimize the size, delay, and density of clustered circuits
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Clustering vs Partitioning
Differences and similarities

Divide cells into groups under area constraint A
Clustering if A is small; partitioning otherwise
Clustering = pre-process of partitioning

Clustering Metrics
Absorption, Density, Rent Parameter, Ratio Cut, Closeness, 
Connectivity, etc….

Partitioning Metrics
Cutsize and delay
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Density Metric
Desire high “density” in each cluster

Applied to a single cluster
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Practical Problems in VLSI Physical Design

Previous Works
Cutsize-oriented

(K, I)-connectivity algorithms [Garber-Promel-Steger 1990]
Random-walk based algorithm [Cong et al 1991; Hagen-Kahng 1992]
Multicommodity-Flow based algorithm [Yeh-Cheng-Lin 1992]
Clique based algorithm [Bui 1989; Cong-Smith 1993] 
Multi-level clustering [Karypis-Kumar, DAC97; Cong-Lim, 
ASPDAC’00]

Delay-oriented
For combinational circuits: [Lawler-Levitt-Turner 1969; Murgai-
Brayton-Sanjiovanni 1991; Rajaraman-Wong 1995; Cong-Ding 1992]
For sequential circuits: [Pan et al, TCAD’99;  Cong et al, DAC’99]
Signal flow based clustering [Cong-Ding, DAC’93; Cong et al 
ICCAD’97]
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Lawler’s Labeling Algorithm
Assumption: 

Cluster size ≤ K; intra-cluster delay = 0; inter-cluster delay = 1

Objective:  Find a clustering of minimum delay
Phase 1: Label all nodes in topological order

For each PI node v, L(v)= 0;
For each non-PI node v

p = maximum label of predecessors of v
Xp = set of predecessors of v with label p
if |Xp| < K then L(v) = p; else L(v) = p+1

Phase 2: Form clusters
Start from PO to generate necessary clusters
Nodes with the same label form a cluster
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Rajaraman-Wong Algorithm
First optimal algorithm that solves delay-oriented 
clustering problem under general delay model
Given

DAG, cluster size limit

Find
Optimal clustering that minimizes maximum PI-PO path delay

Delay model
Node delay = d, intra-cluster delay = 0; inter-cluster delay = D
Better than “unit delay model” used in Lawler

Node duplication is allowed
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Rajaraman-Wong Algorithm
Initialization phase

Compute n × n matrix Δ(x,v): all-pair max-delay value from 
output of x to output of v, using node delay only
Set label(PI) = delay(PI), label(non-PI) = 0

Labeling Phase
Compute label based on topological order of the nodes
Label denotes max delay from any PI to the node
Clustering info is also computed during labeling 

Clustering Phase
Actual grouping and duplication occur
Done based on reserve topological order
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Labeling for Node v
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What is going on?
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Clustering Phase



Practical Problems in VLSI Physical Design Rajaraman-Wong Algorithm (1/8)

Perform RW clustering on the following di-graph.
Inter-cluster delay = 3, node delay = 1
Size limit = 4
Topological order T = [d,e,f,g,h,i,j,k,l] (not unique)

Rajaraman-Wong Algorithm
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Max Delay Matrix
All-pair delay matrix Δ(x,y)

Max delay from output of the PIs to output of destination
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Label and Clustering Computation
Compute l(d) and cluster(d)
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Label Computation
Compute l(i) and cluster(i)
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Labeling Summary
Labeling phase generates the following information.

Max label = max delay= 8
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Clustering Phase
Initially L = POs = {k,l}.
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Clustering Summary
Clustering phase generates 8 clusters.

8 nodes are duplicated
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Final Clustering Result
Path c-e-g-i-k has delay 8 (= max label)
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Probing Further
Rajaraman-Wong Algorithm

[Yang and Wong, 1994]: finds set of nodes to be replicated so 
that cutsize is minimized
[Vaishnav and Pedram, 1995]: minimizes power under delay-
optimal clustering properties
[Yang and Wong, 1997]: performed delay-optimal clustering 
under area and/or pin constraint
[Pan et at, 1998]: performed delay-optimal clustering with 
retiming for sequential circuits
[Cong and Romesis, 2001]: developed heuristic for two-level 
delay-oriented clustering problem



Multi-level Paradigm
• Combination of Bottom-up and Top-down Methods

– From coarse-grain into finer-grain optimization
– Successfully used in partial differential equations, image 

processing, combinatorial optimization, etc, and circuit 
partitioning.

Coarsening Uncoarsening 

Initial Partitioning



General Framework
• Step 1: Coarsening

– Generate hierarchical representation of the netlist

• Step 2: Initial Solution Generation
– Obtain initial solution for the top-level clusters
– Reduced problem size: converge fast

• Step 3: Uncoarsening and Refinement
– Project solution to the next lower-level (uncoarsening)
– Perturb solution to improve quality (refinement)

• Step 4: V-cycle
– Additional improvement possible from new clustering
– Iterate Step 1 (with variation) + Step 3 until no further gain



V-cycle Refinement
• Motivation

– Post-refinement scheme for multi-level methods
– Different clustering can give additional improvement

• Restricted Coarsening
– Require initial partitioning
– Do not merge clusters in different partition
– Maintain cutline: cutsize degradation is not possible

• Two Strategies: V-cycle vs. v-cycle
– V-cycle: start from the bottom-level
– v-cycle: start from some middle-level
– Tradeoff between quality vs. runtime



Application in Partitioning
• Multi-level Partitioning

– Coarsening engine (bottom-up)
• Unrestricted and restricted coarsening
• Any bottom-up clustering algorithm can be used
• Cutsize oriented (MHEC, ESC) vs. delay oriented (PRIME)

– Initial partitioning engine
• Move-based methods are commonly used

– Refinement engine (top-down)
• Move-based methods are commonly used
• Cutsize oriented (FM, LR) vs. delay oriented (xLR)

• State-of-the-art Algorithms
– hMetis [DAC97] and hMetis-Kway [DAC99]



hMetis Algorithm
• Best Bipartitioning Algorithm [DAC97]

– Contribution: 3 new coarsening schemes for hypergraphs

Original Graph Edge Coarsening

Edge Coarsening = heavy-edge maximal matching
1. Visit vertices randomly
2. Compute edge-weights (=1/(|n|-1)) for all unmatched neighbors
3. Match with an unmatched neighbor via max edge-weight 



hMetis Algorithm (cont)

• Best Bipartitioning Algorithm [DAC97]
– Contribution: 3 new coarsening schemes for hypergraphs

Hyperedge Coarsening Modified Hyperedge Coarsening

Hyperedge Coarsening = independent hyperedge merging
1. Sort hyperedges in non-decreasing order of their size
2. Pick an hyperedge with no merged vertices and merge

Modified Hyperedge Coarsening = Hyeredge Coarsening + post process
1. Perform Hyperedge Coarsening
2. Pick a non-merged hyperedge and merge its non-merged vertices



hMetis-Kway Algorithm
• Multiway Partitioning Algorithm [DAC99]

– New coarsening: First Choice (variant of Edge Coarsening)
• Can match with either unmatched or matched neighbors 

– Greedy refinement
• On-the-fly gain computation
• No bucket: not necessarily the max-gain cell moves
• Save time and space requirements

Original Graph First Choice



hMetis Results
• Bipartitioning on ISPD98 Benchmark Suite
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hMetis-Kway Results
• Multiway Partitioning on ISPD98 Benchmark Suite
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Practical Problems in VLSI Physical Design Multi-level Coarsening (1/11)

Perform Edge Coarsening (EC)
Visit nodes and break ties in alphabetical order
Explicit clique-based graph model is not necessary

Multi-level Coarsening Algorithm
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Edge Coarsening
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Edge Coarsening (cont)
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Obtaining Clustered-level Netlist
# of nodes/hyperedges reduced: 4 nodes, 5 hyperedges
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Hyperedge Coarsening
Initial setup

Sort hyper-edges in increasing size: n4, n5, n1, n2, n3, n6

Unmark all nodes
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Hyperedge Coarsening
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Hyperedge Coarsening
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Obtaining Clustered-level Netlist
# of nodes/hyperedges reduced: 6 nodes, 4 hyperedges
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Modified Hyperedge Coarsening
Revisit skipped nets during hyperedge coarsening

We skipped n1, n2, n3, n6

Coarsen un-coarsened nodes in each net
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Modified Hyperedge Coarsening
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Obtaining Clustered-level Netlist
# of nodes/hyperedges reduced: 5 nodes, 4 hyperedges


