Placement

ECE6133
Physical Design Automation of VLSI Systems

Prof. Sung Kyu Lim
School of Electrical and Computer Engineering
Georgia Institute of Technology

Placement

- The process of arranging the circuit components on a layout surface.
- Inputs: A set of fixed modules, a netlist.
- Goal: Find the best position for each module on the chip according to appropriate cost functions.
- Considerations: routability/channel density, wirelength, cut size, performance, thermal issues, I/O pads.

Density $=2(2$ tracks required $)$

Estimation of Wirelength

- Semi-perimeter method: Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!
- Complete graph: Since \#edges in a complete graph $\left(\frac{n(n-1)}{2}\right)$ is $\frac{n}{2} \times \#$ of tree edges $(n-1)$, wirelength $\approx \frac{2}{n} \sum_{(i, j) \in n e t} \operatorname{dist}(i, j)$.
- Minimum chain: Start from one vertex and connect to the closest one, and then to the next closest, etc.
- Source-to-sink connection: Connect one pin to all other pins of the net. Not accurate for uncongested chips.
- Steiner-tree approximation: Computationally expensive.
- Minimum spanning tree

semi-perimeter len $=11$

complete graph len $* 2 / n=17.5$

chain len $=14$

source-to-sink len $=17$

Steiner tree len $=12$

Spanning tree len $=13$

Placement Methods

- Constructive methods
- Cluster growth algorithm
- Force-directed method
- Algorithm by Goto
- Min-cut based method
- Iterative improvement methods
- Pairwise exchange
- Simulated annealing: Timberwolf
- Genetic algorithm
- Analytical methods
- Gordian, Gordian-L

Min-Cut Placement

- Breuer, "A class of min-cut placement algorithms," DAC-77.
- Quadrature: suitable for circuits with high density in the center.
- Bisection: good for standard-cell placement.
- Slice/Bisection: good for cells with high interconnection on the periphery.

quadrature

6a5a6b $46 c 5 b 6 d$

Algorithm for Min-Cut Placement

```
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n: # of cells to be placed */
/* no: # of cells in a slot */
/* C: the connectivity matrix */
1 begin
2 if ( }n\leq\mp@subsup{n}{0}{}\mathrm{ ) then PlaceCells( N, n,C);
3 else
4 ( N
5 ( }n1,\mp@subsup{C}{1}{\prime}),(\mp@subsup{n}{2}{},\mp@subsup{C}{2}{})\leftarrow\operatorname{Partition(n,C);
6 Call Min_Cut_Placement ( }\mp@subsup{N}{1}{},\mp@subsup{n}{1}{},\mp@subsup{C}{1}{})\mathrm{ ;
7 Call Min_Cut_Placement ( }N2,\mp@subsup{n}{2}{},\mp@subsup{C}{2}{})\mathrm{ ;
8 end
```


Quadrature Placement Example

- Apply K-L heuristic to partition + Quadrature Placement: Cost $C_{1}=4, C_{2 L}=C_{2 R}=2$, etc.

Min-Cut Placement with Terminal Propagation

- Dunlop \& Kernighan, "A procedure for placement of standard-cell VLSI circuits," IEEE TCAD, Jan. 1985.
- Drawback of the original min-cut placement: Does not consider the positions of terminal pins that enter a region.
- What happens if we swap $\{1,3,6,9\}$ and $\{2,4,5,7\}$ in the previous example?
prefer to have them in R1

Terminal Propagation

- We should use the fact that s is in L_{1} !

P will stay in R1 for the rest of partitioning!
- When not to use p to bias partitioning? Net s has cells in many groups?
minimum rectilinear

> Steiner tree

Don't use p to bias the solution in either direction!

Use p!

Terminal Propagation Example

- Partitioning must be done breadth-first, not depth-first.

Creating Rows

- Terminal propagation reduce overall area by $\sim \mathbf{3 0 \%}$
- Creating rows
- Choose α and $\boldsymbol{\beta}$ preferably to balance row to balance row length (during re-arrangement)

Creating Rows

- Example
- Partitioning of circuit into 32 groups
- Each group is either assigned to a single row or divided into 2 rows

Experimental Results

- CMOS Chip with 453 nets and 412 cells
- Manual solution
- track density=147; feedthroughs=184
- Automated solution
- without terminal propagation: t.d. $=313$; f.t. $=591$
- (t.d. reduced to 235 by iterative interchanges)
- with terminal propagation: t.d. $=186$; f.t. $=182$
- (t.d. reduced to 152 by iterative interchanges)
- Iterative Interchange Refinement is helpful
- The program is in production use as part of an automatic placement system in AT\&T Bell Lab.
- Solutions within $\mathbf{1 0 \%}$ of the best hand layout

Remarks on Min-cut Placement

- Also implemented F-M partitioning method
- Much faster but solutions appeared to be not as good as K-L
- Use Simulated Annealing to do partitioning
- Much slower. If restricted to a reasonable CPU time, solutions are of similar quality of those by F-M method. Easy to implement
- Seeking an elegant way to force some cells to be in particular positions
- Investigate other algorithms for terminal propagation
- Terminal propagation is the bottleneck of CPU time

Mincut Placement

- Perform quadrature mincut onto 4×4 grid
- Start with vertical cut first

$$
\begin{aligned}
& \hline n_{1}=\{e, f\} \\
& n_{2}=\{a, e, i\} \\
& n_{3}=\{b, f, g\} \\
& n_{4}=\{c, g, l\} \\
& n_{5}=\{d, l, h\} \\
& n_{6}=\{e, i, j\} \\
& n_{7}=\{f, j\} \\
& n_{8}=\{g, j, k\} \\
& n_{9}=\{l, o, p\} \\
& n_{10}=\{h, p\} \\
& n_{11}=\{i, m\} \\
& n_{12}=\{j, m, n\} \\
& n_{13}=\{k, n, o\} \\
& \hline
\end{aligned}
$$

undirected graph model w / k -clique weighting thin edges $=$ weight 0.5 , thick edges $=$ weight 1

Cut 1 and 2

- First cut has min-cutsize of 3 (not unique)
- Both cuts 1 and 2 divide the entire chip

(a) cut 1

(b) cut 2, 1st-level quadrants formed

Cut 3 and 4

- Each cut minimizes cutsize
- Helps reduce overall wirelength

Cut 5 and 6

- 16 partitions generated by 6 cuts
- HPBB wirelength $=27$

Recursive Bisection

- Start with vertical cut
- Perform terminal propagation with middle third window

Cut 3: Terminal Propagation

- Two terminals are propagated and are "pulling" nodes
- Node k and o connect to n and $j: p_{1}$ propagated (outside window)
- Node g connect to j, f and $b: p_{2}$ propagated (outside window)
- Terminal p_{1} pulls $k / o / g$ to top partition, and p_{2} pulls g to bottom

Cut 4: Terminal Propagation

- One terminal propagated
- Node n and j connect to $o / k / g: p_{1}$ propagated
- Node i and j connect to $e / f / a$: no propagation (inside window)
- Terminal p_{1} pulls n and j to right partition

Cut 5: Terminal Propagation

- Three terminals propagated
- Node i propagated to p_{1}, j to p_{2}, and g to p_{3}
- Terminal p_{1} pulls e and a to left partition
- Terminal p_{2} and p_{3} pull $f / b / e$ to right partition

Cut 6: Terminal Propagation

- One terminal propagated
- Node n and j are propagated to p_{1}
- Terminal p_{1} pulls o and k to left partition

Cut 7: Terminal Propagation

- Three terminals propagated
- Node $j / f / b$ propagated to $p_{1}, o / k$ to p_{2}, and h / p to p_{3}
- Terminal p_{1} and p_{2} pull g and l to left partition
- Terminal p_{3} pull l and d to right partition

Cut 8 to 15

- 16 partitions generated by 15 cuts
- HPBB wirelength $=23$

Comparison

- Quadrature vs recursive bisection + terminal propagation
- Number of cuts: 6 vs 15
- Wirelength: 27 vs 23

quadrature

bisection

Quadratic Programming (QP)

- Definition
- Process of solving optimization problems involving quadratic functions
- One seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables
- QP with n variables and m constraints

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} \mathbf{x}^{\mathrm{T}} Q \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & A \mathbf{x} \preceq \mathbf{b}
\end{array}
$$

- n-dimensional vector c
- $n \times n$-dimensional real symmetric matrix Q
- $m \times n$-dimensional real matrix A
- m-dimensional real vector b

Analytical Placement

- Gordian package:
- GORDIAN: Gordian: VLSI Placement by Quadratic Programming and slicing Optimization: J. M. Kleinhans, G.Sigl, F.M. Johannes, K.J. Antreich, IEEE TCAD, 1991
- GORDIAN-L: Analytical Placement: A Linear or a Quadratic Objective Function?: G. Sigl, K. Doll, F.M. Johannes, DAC91
- Gordian: A Quadratic Placement Approach
- Global optimization: solves a sequence of quadratic programming problems
- Partitioning: enforces the non-overlap constraints

$\mathrm{i}=58$

$\mathrm{i}=87$

Adaptec1 Stats

- Circuit stats
- \# cells/nets/pins

210,863/219,687/19,205

- chip size
- bin size
- \# placement bins
$6000 \mathrm{um} \times 6000 \mathrm{um}$
- Average bin occupancy $\quad 210 \mathrm{~K} / 120^{2}=14.6$ gates $/$ bin
- Wirelength result (HPBB)
- iteration 0

34,069,060

- iteration 29

46,352,680

- iteration 58

80,783,336

- iteration 87

98,111,904

Overview of Gordian Package

Procedure Gordian
$l:=1$;
global-optimize(l);
while (there exists $\left|M_{l}\right|>k$)
for each $r \boldsymbol{c} \boldsymbol{R}(\boldsymbol{l})$ partition($\left.r, r^{\prime}, r^{\prime \prime}\right)$;
$l++$;
setup-constraints(l);
global-optimize(l);
repartition(l);
final-placement (l);
endprocedure

Problem Definition

Squared wire length of net \boldsymbol{v}

$$
\begin{aligned}
& L_{v}=\sum_{u \in M_{v}}\left[\left(x_{u v}-x_{v}\right)^{2}+\left(y_{u v}-y_{v}\right)^{2}\right] \\
& x_{u v}=x_{u}+a_{v u}, y_{u v}=y_{u}+b_{v u}
\end{aligned}
$$

Cost Function

- Minimize the following:

$$
\begin{aligned}
& \phi=\frac{1}{2} \sum_{v \in N} L_{v} w_{v} \\
& \phi(x, y)=X^{T} C X+d_{x}^{T} X+Y^{T} C Y+d_{y}^{T} Y \\
& \phi(x)=X^{T} C X+d^{T} X
\end{aligned}
$$

Constraints

- The center of gravity constraints
- At level l, chip is divided into $q\left(\leq 2^{l}\right)$ regions
- For region p, the center coordinates: $\left(u_{p}, v_{p}\right)$
- M_{p} : set of modules in region p
- Matrix from for all regions

$$
\sum_{m \in M_{p}} F_{m} \cdot x_{m}=u_{p} \times \sum_{m \in M_{p}} F_{m}
$$

- Lastly, we have

$$
A^{l} X=u^{l}, \text { where } a_{p m}= \begin{cases}F_{m} / \sum_{m \in M_{p}} F_{m}, & \text { if } m \in M_{p} \\ 0 & \text { otherwise }\end{cases}
$$

Problem Formulation

$$
\left(u_{\rho}, v_{\rho}\right)
$$

Linearly constrained Quadratic Programming problem
LQP : $\min _{x \in R^{\prime \prime}}\left\{\Phi(x)=X^{T} C X+d^{T} X\right.$ such that $\left.A^{l} X=u^{l}\right\}$

Hessian Matrix

- Second order partial derivatives of f
- Determine the concavity of the graph of f
- Useful to find local optimal solutions
- Our WL function is quadratic
- Hessian will have constants only
- Laplacian is Hessian!

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] .
$$

Hessian matrix

concavity

3 Types of Quadratic Programming

- Our Gordian QP

LQP: $\min _{x \in \Re^{m}}\left\{\left.\phi(x)=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{x}+\boldsymbol{d}^{T} \boldsymbol{x} \right\rvert\, \boldsymbol{A}^{(l)} \boldsymbol{x}=\boldsymbol{u}^{(l)}\right\}$.

- 3 Types of QP: Depends on C
- Positive Definite Hessian Matrix (Bowl)
- All its eigenvalues are positive
- One optimal value: Convex
- Semi-definite Hessian Matrix (Trough)

- All its eigenvalues are non-negative
- Line of optimal values: Convex
- Indefinite Hessian Matrix (Saddle)
- Optimal is on the boundaries: Non-Convex
- NP Hard

Gordian Laplacian

- Our Laplacian C
- C is positive definite if C's eigenvalues are nonnegative
- C is positive definite if $x^{\top} C x$ is positive
- C is positive definite if $\underline{\mathrm{C}}$ is diagonal and the entries are positive
- So, C is positive definite
- So, Gordian QP:

$$
\begin{equation*}
\text { LQP: } \min _{x \in \Re^{m}}\left\{\left.\phi(x)=\frac{1}{2} x^{T} \boldsymbol{C} x+\boldsymbol{d}^{T} \boldsymbol{x} \right\rvert\, \boldsymbol{A}^{(l)} \boldsymbol{x}=\boldsymbol{u}^{(l)}\right\} . \tag{7}
\end{equation*}
$$

Since $\phi(\boldsymbol{x})$ is a convex function (\boldsymbol{C} is positive definite) and the linear equality constraints (5) define a convex subspace of \Re^{m}, (7) has a unique global minimum $\phi\left(x^{*}\right)$.

Partitioning

- Recursive partitioning is needed
- to resolve module overlap in global placement
- global placement problem will be solved again with two additional center_of_gravity constraints
$\boldsymbol{M}_{p} \rightarrow\left(M_{p^{\prime}}, M_{p^{\prime \prime}}\right)$
$x_{u^{\prime}} \leq x_{u^{\prime \prime}} u^{\prime} \in M_{p^{\prime}}$ and $u^{\prime \prime} \in M_{p^{\prime \prime}}$
$\alpha=\sum_{u^{\prime} \in M_{p^{\prime}}} F_{u} / \sum_{u \in \mathcal{M}_{p}} F_{u} \approx 0.5$
cut value: $C_{p}(\alpha)=\sum_{v \in N_{C}} \boldsymbol{w}_{v}$

Repartitioning

- Module exchange after each cut to improve cut size
- terminal propagation using global placement positions
- Repartitioning
- to 'undo' the mistake made at the previous level:

```
Procedure repartition ( \(l\) )
    if overlap exists
        for each \(r \in R(l-1)\)
        merge-regions \(\left(r, r^{\prime}, r^{\prime}\right)\);
        partition( \(r, r \prime, r \prime\) ');
    setup-constraints( \(l\) );
    global-optimize( \(l\) );
    endif
```


Summary of Gordian

Complexity: space $=\mathbf{O}(m)$, time $=\mathbf{O}\left(m^{1.5} \log ^{2} m\right)$
Final placement: standard cell, macro-cell \& SOG

Experimental Results

Comparison of Results for Standard Cell Blocks

	Area After Routing/mm ${ }^{2}$		
Circuit	GORDIAN	Min-Cut	Annealing
scb1	2.7	3.1	2.6
scb2	5.8	5.3	5.0
scb3	15.7	25.6	9.1
scb4	14.0	16.9	13.2
scb5	10.6	11.3	10.9
scb6	11.3	12.7	12.8
scb7	16.4	20.2	19.8
scb8	51.7	89.2	59.5
scb9	54.0	98.6	80.0
CPU-time scb8	120 s	366 s	39851 s
CPU-time scb9	135 s	440 s	34709 s
ratio	1	$: 3$	$: 300$

GORDIAN Placement

- Perform GORDIAN placement
- Uniform area and net weight, area balance factor $=0.5$
- Undirected graph model: each edge in k-clique gets weight $2 / k$

IO Placement

- Necessary for GORDIAN to work

Adjacency Matrix

- Shows connections among movable nodes
- Among nodes a to j

$$
\left(\begin{array}{cccccccccc}
0 & \frac{2}{3} & 0 & 0 & \frac{7}{6} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{2}{3} & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{7}{6} & 0 & \frac{2}{3} & \frac{2}{3} & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{7}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\frac{7}{6} & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 1 & 0 & 0 \\
\frac{1}{2} & 1 & \frac{2}{3} & 0 & \frac{1}{2} & 0 & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 & \frac{2}{3} & 0 & 0 & \frac{2}{3} & \frac{2}{3} \\
0 & 0 & 0 & 0 & 1 & \frac{2}{3} & 0 & 0 & \frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & 0 & \frac{2}{3} \\
0 & 0 & 0 & 1 & 0 & 0 & \frac{2}{3} & 0 & \frac{2}{3} & 0
\end{array}\right)
$$

$\begin{array}{ll}\sqrt[5]{4} & 0 \\ 5 & 6\end{array}$

Pin Connection Matrix

- Shows connections between movable nodes and IO
- Rows = movable nodes, columns = IO (fixed)

$$
\left(\begin{array}{llllllll}
\frac{2}{3} & \frac{2}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{2}{3} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Degree Matrix

- Based on both adjacency and pin connection matrices
- Sum of entries in the same row (= node degree)

$$
\left(\begin{array}{cccccccccc}
\frac{25}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{23}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{25}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{23}{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{23}{6} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{31}{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{8}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{10}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{10}{3}
\end{array}\right)
$$

Laplacian Matrix

- Degree matrix minus adjacency matrix

$$
\left(\begin{array}{cccccccccc}
\frac{25}{6} & -\frac{2}{3} & 0 & 0 & -\frac{7}{6} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{2}{3} & \frac{23}{6} & -\frac{1}{2} & -\frac{1}{2} & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & \frac{25}{6} & -\frac{7}{6} & 0 & -\frac{2}{3} & -\frac{2}{3} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & -\frac{7}{6} & \frac{23}{6} & 0 & 0 & 0 & 0 & 0 & -1 \\
-\frac{7}{6} & 0 & 0 & 0 & \frac{23}{6} & -\frac{1}{2} & 0 & -1 & 0 & 0 \\
-\frac{1}{2} & -1 & -\frac{2}{3} & 0 & -\frac{1}{2} & \frac{31}{6} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & 0 \\
0 & 0 & -\frac{2}{3} & 0 & 0 & -\frac{2}{3} & \frac{8}{3} & 0 & -\frac{2}{3} & -\frac{2}{3} \\
0 & 0 & 0 & 0 & -1 & -\frac{2}{3} & 0 & \frac{10}{3} & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & \frac{11}{3} & -\frac{2}{3} \\
0 & 0 & 0 & -1 & 0 & 0 & -\frac{2}{3} & 0 & -\frac{2}{3} & \frac{10}{3}
\end{array}\right)
$$

Fixed Pin Vectors

- Based on pin connection matrix and IO location

Each entry i in d_{x}, denoted $d_{x, i}$, is computed as follows:

$$
d_{x, i}=-\sum_{j} p_{i j} \cdot x\left(p_{j}\right)
$$

where $p_{i j}$ denotes the entry of the pin connection matrix, and $x\left(p_{j}\right)$ is the x-coordinate of the corresponding IO pin j.

- Y-direction is defined similarly

Fixed Pin Vectors (cont)

$$
d_{x, 1}=-\left(\frac{2}{3} \cdot 0+\frac{2}{3} \cdot 0+0 \cdot 0+0 \cdot 1+\frac{1}{2} \cdot 2+0 \cdot 3+0 \cdot 4+0 \cdot 4\right)=-1
$$

By examining the remaining 9 movable cells, we get

$$
\begin{aligned}
& d_{x}^{T}=\left(\begin{array}{lllllllllll}
-1 & 0 & -\frac{2}{3} & -\frac{2}{3} & -1 & -1 & 0 & -3 & -4 & -4
\end{array}\right) \\
&\left(\begin{array}{cccccccc}
\frac{2}{3} & \frac{2}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{2}{3} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \hline
\end{aligned}
$$

Fixed Pin Vectors (cont)

$$
d_{y, 1}=-\left(\frac{2}{3} \cdot 1+\frac{2}{3} \cdot 2+0 \cdot 3+0 \cdot 4+\frac{1}{2} \cdot 0+0 \cdot 0+0 \cdot 1+0 \cdot 2\right)=-2
$$

By examining the remaining 9 movable cells, we get

$$
d_{y}^{T}=\left(\begin{array}{llllllllll}
-2 & -\frac{13}{6} & -\frac{25}{6} & -\frac{25}{6} & -\frac{4}{3} & 0 & 0 & 0 & -1 & -2
\end{array}\right)
$$

$$
\left(\begin{array}{llllllll}
\frac{2}{3} & \frac{2}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{2}{3} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Level 0 QP Formulation

- No constraint necessary

Minimize

$$
\phi(x)=\frac{1}{2} x^{T} C x+d_{x}{ }^{T} x
$$

and

$$
\phi(y)=\frac{1}{2} y^{T} C y+d_{y}^{T} y
$$

We use MOSEK and obtain the following solution:

$$
\left.\begin{array}{rl}
x^{T} & =\left(\begin{array}{llllllllll}
0.95 & 0.92 & 1.21 & 1.32 & 1.32 & 1.61 & 1.98 & 2.13 & 2.59 & 2.51
\end{array}\right) \\
y^{T} & =\left(\begin{array}{lll}
1.27 & 1.83 & 2.48 \\
2.61 & 1.16 & 1.45 \\
1.84 & 0.92 & 1.41
\end{array}\right. \\
2.03
\end{array}\right)
$$

Level 0 Placement

- Cells with real dimension will overlap

Level 1 Partitioning

- Perform level 1 partitioning
- Obtain center locations for center-of-gravity constraints

Level 1 Constraint

We first sort the nodes based on their x-coordinates:

$$
\{b, a, c, e, d, f, g, h, j, i\}
$$

We perform partitioning under $\alpha=0.5$:

$$
S_{\rho^{\prime}}=\{b, a, c, e, d\}, S_{\rho^{\prime \prime}}=\{f, g, h, j, i\}
$$

The center location vectors are:

$$
u_{x}^{(1)}=\binom{1}{3}, u_{y}^{(1)}=\binom{2}{2}
$$

We build the matrix $A^{(1)}$ for the center-of-gravity constraint at level $l=1$:

$$
A^{(1)}=\left(\begin{array}{cccccccccc}
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

Level 1 LQP Formulation

We now solve the following Linearly constrained QP (LQP) to obtain the new placement for the movable nodes:

$$
\begin{aligned}
& \text { Minimize } \phi(x)=\frac{1}{2} x^{T} C x+d_{x}^{T} x, \text { subject to } A^{(1)} \cdot x=u_{x}^{(1)} \\
& \text { Minimize } \phi(y)=\frac{1}{2} y^{T} C y+d_{y}^{T} y, \text { subject to } A^{(1)} \cdot y=u_{y}^{(1)}
\end{aligned}
$$

The solutions are as follows:

$$
\left.\begin{array}{rl}
x^{T} & =\left(\begin{array}{llllllllll}
0.70 & 0.71 & 1.17 & 1.21 & 1.22 & 2.17 & 3.10 & 2.84 & 3.56 & 3.33
\end{array}\right) \\
y^{T} & =\left(\begin{array}{lll}
1.34 & 1.94 & 2.66 \\
2.76 & 1.30 & 1.83 \\
2.45 & 1.32 & 1.91
\end{array} 2.49\right.
\end{array}\right)
$$

Level 1 Placement

Verification

- Verify that the constraints are satisfied in the left partition

The following cells are partitioned to the left: $a(0.70,1.34), b(0.71,1.94)$, $c(1.17,2.66), d(1.21,2.76)$, and $e(1.22,1.30)$. Thus, the center of gravity is located at:

$$
\begin{aligned}
& \frac{0.70+0.71+1.17+1.21+1.22}{5}=1.00 \\
& \frac{1.34+1.94+2.66+2.76+1.30}{5}=2.00
\end{aligned}
$$

This agrees with the center location $(1,2)$.

Level 2 Partitioning

- Add two more cut-lines
- This results in $p_{1}=\{c, d\}, p_{2}=\{a, b, e\}, p_{3}=\{g, j\}, p_{4}=\{f, h, i\}$

Level 2 Constraint

The center location vectors are:

$$
u_{x}^{(2)}=\left(\begin{array}{l}
1 \\
1 \\
3 \\
3
\end{array}\right), u_{y}^{(2)}=\left(\begin{array}{l}
3.2 \\
1.2 \\
3.2 \\
1.2
\end{array}\right)
$$

Next, we build the matrix $A^{(2)}$ for the center-of-gravity constraint at level $l=2$. Recall that $p_{1}=\{c, d\}, p_{2}=\{a, b, e\}, p_{3}=\{g, j\}, p_{4}=\{f, h, i\}$. Thus,

$$
A^{(2)}=\left(\begin{array}{cccccccccc}
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

where the rows denote the partitions p_{1} through p_{4}, and the columns denote the cells a through j.

Level 2 LQP Formulation

We now solve the following LQP to obtain the placement of the movable nodes:

$$
\begin{aligned}
& \text { Minimize } \phi(x)=\frac{1}{2} x^{T} C x+d_{x}^{T} x, \text { subject to } A^{(2)} \cdot x=u_{x}^{(2)} \\
& \text { Minimize } \phi(y)=\frac{1}{2} y^{T} C y+d_{y}^{T} y, \text { subject to } A^{(2)} \cdot y=u_{y}^{(2)}
\end{aligned}
$$

The solutions are as follows:

$$
\begin{aligned}
x^{T} & =\left(\begin{array}{llllllllll}
0.83 & 0.78 & 1.00 & 1.00 & 1.39 & 2.28 & 2.89 & 3.06 & 3.66 & 3.11
\end{array}\right) \\
y^{T} & =\left(\begin{array}{lllll}
1.01 & 1.78 & 3.08 & 3.32 & 0.82 \\
1.44 & 3.18 & 0.59 & 1.57 & 3.22
\end{array}\right)
\end{aligned}
$$

Level 2 Placement

- Clique-based wiring is shown

Practical Problems in VLSI Physical Design
GORDIAN Placement (20/21)

Summary

- Center-of-gravity constraint
- Helps spread the cells evenly while monitoring wirelength
- Removes overlaps among the cells (with real dimension)

Linear vs. Quadratic Objective

Quadratic objective function

Linear objective function

Quadratic:

$$
\begin{aligned}
& \varphi_{q}=l_{\alpha}^{2}+l_{\beta}^{2}+l_{\gamma}^{2}=2\left(l-l_{\gamma}\right)^{2}+l_{\gamma}^{2} \\
& \varphi_{q}^{\prime}=-4\left(l-l_{\gamma}\right)+2 l_{\gamma}=0, \text { So the optimal } l_{\gamma}=\frac{2}{3} l
\end{aligned}
$$

Linear:

$$
\varphi_{l}=l_{\alpha}+l_{\beta}+l_{\gamma} \text {, So the optimal } l_{\gamma}=l
$$

Linear vs. Quadratic Objective

- Quadratic objective function
- tends to make very long net shorter than linear objective function
- lets short nets become slightly longer

Linear objective function
Quadratic objective function

Optimizing Linear Objective

- Global Placement with linear objective function

$$
\begin{aligned}
& \phi_{q}=\sum_{v \in N} \sum_{u \in M_{v}}\left(x_{u v}-x_{v}\right)^{2} \rightarrow \text { quadratic objective function } \\
& \phi_{l}=\sum_{v \in N} \sum_{u \in M_{v}}\left|x_{u v}-x_{v}\right| \rightarrow \text { linear objective function }
\end{aligned}
$$

- Trick
- use quadratic programming to minimize linear objective function

$$
\begin{aligned}
& \phi_{l}=\sum_{v \in N} \sum_{u \in M_{v}} \frac{\left(x_{u v}-x_{v}\right)^{2}}{\left|x_{u v}-x_{v}\right|}=\sum_{v \in N} \sum_{u \in M_{v}} \frac{\left(x_{u v}-x_{v}\right)^{2}}{g_{u v}} \\
& g_{u v}=\left|x_{u v}-x_{v}\right|, g_{v}=\sum_{u \in M_{v}}\left|x_{u v}-x_{v}\right|
\end{aligned}
$$

Analytical Placement Results

Figure: Sum of wire lengths versus \#pins

Analytical Placement Results

Quadratic objective function
Linear objective function

(a) Global placement with 1 region

Analytical Placement Results

Quadratic objective function
Linear objective function

(b) Global placement with 4 regions

Analytical Placement Results

Quadratic objective function

Linear objective function

(c) Final placements

