Multi-net Routing

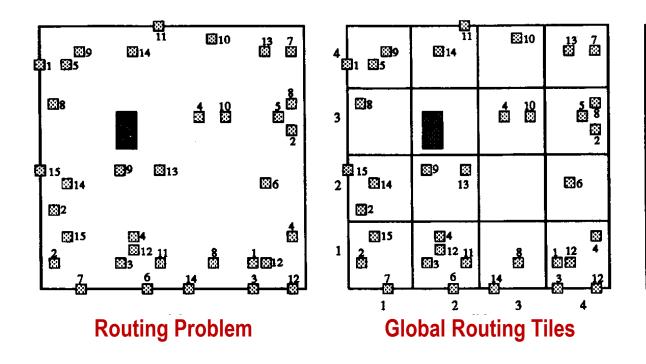
ECE6133

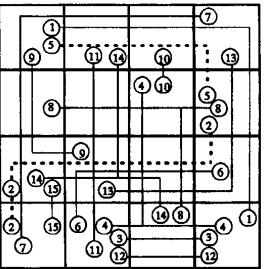
Physical Design Automation of VLSI Systems

Prof. Sung Kyu Lim School of Electrical and Computer Engineering Georgia Institute of Technology

Global Routing

- Global routing is planning
 - Divide the routing into tiles
 - Build Steiner tree for each net
 - Routing is done in terms of tiles

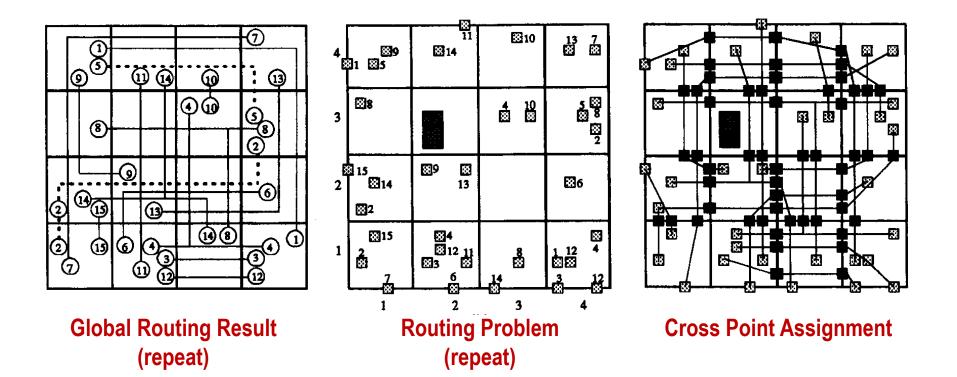




Global Routing Result

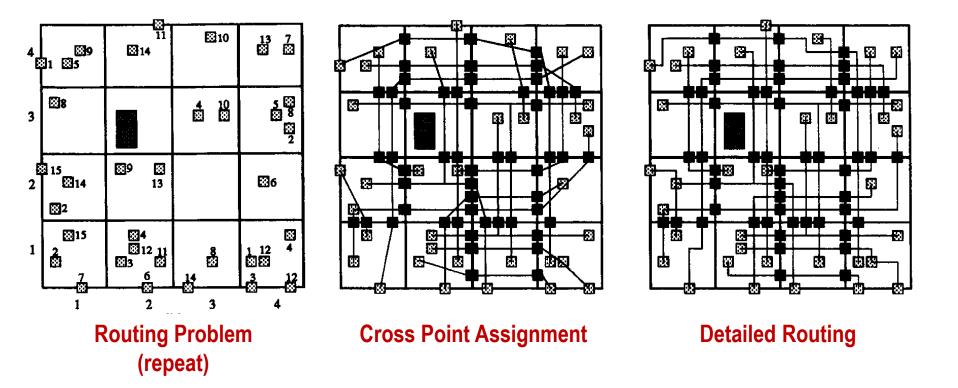
Cross Point Assignment

- Key step before detailed routing
 - CPA decides pin locations along tile boundaries
 - Key objective is routing completion, via usage, and wirelength



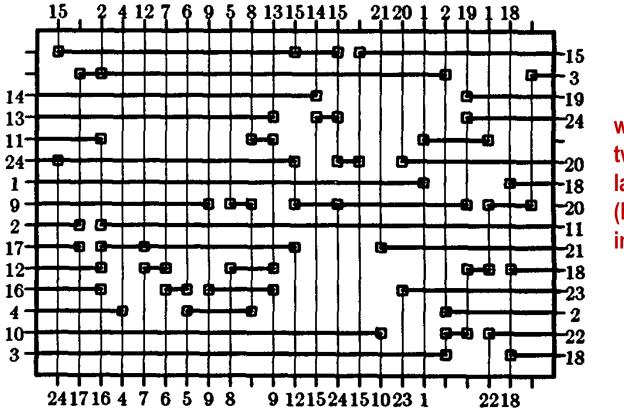
Detailed Routing

- Detailed routing decides exact topology
 - We use CPA results
 - We use the actual routing tracks and vias in each tile



Type 1: Switchbox Routing

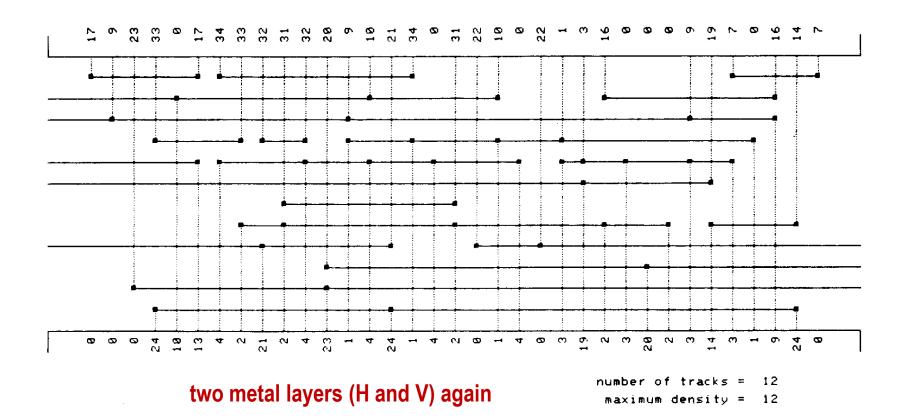
- Key problem for detailed routing
 - CPA gives pin locations on all 4 sides



we assume two metal layers (H and V) in this case

Type 2: Channel Routing

- Key problem for detailed routing
 - CPA gives pin locations on 2 sides



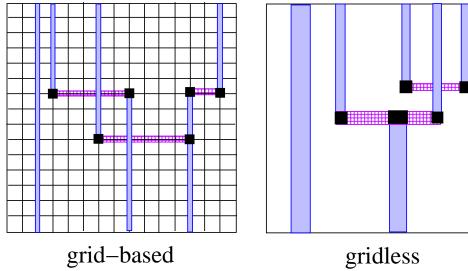
Routing Models

• Grid-based model:

- A grid is super-imposed on the routing region.
- Wires follow paths along the grid lines.

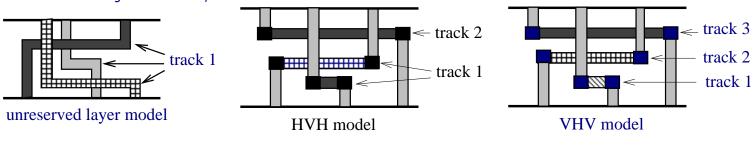
• Gridless model:

- Any model that does not follow this "gridded" approach.



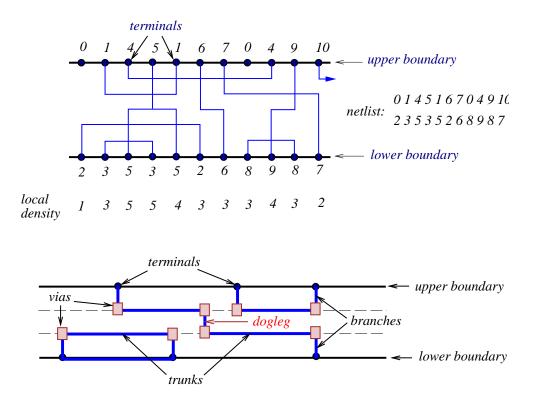
Models for Multi-Layer Routing

- Unreserved layer model: Any net segment is allowed to be placed in any layer.
- **Reserved layer model:** Certain type of segments are restricted to particular layer(s).
 - Two-layer: HV (horizontal-Vertical), VH
 - Three-layer: HVH, VHV



3 types of 3–layer models

Terminology for Channel Routing Problems



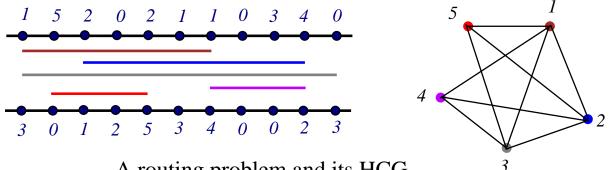
- Local density at column i: total # of nets that crosses column i.
- Channel density: maximum local density; # of horizontal tracks required > channel density.

Channel Routing Problem

- Assignments of horizontal segments of nets to tracks.
- Assignments of vertical segments to connect.
 - horizontal segments of the same net in different tracks, and
 - the terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated.
 - Horizontal constraints between two nets: The horizontal span of two nets overlaps each other.
 - Vertical constraints between two nets: There exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to the other net.
- Objective: Channel height is minimized (i.e., channel area is minimized).

Horizontal Constraint Graph (HCG)

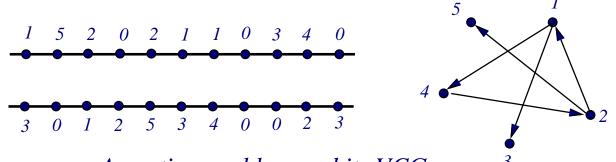
- HCG G = (V, E) is **undirected** graph where
 - $V = \{v_i | v_i \text{ represents a net } n_i\}$
 - $E = \{(v_i, v_j) | a \text{ horizontal constraint exists between } n_i \text{ and } n_j \}.$
- For graph G: vertices \Leftrightarrow nets; edge $(i, j) \Leftrightarrow$ net i overlaps net j.



A routing problem and its HCG.

Vertical Constraint Graph (VCG)

- VCG G = (V, E) is **directed** graph where
 - $V = \{v_i | v_i \text{ represents a net } n_i\}$
 - $E = \{(v_i, v_j) | a \text{ vertical constraint exists between } n_i \text{ and } n_j \}.$
- For graph G: vertices \Leftrightarrow nets; edge $i \rightarrow j \Leftrightarrow$ net i must be above net j.



A routing problem and its VCG.

2-L Channel Routing: Basic Left-Edge Algorithm

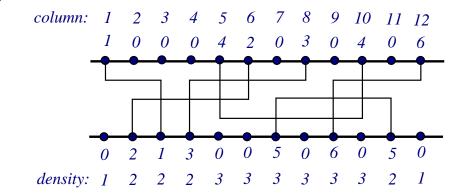
- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- HV-layer model is used.
- Doglegs are not allowed.
- Treat each net as an interval.
- Intervals are sorted according to their left-end *x*-coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum # of tracks (if no vertical constraint).

Basic Left-Edge Algorithm

```
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I_1, \ldots, I_n;
I_j = [s_j, e_j]: interval j with left-end x-coordinate s_j and right-end e_j;
track[j]: track to which net j is assigned.
1 begin
2 U \leftarrow \{I_1, I_2, \ldots, I_n\};
3 t \leftarrow 0:
4 while (U \neq \emptyset) do
5 t \leftarrow t+1;
6 watermark \leftarrow 0;
7 while (there is an I_j \in U s.t. s_j > watermark) do
      Pick the interval I_j \in U with s_j > watermark,
8
   nearest watermark:
9 track[j] \leftarrow t;
10 watermark \leftarrow e_j;
11 U \leftarrow U - \{I_j\};
12 end
```

Basic Left-Edge Example

- $U = \{I_1, I_2, \dots, I_6\}; I_1 = [1,3], I_2 = [2,6], I_3 = [4,8], I_4 = [5,10], I_5 = [7,11], I_6 = [9,12].$
- *t* = 1:
 - Route I_1 : watermark = 3;
 - Route I_3 : watermark = 8;
 - Route I_6 : watermark = 12;
- *t* = 2:
 - Route I_2 : watermark = 6;
 - Route I_5 : watermark = 11;
- t = 3: Route I_4

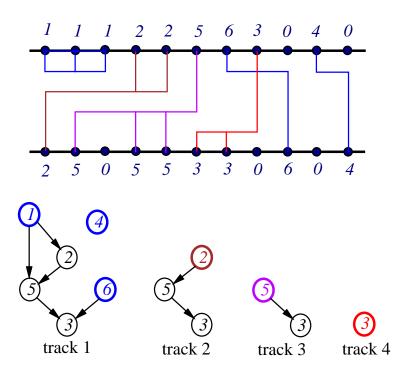


Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U, track[j]) U: set of unassigned intervals (nets) I_1, \ldots, I_n ; $I_j = [s_j, e_j]$: interval j with left-end x-coordinate s_j and right-end e_j ; track[j]: track to which net j is assigned. 1 begin **2** $U \leftarrow \{I_1, I_2, \ldots, I_n\}$; 3 $t \leftarrow 0$: 4 while $(U \neq \emptyset)$ do 5 $t \leftarrow t+1$; 6 watermark $\leftarrow 0$; 7 while (there is an unconstrained $I_j \in U$ s.t. $s_j > watermark$) do 8 Pick the interval $I_i \in U$ that is unconstrained, with $s_i > watermark$, nearest watermark; 9 $track[j] \leftarrow t;$ 10 $watermark \leftarrow e_i;$ 11 $U \leftarrow U - \{I_j\};$ 12 end

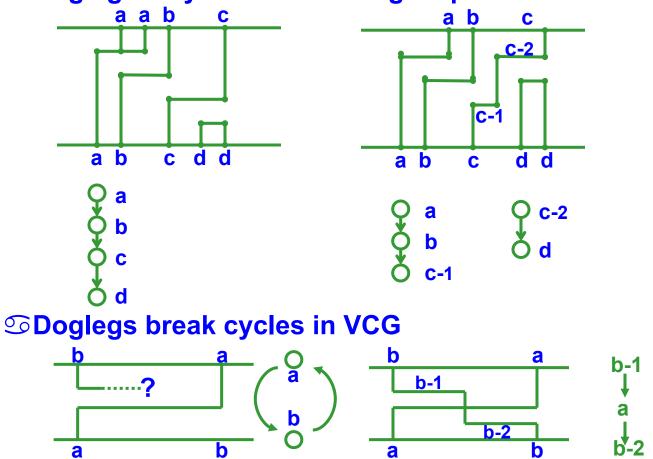
Constrained Left-Edge Example

- $I_1 = [1,3], I_2 = [1,5], I_3 = [6,8], I_4 = [10,11], I_5 = [2,6], I_6 = [7,9].$
- Track 1: Route I_1 (cannot route I_3); Route I_6 ; Route I_4 .
- Track 2: Route *I*₂; cannot route *I*₃.
- Track 3: Route I_5 .
- Track 4: Route *I*₃.



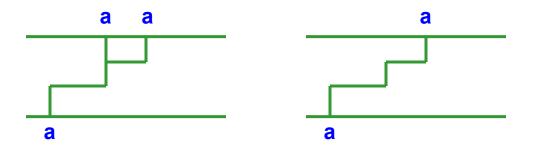
Doglegs in Channel Routing

☉ Doglegs may reduce the longest path in VCG



Doglegs in Channel Routing(Cont'd)

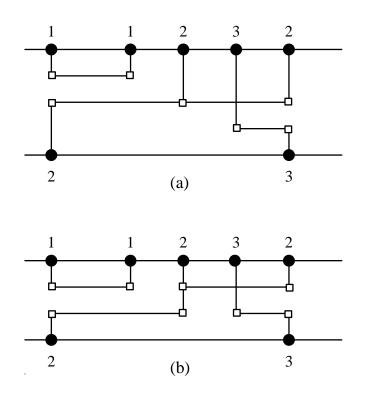
Sestricted Dogleg vs unrestricted dogleg



Dogleg Router

- Drawback of LEA: the entire net is on a single track.
- Doglegs are used to place parts of a net on different tracks, thereby minimizing channel height.

~



Using a dogleg to reduce channel height

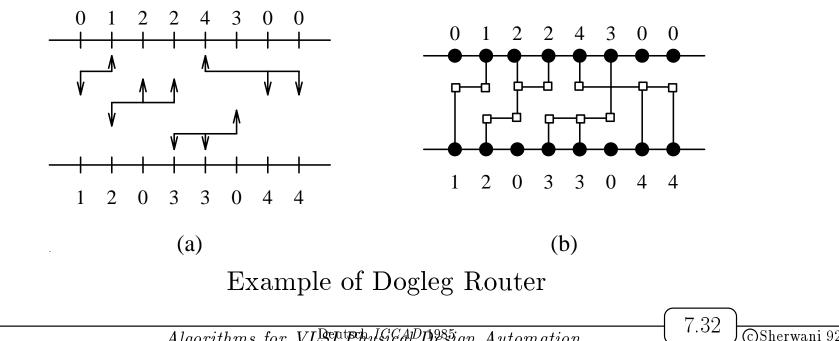
7.31

🔿 Sherwani 92

 $\label{eq:algorithms} Algorithms \ for \ VLSI \ Physical \ Design \ Automation$

Dogleg Router

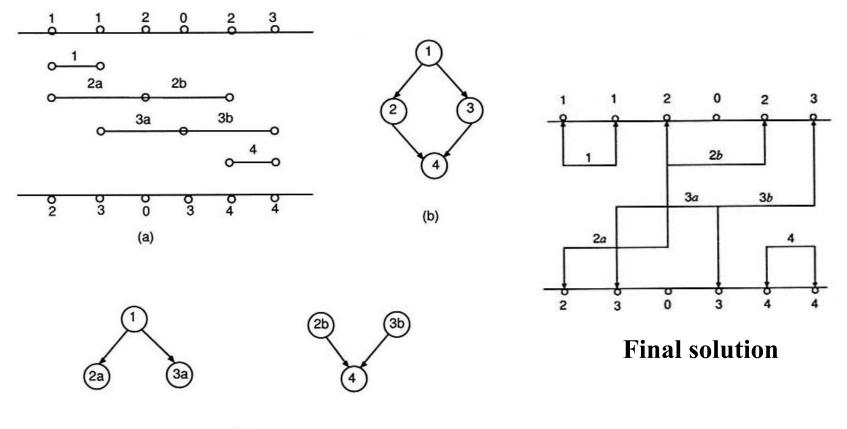
- Each Multi-terminal net is broken into a set of two-terminal nets.
- Two parameters are used to control routing:
 - 1. range: Determine the number of consecutive two-terminal subnets of the same net that can be placed on the same track.
 - 2. routing sequence: Specifies the starting position and the direction of routing along the channel.
- Modified LEA is applied to each subnet.



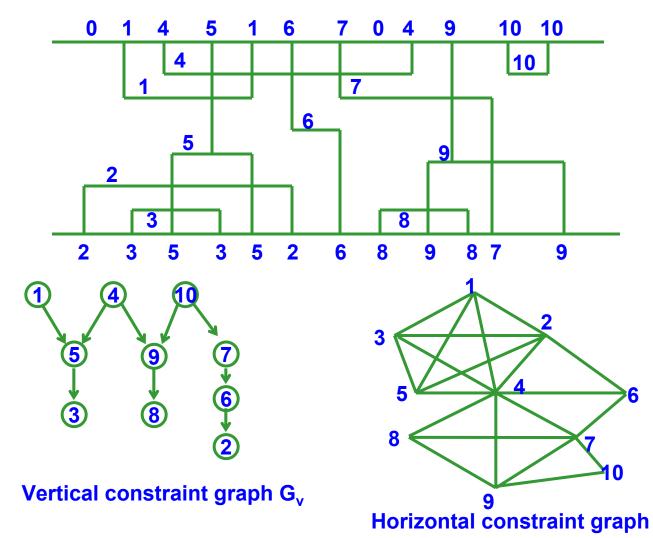
Algorithms for VLSP Phylical Design Automation

Dogleg Router: Example

• Decompose multi-terminal nets into two-terminal nets

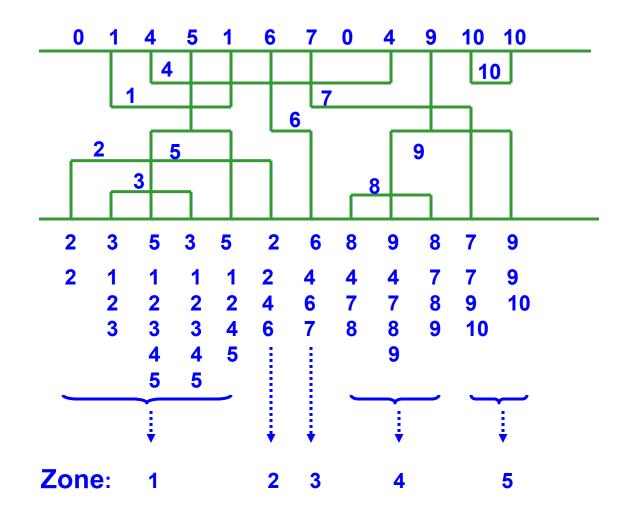


Characterizing Channel Routing Problem



The channel routing problem is completely characterized by the vertical constraint graph and the horizontal constraint graph.

Zone Representation of Horizontal Segments

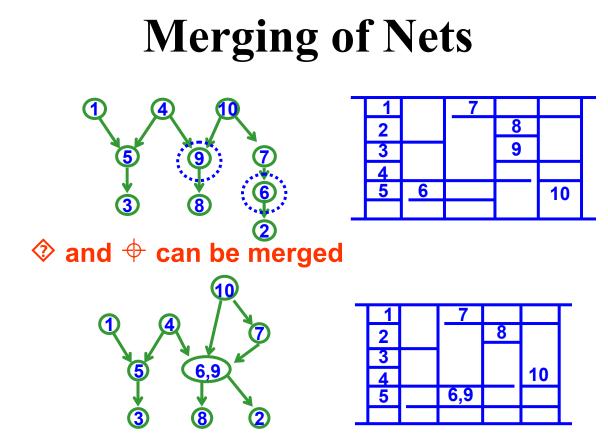


Zone Representation of Horizontal Segments(Cont'd)

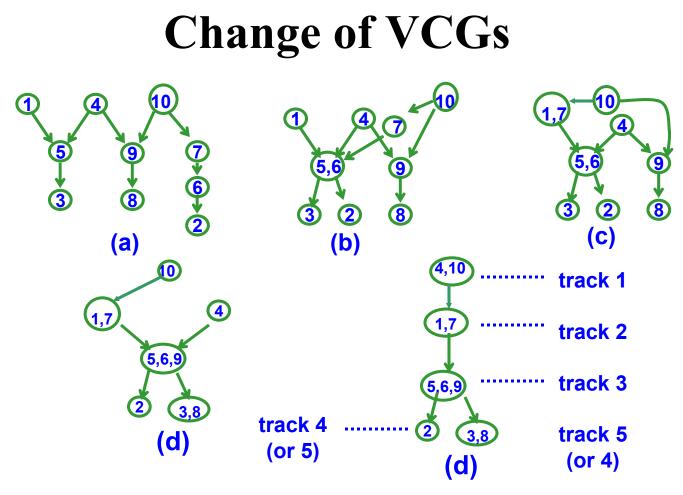
Zone representation

S(i): set of nets intersect column i

- So we only need to consider those s(i)s which are maximal
- Sone ↔ maximal clique in the horizontal constraint graph

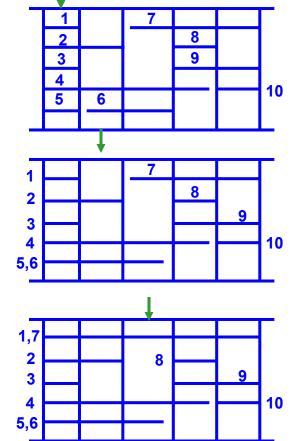


Updated graph and zone rep Net i and net j can be merged if (a) there is no path (directed connecting them in VCG; (b) the two nets do not overlap



How to choose two feasible nets to merge? ⇒Determine the quality of the solutions

Process the Zones Sequentially



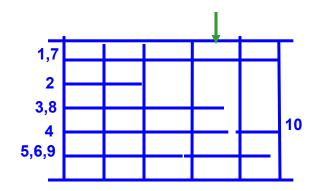
LEFT={1,3,5}

RIGHT={6)

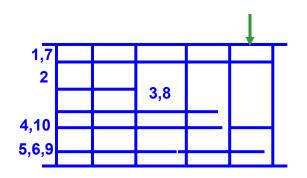
LEFT={1,2,3} RIGHT={7)

LEFT={2,3,5.6} RIGHT={8,9)

Process the Zones Sequentially (Cont'd)



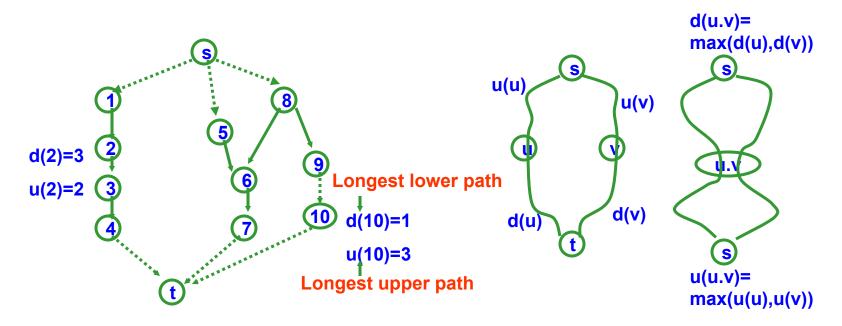
LEFT={2,3.8,4} RIGHT={10)



LEFT={1.7, 2, 3.8, 4.10, 5.6.9} RIGHT= ϕ

First Approach

- Some of the longest path length in the VCG
- **Solution** Heuristic rule to select nets to merge sequentially



What to Choose from P/Q?

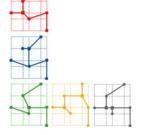
The purpose here is to minimize the length of the longest path after merger. However, it will be too time consuming to find an exact minimum merger, hence a heuristic merging algorithm will be given. Let us introduce some basic intuitive ideas. First, a node $m \in Q$ is chosen, which lies on the longest path before merger; furthermore, it is farthest away from either s or t. Next, a node $n \in P$ is chosen such that the increase of the longest path after merger is minimum. If there are two or more nodes which will result in a minimum increase we choose n such that u(n) + d(n) is maximum or nearly maximum and that the condition u(m)/d(m) = u(n)/d(n) is satisfied or nearly satisfied. These can be implemented by introducing the following:

Practical Problems in VLSI Physical Design

Heuristic

Merging Algorithm

given P, Ç	2;
beg	in;
a1:	while Q is not empty do;
	begin;
a2:	among Q , find m^* which maximizes $f(m)$;
a3:	among P, find n^* which minimizes $g(n, m^*)$,
	and which is neither ancestor nor descendent
	of <i>m</i> *;
a4:	merge n^* and m^* ;
a 5:	remove n^* and m^* from P and Q ,
	respectively;
	end;
enc	•



Formulas

(1) for $m \in Q$ $f(m) = C_{\infty} * \{u(m) + d(m)\} + \max \{u(m), d(m)\},$ $C_{\infty} \gg 1$ lies on the longest path before merge, farthest away from s or t
(2) for $n \in P, m \in Q$ $g(n, m) = C_{\infty} * h(n, m)$ $- \{\sqrt{u(m) * u(n)} + \sqrt{d(m) * d(n)}\}$

where

increase of longest path after merge is minimum, u(n)+d(n) maximized and u(m)/d(m) = u(n)/d(n)

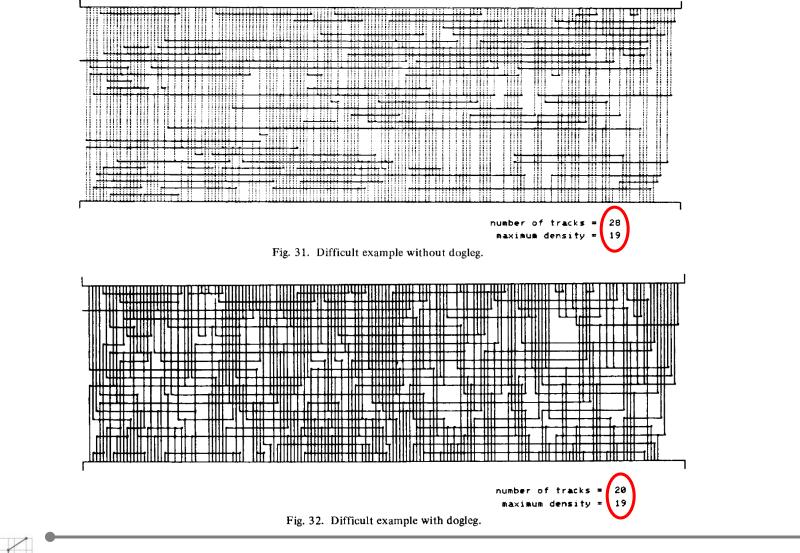
$$h(n, m) = \max \{u(n), u(m)\} + \max \{d(n), d(m)\}$$

- max {u(n) + d(n), u(m) + d(m)}

-the increase of the longest path length passing through n or m, by merging of n and m.

Practical Problems in VLSI Physical Design

Results

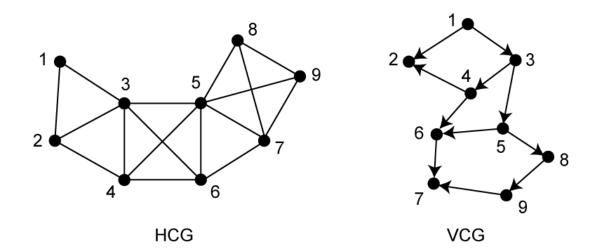


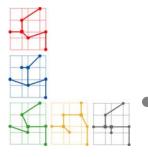
Practical Problems in VLSI Physical Design

Yoshimura-Kuh Channel Routing

• Perform YK channel routing with K = 100

TOP = [1,1,4,2,3,4,3,6,5,8,5,9] BOT = [2,3,2,0,5,6,4,7,6,9,8,7]

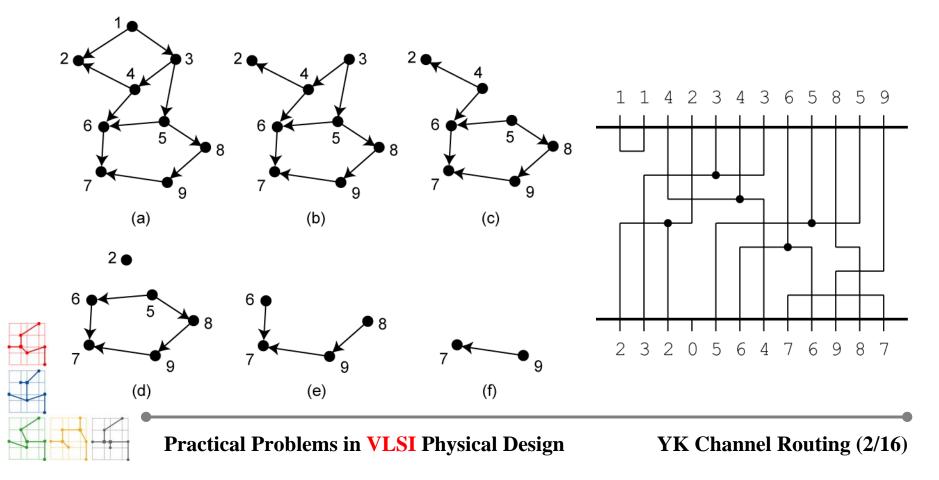




YK Channel Routing (1/16)

Constrained Left-Edge Algorithm

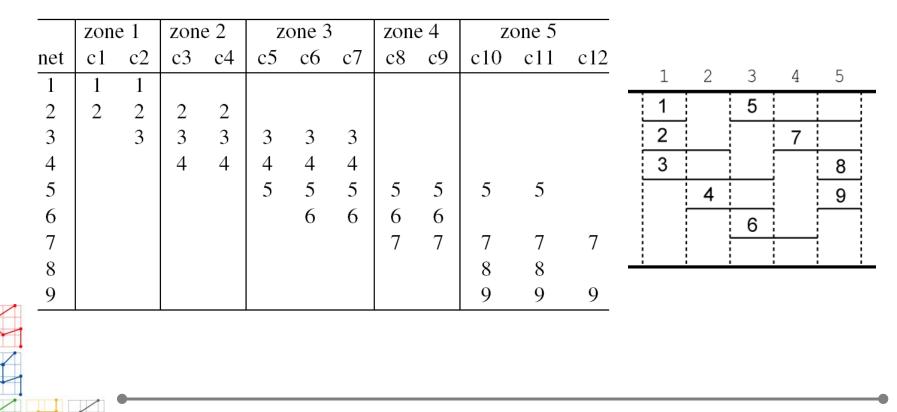
- First perform CLE on original problem (for comparison)
 - Assign VCG nodes with no incoming edge first
 - Use tracks top-to-bottom, left-to-right



Zone Representation

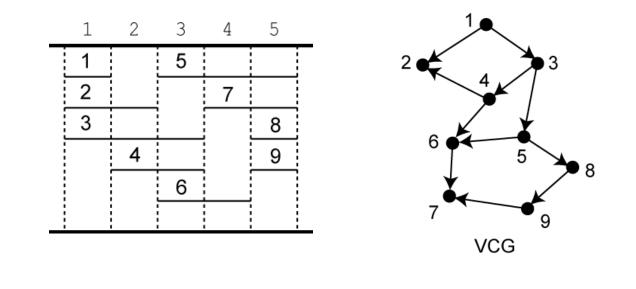
Horizontal span of the nets and their zones

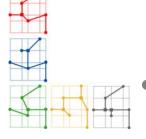
TOP = [1,1,4,2,3,4,3,6,5,8,5,9]BOT = [2,3,2,0,5,6,4,7,6,9,8,7]



Net Merging: Zone 1 and 2

- We compute
 - $L = \{1\}$ and $R = \{4\}$
 - Net 1 and 4 are on the same path in VCG: no merging possible

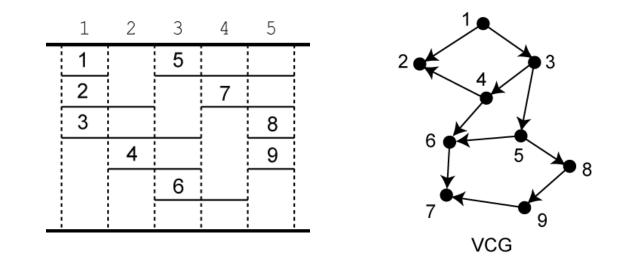


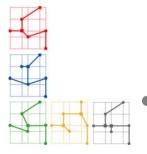


YK Channel Routing (4/16)

Net Merging: Zone 2 and 3

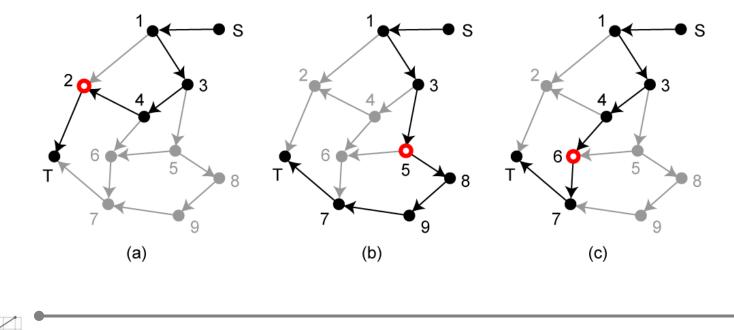
- We compute
 - $L = \{1,2\}$ and $R = \{5,6\}$ (= net 1 inherited from last step)
 - Merge-able pairs: (2,5) and (2,6) (= not on the same path in VCG)





YK Channel Routing (5/16)

- Choose the "best" pair between (2,5) and (2,6)
 - We form $P = \{5,6\}$ and $Q = \{2\}$ and choose best from each set
 - We compute
 - u(2) = 4, d(2) = 1, u(5) = 3, d(5) = 4, u(6) = 4, d(6) = 2
 - Only 1 element in Q, so $m^* = \text{net } 2$ trivially



YK Channel Routing (6/16)

■ Now choose "best" from *P*

• We compute g(5,2) and g(6,2) using K = 100

 $h(5,2) = \max\{u(5), u(2)\} + \max\{d(5), d(2)\} - \max\{u(5) + d(5), u(2) + d(2)\} = 1$

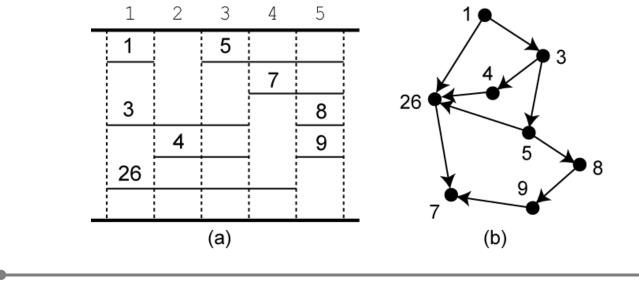
$$h(6,2) = \max\{u(6), u(2)\} + \max\{d(6), d(2)\} - \max\{u(6) + d(6), u(2) + d(2)\} = 0$$

$$\begin{array}{lll} g(5,2) &=& 100 \cdot h(5,2) - \{\sqrt{u(2) \cdot u(5)} + \sqrt{d(2) \cdot d(5)}\} \\ &=& 94.5 \end{array}$$

$$\begin{array}{lll} g(6,2) &=& 100 \cdot h(6,2) - \{\sqrt{u(2) \cdot u(6)} + \sqrt{d(2) \cdot d(6)}\} \\ &=& -5.4 \end{array}$$

- Since g(5,2) > g(6,2), we choose $n^* = \text{net } 6$
- We merge $m^* = 2$ and $n^* = 6$
 - Likely to minimize the increase in the longest path length in VCG

- Merged net 2 and 6
 - We had $P = \{5,6\}$ and $Q = \{2\}$, and need to remove 2 and 6
 - *Q* is empty, so we are done with zone 2 and 3
 - We had $L = \{1,2\}$ and $R = \{5,6\}$, and need to remove 2 and 6
 - We keep $L = \{1\}$
 - Updated zone representation and VCG

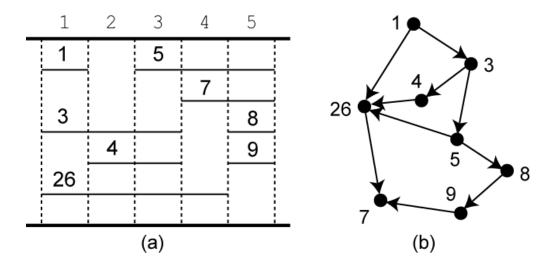


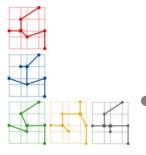
Practical Problems in VLSI Physical Design

YK Channel Routing (8/16)

Net Merging: Zone 3 and 4

- We compute
 - $L = \{1,3,4\}$ and $R = \{7\}$ (= net 1 inherited from last step)
 - All nets in *L* and *R* are on the same path in VCG
 - no merging possible

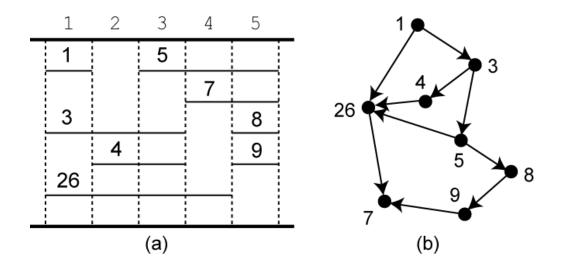


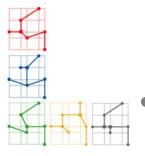


Net Merging: Zone 4 and 5

• We compute

- $L = \{1,3,4,26\}$ and $R = \{8,9\}$
- Merge-able pairs: (4,8), (4,9), (26,8), (26,9)

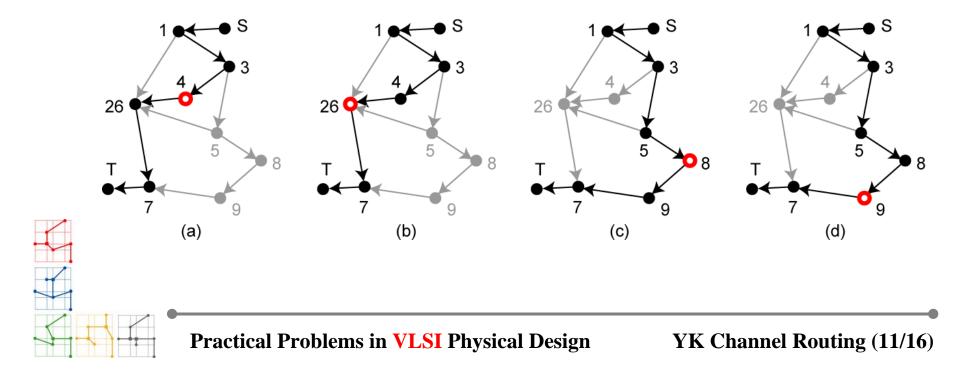




Practical Problems in VLSI Physical Design

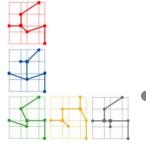
YK Channel Routing (10/16)

- Choose m^* from Q
 - We form $P = \{4, 26\}$ and $Q = \{8, 9\}$
 - We compute
 - u(4) = 3, d(4) = 3, u(26) = 4, d(26) = 2, u(8) = 4, d(8) = 3, u(9) = 5, d(9) = 2



- Choose m^* from Q (cont)
 - We find *m*^{*} from *Q* that maximizes
 - $f(8) = 100 \cdot \{u(8) + d(8)\} + \max\{u(8), d(8)\} = 704$
 - $f(9) = 100 \cdot \{u(9) + d(9)\} + \max\{u(9), d(9)\} = 705$

• So,
$$m^* = 9$$



- Choose n^* from P
 - We compute g(4,9) and g(26,9) using K = 100

$$h(4,9) = \max\{u(4), u(9)\} + \max\{d(4), d(9)\} - \max\{u(4) + d(4), u(9) + d(9)\} = 1$$

$$h(26,9) = \max\{u(26), u(9)\} + \max\{d(26), d(9)\} - \max\{u(26) + d(26), u(9) + d(9)\} = 0$$

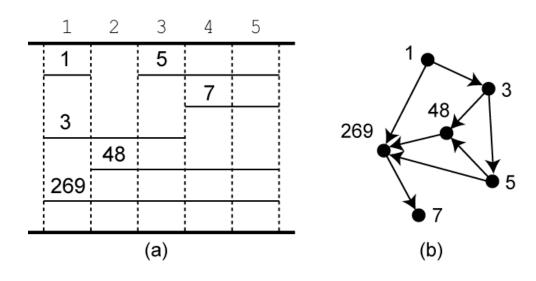
$$g(4,9) = 100 \cdot h(4,9) - \{\sqrt{u(9) \cdot u(4)} + \sqrt{d(9) \cdot d(4)}\} = 93.7$$

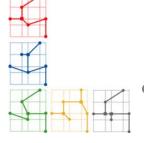
$$g(26,9) = 100 \cdot h(26,9) - \{\sqrt{u(9) \cdot u(26)} + \sqrt{d(9) \cdot d(26)}\} = -6.5$$

• Since g(4,9) > g(26,9), we get $n^* = \text{net } 26$

• We merge
$$m^* = 9$$
 and $n^* = 26$

- Merged net 26 and 9
 - We had $P = \{4,26\}$ and $Q = \{8,9\}$, and need to remove 26 and 9
 - *Q* is not empty, so we repeat the whole process
 - Updated $P = \{4\}$ and $Q = \{8\}$
 - Trivial to see that $m^* = 8$ and $n^* = 4$, so we merge 8 and 4
 - Updated zone representation and VCG



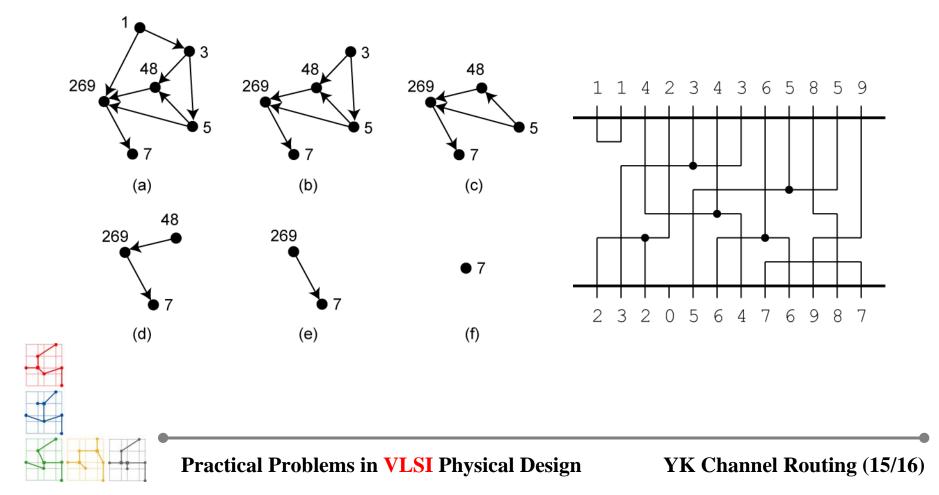


Practical Problems in VLSI Physical Design

YK Channel Routing (14/16)

Routing with Merged Nets

- Perform CLE on merged netlist
 - Use tracks top-to-bottom, left-to-right



Comparison

- Net merging helped
 - Reduce channel height by 1

