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Placement

• The process of arranging the circuit components on a layout surface.

• Inputs: A set of fixed modules, a netlist.

• Goal: Find the best position for each module on the chip according to
appropriate cost functions.

– Considerations: routability/channel density, wirelength, cut size,
performance, thermal issues, I/O pads.
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Estimation of Wirelength

• Semi-perimeter method: Half the perimeter of the bounding rectangle
that encloses all the pins of the net to be connected. Most widely used
approximation!

• Complete graph: Since #edges in a complete graph (n(n−1)
2

) is n
2
× #

of tree edges (n− 1), wirelength ≈ 2
n

∑
(i,j)∈net dist(i, j).

• Minimum chain: Start from one vertex and connect to the closest one,
and then to the next closest, etc.

• Source-to-sink connection: Connect one pin to all other pins of the
net. Not accurate for uncongested chips.

• Steiner-tree approximation: Computationally expensive.

• Minimum spanning tree
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Placement Methods

• Constructive methods
– Cluster growth algorithm
– Force-directed method
– Algorithm by Goto
– Min-cut based method

• Iterative improvement methods
– Pairwise exchange
– Simulated annealing: Timberwolf
– Genetic algorithm

• Analytical methods
– Gordian, Gordian-L



Min-Cut Placement

• Breuer, “A class of min-cut placement algorithms,” DAC-77.

• Quadrature: suitable for circuits with high density in the center.

• Bisection: good for standard-cell placement.

• Slice/Bisection: good for cells with high interconnection on the periphery.
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Algorithm for Min-Cut Placement

Algorithm: Min Cut Placement(N,n,C)
/* N: the layout surface */
/* n: # of cells to be placed */
/* n0: # of cells in a slot */
/* C: the connectivity matrix */

1 begin
2 if (n ≤ n0) then PlaceCells(N,n,C);
3 else
4 (N1, N2) ← CutSurface(N);
5 (n1, C1), (n2, C2) ← Partition(n,C);
6 Call Min Cut Placement(N1, n1, C1);
7 Call Min Cut Placement(N2, n2, C2);
8 end



Quadrature Placement Example

• Apply K-L heuristic to partition + Quadrature Placement: Cost C1 = 4, C2L = C2R = 2,
etc.
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Min-Cut Placement with Terminal Propagation

• Dunlop & Kernighan, “A procedure for placement of standard-cell VLSI
circuits,” IEEE TCAD, Jan. 1985.

• Drawback of the original min-cut placement: Does not consider the
positions of terminal pins that enter a region.

– What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} in the previous
example?

L1

L2

R

S
L1

L2

S

prefer to have them in R1

R1

R2



Terminal Propagation

• We should use the fact that s is in L1!
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Terminal Propagation Example

• Partitioning must be done breadth-first, not depth-first.
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Creating Rows

• Terminal propagation reduce overall area by ~30%
• Creating rows

– Choose α and β preferably to balance row to balance row length 
(during re-arrangement )

C1 C2
C3

Row 1
Row 2
Row 3
Row 4

cells in C1→ row1
cells in C3→ row1
cells in C2 C2

α
β

α + β = 1Row 1 Row 2



Creating Rows

• Example
– Partitioning of circuit into 32 groups
– Each group is either assigned to a  single row or divided into 2 rows
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Experimental Results

• CMOS Chip with 453 nets and 412 cells
• Manual solution

– track density=147; feedthroughs=184
• Automated solution

– without terminal propagation: t.d.=313; f.t.=591
– (t.d. reduced to 235 by iterative interchanges)
– with terminal propagation: t.d.=186; f.t.=182
– (t.d. reduced to 152 by iterative interchanges)
– Iterative Interchange Refinement is helpful

• The program is in production use as part of an automatic 
placement system in AT&T Bell Lab.
– Solutions within 10% of the best hand layout



Remarks on Min-cut Placement

• Also implemented F-M partitioning method
– Much faster but solutions appeared to be not as good as K-L

• Use Simulated Annealing to do partitioning
– Much slower. If restricted to a reasonable CPU time, solutions are 

of similar quality of those by F-M method. Easy to implement

• Seeking an elegant way to force some cells to be in 
particular positions

• Investigate other algorithms for terminal propagation
– Terminal propagation is the bottleneck of CPU time



Practical Problems in VLSI Physical Design Mincut Placement (1/12)

Mincut Placement
Perform quadrature mincut onto 4 × 4 grid

Start with vertical cut first

undirected graph model w/ k-clique weighting
thin edges = weight 0.5, thick edges = weight 1



Practical Problems in VLSI Physical Design Mincut Placement (2/12)

Cut 1 and 2
First cut has min-cutsize of 3 (not unique) 

Both cuts 1 and 2 divide the entire chip



Practical Problems in VLSI Physical Design Mincut Placement (3/12)

Cut 3 and 4
Each cut minimizes cutsize

Helps reduce overall wirelength



Practical Problems in VLSI Physical Design Mincut Placement (4/12)

Cut 5 and 6
16 partitions generated by 6 cuts

HPBB wirelength = 27



Practical Problems in VLSI Physical Design Mincut Placement (5/12)

Recursive Bisection
Start with vertical cut

Perform terminal propagation with middle third window



Practical Problems in VLSI Physical Design Mincut Placement (6/12)

Cut 3: Terminal Propagation
Two terminals are propagated and are “pulling” nodes 

Node k and o connect to n and j: p1 propagated (outside window)
Node g connect to j, f and b: p2 propagated (outside window)
Terminal p1 pulls k/o/g to top partition, and p2 pulls g to bottom 



Practical Problems in VLSI Physical Design Mincut Placement (7/12)

Cut 4: Terminal Propagation
One terminal propagated

Node n and j connect to o/k/g: p1 propagated
Node i and j connect to e/f/a: no propagation (inside window)
Terminal p1 pulls n and j to right partition



Practical Problems in VLSI Physical Design Mincut Placement (8/12)

Cut 5: Terminal Propagation
Three terminals propagated

Node i propagated to p1, j to p2, and g to p3

Terminal p1 pulls e and a to left partition
Terminal p2 and p3 pull f/b/e to right partition



Practical Problems in VLSI Physical Design Mincut Placement (9/12)

Cut 6: Terminal Propagation
One terminal propagated

Node n and j are propagated to p1

Terminal p1 pulls o and k to left partition



Practical Problems in VLSI Physical Design Mincut Placement (10/12)

Cut 7: Terminal Propagation
Three terminals propagated

Node j/f/b propagated to p1, o/k to p2, and h/p to p3

Terminal p1 and p2 pull g and l to left partition
Terminal p3 pull l and d to right partition



Practical Problems in VLSI Physical Design Mincut Placement (11/12)

Cut 8 to 15
16 partitions generated by 15 cuts

HPBB wirelength = 23



Practical Problems in VLSI Physical Design Mincut Placement (12/12)

Comparison
Quadrature vs recursive bisection + terminal propagation

Number of cuts: 6 vs 15
Wirelength: 27 vs 23



• Definition
– Process of solving optimization problems involving quadratic functions
– One seeks to optimize (minimize or maximize) a multivariate quadratic 

function subject to linear constraints on the variables

• QP with n variables and m constraints

– n-dimensional vector c
– n × n-dimensional real symmetric matrix Q
– m × n-dimensional real matrix A
– m-dimensional real vector b

Quadratic Programming (QP)



Analytical Placement

• Gordian package:
– GORDIAN: Gordian: VLSI Placement by Quadratic 

Programming and slicing Optimization: J. M. Kleinhans, G.Sigl, 
F.M. Johannes, K.J. Antreich, IEEE TCAD, 1991

– GORDIAN-L:  Analytical Placement: A Linear or a Quadratic 
Objective Function?: G. Sigl, K. Doll, F.M. Johannes, DAC91

• Gordian: A Quadratic  Placement Approach
– Global optimization: solves a sequence of quadratic programming 

problems
– Partitioning: enforces the non-overlap constraints
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Adaptec1 Stats

• Circuit stats
– # cells/nets/pins  210,863/219,687/19,205
– chip size       6000um × 6000um
– bin size 50um × 50um
– # placement bins 120 × 120
– Average bin occupancy 210K/1202 =14.6 gates/bin

• Wirelength result (HPBB)
– iteration 0 34,069,060
– iteration 29 46,352,680
– iteration 58 80,783,336
– iteration 87 98,111,904



Overview of Gordian Package

Procedure Gordian
l:=1;
global-optimize(l);
while (there exists |Ml|>k)

for each r є R(l)
partition(r, r’, r”);

l++;
setup-constraints(l);
global-optimize(l);
repartition(l);

final-placement(l);
endprocedure



Problem Definition

module u

x

y
connection to 
other modules

Squared wire length of net v

pin vu (xuv, yuv)

net node v

(avu, bvu) = offset from center of u(xu, yu)

(xv, yv)

lvu

vuuuvvuuuv

vuv
Mu

vuvv

byyaxx

yyxxL
v

+=+=

−+−= ∑
∈

,

])()[( 22



Cost Function

XdCXXx

YdCYYXdCXXyx

wL

TT

T
y

TT
x

T

v
Nv

v

+=

+++=

= ∑
∈

)(

),(
2
1

φ

φ

φ

• Minimize the following:



• The center of gravity constraints
– At level l, chip is divided into q (≤ 2l ) regions
– For region p, the center coordinates: (up, vp)
– Mp: set of modules in region p
– Matrix from for all regions

– Lastly, we have

Constraints
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Problem Formulation
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• Second order partial derivatives of f
– Determine the concavity of the graph of f
– Useful to find local optimal solutions 
– Our WL function is quadratic

• Hessian will have constants only
– Laplacian is Hessian!

Hessian Matrix

Laplacian

Hessian matrix

concavity



• Our Gordian QP

• 3 Types of QP: Depends on C
– Positive Definite Hessian Matrix (Bowl)

• All its eigenvalues are positive
• One optimal value: Convex

– Semi-definite Hessian Matrix (Trough)
• All its eigenvalues are non-negative
• Line of optimal values: Convex

– Indefinite Hessian Matrix (Saddle)
• Optimal is on the boundaries: Non-Convex
• NP Hard

3 Types of Quadratic Programming



• Our Laplacian C
– C is positive definite if C’s eigenvalues are nonnegative
– C is positive definite if xTCx is positive
– C is positive definite if C is diagonal and the entries are positive
– So, C is positive definite

• So, Gordian QP:

Gordian Laplacian



Partitioning

• Recursive partitioning is needed
– to resolve module overlap in global placement
– global placement problem will be solved again with two 

additional center_of_gravity constraints
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Repartitioning

• Module exchange after each cut to improve cut size 
– terminal propagation using global placement positions

• Repartitioning
– to ‘undo’ the mistake made at the previous level:

Procedure repartition(l)
if overlap exists

for each r∈R(l-1)
merge-regions(r, r’, r’’);
partition(r, r’, r’’);

setup-constraints(l);
global-optimize(l);

endif 



Summary of Gordian

Global 
Optimization

minimization of                   
wire length

Final               
Placement

adoption of style 
dependent       
constraints

module coordinates

position constraints

module 
coordinates

Regions           
with ≤ k
modules

Complexity: space = O(m), time = O(m1.5 log2m)
Final placement: standard cell, macro-cell & SOG

Partitioning of 
module set and 

dissection of 
placement region



Experimental Results

Circuit
scb1
scb2
scb3
scb4
scb5
scb6
scb7
scb8
scb9

CPU-time scb8
CPU-time scb9

ratio

GORDIAN
2.7
5.8

15.7
14.0
10.6
11.3
16.4
51.7
54.0
120s
135s

1

Min-Cut
3.1
5.3

25.6
16.9
11.3
12.7
20.2
89.2
98.6
366s
440s

:3

Annealing
2.6
5.0
9.1

13.2
10.9
12.8
19.8
59.5
80.0

39851s
34709s

:300

Area After Routing/mm2

Comparison of Results for Standard Cell Blocks



Practical Problems in VLSI Physical Design GORDIAN Placement (1/21)

GORDIAN Placement
Perform GORDIAN placement

Uniform area and net weight, area balance factor = 0.5
Undirected graph model: each edge in k-clique gets weight 2/k



Practical Problems in VLSI Physical Design GORDIAN Placement (2/21)

IO Placement
Necessary for GORDIAN to work



Practical Problems in VLSI Physical Design GORDIAN Placement (3/21)

Adjacency Matrix
Shows connections among movable nodes

Among nodes a to j



Practical Problems in VLSI Physical Design GORDIAN Placement (4/21)

Pin Connection Matrix
Shows connections between movable nodes and IO

Rows = movable nodes, columns = IO (fixed)



Practical Problems in VLSI Physical Design GORDIAN Placement (5/21)

Degree Matrix
Based on both adjacency and pin connection matrices

Sum of entries in the same row (= node degree)



Practical Problems in VLSI Physical Design GORDIAN Placement (6/21)

Laplacian Matrix
Degree matrix minus adjacency matrix



Practical Problems in VLSI Physical Design GORDIAN Placement (7/21)

Fixed Pin Vectors
Based on pin connection matrix and IO location

Y-direction is defined similarly



Practical Problems in VLSI Physical Design GORDIAN Placement (8/21)

Fixed Pin Vectors (cont)



Practical Problems in VLSI Physical Design GORDIAN Placement (9/21)

Fixed Pin Vectors (cont)



Practical Problems in VLSI Physical Design GORDIAN Placement (10/21)

Level 0 QP Formulation
No constraint necessary



Practical Problems in VLSI Physical Design GORDIAN Placement (11/21)

Level 0 Placement
Cells with real dimension will overlap



Practical Problems in VLSI Physical Design GORDIAN Placement (12/21)

Level 1 Partitioning
Perform level 1 partitioning

Obtain center locations for center-of-gravity constraints



Practical Problems in VLSI Physical Design GORDIAN Placement (13/21)

Level 1 Constraint



Practical Problems in VLSI Physical Design GORDIAN Placement (14/21)

Level 1 LQP Formulation



Practical Problems in VLSI Physical Design GORDIAN Placement (15/21)

Level 1 Placement



Practical Problems in VLSI Physical Design GORDIAN Placement (16/21)

Verification
Verify that the constraints are satisfied in the left partition



Practical Problems in VLSI Physical Design GORDIAN Placement (17/21)

Level 2 Partitioning
Add two more cut-lines

This results in p1={c,d}, p2={a,b,e}, p3={g,j}, p4={f,h,i}

chip height is 4
we split 5 cells into 2:3 ratio



Practical Problems in VLSI Physical Design GORDIAN Placement (18/21)

Level 2 Constraint



Practical Problems in VLSI Physical Design GORDIAN Placement (19/21)

Level 2 LQP Formulation



Practical Problems in VLSI Physical Design GORDIAN Placement (20/21)

Level 2 Placement
Clique-based wiring is shown



Practical Problems in VLSI Physical Design GORDIAN Placement (21/21)

Summary
Center-of-gravity constraint

Helps spread the cells evenly while monitoring wirelength
Removes overlaps among the cells (with real dimension)



Linear vs. Quadratic Objective

A B C
fixed movable fixed

α

β γ

Quadratic objective function

A B C
fixed fixedmovable

γ

Linear objective function

Quadratic:
𝜑𝜑𝑞𝑞 = 𝑙𝑙𝛼𝛼2 + 𝑙𝑙𝛽𝛽2 + 𝑙𝑙𝛾𝛾2 = 2(𝑙𝑙 − 𝑙𝑙𝛾𝛾)2 + 𝑙𝑙𝛾𝛾2

𝜑𝜑𝑞𝑞𝑝 = −4 𝑙𝑙 − 𝑙𝑙𝛾𝛾 + 2𝑙𝑙𝛾𝛾 = 0, So the optimal 𝑙𝑙𝛾𝛾 =
2
3
𝑙𝑙

Linear:
𝜑𝜑𝑙𝑙 = 𝑙𝑙𝛼𝛼 + 𝑙𝑙𝛽𝛽 + 𝑙𝑙𝛾𝛾, So the optimal 𝑙𝑙𝛾𝛾 = 𝑙𝑙



Linear vs. Quadratic Objective

• Quadratic objective function
– tends to make very long net shorter than linear objective function
– lets short nets become slightly longer
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Linear objective function Quadratic objective function 



Optimizing Linear Objective

• Global Placement with linear objective function
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Analytical Placement Results
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Analytical Placement Results
Quadratic objective function      Linear objective function

(a) Global placement with 1 region



Analytical Placement Results
Quadratic objective function      Linear objective function

(b) Global placement with 4 regions



Analytical Placement Results
Quadratic objective function      Linear objective function

(c) Final placements
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