### Placement

#### ECE6133

#### **Physical Design Automation of VLSI Systems**

Prof. Sung Kyu Lim School of Electrical and Computer Engineering Georgia Institute of Technology

#### Placement

- The process of arranging the circuit components on a layout surface.
- Inputs: A set of fixed modules, a netlist.
- Goal: Find the best position for each module on the chip according to appropriate cost functions.
  - Considerations: **routability/channel density**, **wirelength**, cut size, performance, thermal issues, I/O pads.









Shorter wirelength, 3 tracks required.

#### **Estimation of Wirelength**

- Semi-perimeter method: Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!
- Complete graph: Since #edges in a complete graph  $(\frac{n(n-1)}{2})$  is  $\frac{n}{2} \times #$  of tree edges (n-1), wirelength  $\approx \frac{2}{n} \sum_{(i,j) \in net} dist(i,j)$ .
- Minimum chain: Start from one vertex and connect to the closest one, and then to the next closest, etc.
- Source-to-sink connection: Connect one pin to all other pins of the net. Not accurate for uncongested chips.
- Steiner-tree approximation: Computationally expensive.
- Minimum spanning tree







semi-perimeter len = 11

complete graph len \* 2/n = 17.5

chain len = 14



 $source-to-sink \ len = 17$ 



Steiner tree len = 12



*Spanning tree len* = 13

#### **Placement Methods**

- Constructive methods
  - Cluster growth algorithm
  - Force-directed method
  - Algorithm by Goto
  - Min-cut based method
- Iterative improvement methods
  - Pairwise exchange
  - Simulated annealing: Timberwolf
  - Genetic algorithm
- Analytical methods
  - Gordian, Gordian-L

#### **Min-Cut Placement**

- Breuer, "A class of min-cut placement algorithms," DAC-77.
- Quadrature: suitable for circuits with high density in the center.
- **Bisection:** good for standard-cell placement.
- Slice/Bisection: good for cells with high interconnection on the periphery.



#### **Algorithm for Min-Cut Placement**

```
Algorithm: Min_Cut_Placement(N, n, C)

/* N: the layout surface */

/* n: # of cells to be placed */

/* n: # of cells in a slot */

/* C: the connectivity matrix */

1 begin

2 if (n \le n_0) then PlaceCells(N, n, C);

3 else

4 (N_1, N_2) \leftarrow CutSurface(N);

5 (n_1, C_1), (n_2, C_2) \leftarrow Partition(n, C);

6 Call Min_Cut_Placement(N_1, n_1, C_1);

7 Call Min_Cut_Placement(N_2, n_2, C_2);

8 end
```

#### **Quadrature Placement Example**

• Apply K-L heuristic to partition + Quadrature Placement: Cost  $C_1 = 4$ ,  $C_{2L} = C_{2R} = 2$ , etc.



#### Min-Cut Placement with Terminal Propagation

- Dunlop & Kernighan, "A procedure for placement of standard-cell VLSI circuits," IEEE TCAD, Jan. 1985.
- Drawback of the original min-cut placement: Does not consider the positions of terminal pins that enter a region.
  - What happens if we swap  $\{1, 3, 6, 9\}$  and  $\{2, 4, 5, 7\}$  in the previous example?





#### **Terminal Propagation**



P will stay in R1 for the rest of partitioning!

• When not to use p to bias partitioning? Net s has cells in many groups?



#### **Terminal Propagation Example**

• Partitioning must be done breadth-first, not depth-first.





## **Creating Rows**

- Terminal propagation reduce overall area by ~30%
- Creating rows
  - Choose α and β preferably to balance row to balance row length (during re-arrangement )



## **Creating Rows**

- Example
  - Partitioning of circuit into 32 groups
  - Each group is either assigned to a single row or divided into 2 rows



## **Experimental Results**

- CMOS Chip with 453 nets and 412 cells
- Manual solution
  - track density=147; feedthroughs=184
- Automated solution
  - without terminal propagation: t.d.=313; f.t.=591
  - (t.d. reduced to 235 by iterative interchanges)
  - with terminal propagation: t.d.=186; f.t.=182
  - (t.d. reduced to 152 by iterative interchanges)
  - Iterative Interchange Refinement is helpful
- The program is in production use as part of an automatic placement system in AT&T Bell Lab.
  - Solutions within 10% of the best hand layout

### **Remarks on Min-cut Placement**

- Also implemented F-M partitioning method
  - Much faster but solutions appeared to be not as good as K-L
- Use Simulated Annealing to do partitioning
  - Much slower. If restricted to a reasonable CPU time, solutions are of similar quality of those by F-M method. Easy to implement
- Seeking an elegant way to force some cells to be in particular positions
- Investigate other algorithms for terminal propagation
  - Terminal propagation is the bottleneck of CPU time

## Mincut Placement

- Perform quadrature mincut onto 4 × 4 grid
  - Start with vertical cut first

$$\overline{n_1} = \{e, f\} \\
n_2 = \{a, e, i\} \\
n_3 = \{b, f, g\} \\
n_4 = \{c, g, l\} \\
n_5 = \{d, l, h\} \\
n_6 = \{e, i, j\} \\
n_7 = \{f, j\} \\
n_7 = \{f, j\} \\
n_8 = \{g, j, k\} \\
n_9 = \{l, o, p\} \\
n_{10} = \{h, p\} \\
n_{11} = \{i, m\} \\
n_{12} = \{j, m, n\} \\
n_{13} = \{k, n, o\}$$



undirected graph model w/ k-clique weighting thin edges = weight 0.5, thick edges = weight 1



Mincut Placement (1/12)

# Cut 1 and 2

- First cut has min-cutsize of 3 (not unique)
  - Both cuts 1 and 2 divide the entire chip



## Cut 3 and 4

- Each cut minimizes cutsize
  - Helps reduce overall wirelength



Practical Problems in VLSI Physical Design

Mincut Placement (3/12)

## Cut 5 and 6

- 16 partitions generated by 6 cuts
  - HPBB wirelength = 27





### **Recursive Bisection**

- Start with vertical cut
  - Perform terminal propagation with middle third window



### Cut 3: Terminal Propagation

- Two terminals are propagated and are "pulling" nodes
  - Node k and o connect to n and j:  $p_1$  propagated (outside window)
  - Node g connect to j, f and b:  $p_2$  propagated (outside window)
  - Terminal  $p_1$  pulls k/o/g to top partition, and  $p_2$  pulls g to bottom





Practical Problems in VLSI Physical Design

Mincut Placement (6/12)

### Cut 4: Terminal Propagation

- One terminal propagated
  - Node *n* and *j* connect to o/k/g:  $p_1$  propagated
  - Node *i* and *j* connect to *e*/*f*/*a*: no propagation (inside window)
  - Terminal  $p_1$  pulls *n* and *j* to right partition



Practical Problems in VLSI Physical Design

Mincut Placement (7/12)

### Cut 5: Terminal Propagation

- Three terminals propagated
  - Node *i* propagated to  $p_1$ , *j* to  $p_2$ , and *g* to  $p_3$
  - Terminal  $p_1$  pulls e and a to left partition
  - Terminal  $p_2$  and  $p_3$  pull f/b/e to right partition



### Cut 6: Terminal Propagation

- One terminal propagated
  - Node *n* and *j* are propagated to *p*<sub>1</sub>
  - Terminal  $p_1$  pulls o and k to left partition



### Cut 7: Terminal Propagation

- Three terminals propagated
  - Node j/f/b propagated to  $p_1$ , o/k to  $p_2$ , and h/p to  $p_3$
  - Terminal  $p_1$  and  $p_2$  pull g and l to left partition
  - Terminal  $p_3$  pull l and d to right partition



## Cut 8 to 15

- 16 partitions generated by 15 cuts
  - HPBB wirelength = 23





Practical Problems in VLSI Physical Design

Mincut Placement (11/12)

## Comparison

- Quadrature vs recursive bisection + terminal propagation
  - Number of cuts: 6 vs 15
  - Wirelength: 27 vs 23



## Quadratic Programming (QP)

- Definition
  - Process of solving optimization problems involving quadratic functions
  - One seeks to optimize (minimize or maximize) a <u>multivariate quadratic</u> <u>function subject to linear constraints</u> on the variables
- QP with n variables and m constraints

minimize 
$$rac{1}{2}\mathbf{x}^{\mathrm{T}}Q\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

subject to  $A\mathbf{x} \preceq \mathbf{b}$ ,

- n-dimensional vector c
- n × n-dimensional real symmetric matrix Q
- m × n-dimensional real matrix A
- m-dimensional real vector b

## **Analytical Placement**

- Gordian package:
  - GORDIAN: Gordian: VLSI Placement by Quadratic
     Programming and slicing Optimization: J. M. Kleinhans, G.Sigl,
     F.M. Johannes, K.J. Antreich, IEEE TCAD, 1991
  - GORDIAN-L: Analytical Placement: A Linear or a Quadratic Objective Function?: G. Sigl, K. Doll, F.M. Johannes, DAC91
- Gordian: A Quadratic Placement Approach
  - Global optimization: solves a sequence of quadratic programming problems
  - Partitioning: enforces the non-overlap constraints

i=0



i=58



i=29



i=87

# **Adaptec1 Stats**

- Circuit stats
  - # cells/nets/pins
  - chip size
  - bin size
  - # placement bins
  - Average bin occupancy

- 210,863/219,687/19,205
- 6000um × 6000um
- 50um × 50um
- $120 \times 120$
- 210K/120<sup>2</sup> =14.6 gates/bin

#### • Wirelength result (HPBB)

iteration 0
iteration 29
iteration 58
iteration 58
98,111,904

### **Overview of Gordian Package**

**Procedure Gordian** *l*:=1; global-optimize(*l*); while (there exists  $|M_l| > k$ ) for each  $r \in R(l)$ partition(r, r', r"); *l*++; setup-constraints(l); global-optimize(l); repartition(*l*); final-placement(l); endprocedure

#### **Problem Definition**



Squared wire length of net v

$$L_{v} = \sum_{u \in M_{v}} [(x_{uv} - x_{v})^{2} + (y_{uv} - y_{v})^{2}]$$

 $x_{uv} = x_u + a_{vu}, y_{uv} = y_u + b_{vu}$ 

#### **Cost Function**

• Minimize the following:

$$\phi = \frac{1}{2} \sum_{v \in N} L_v w_v$$
  
$$\phi(x, y) = X^T C X + d_x^T X + Y^T C Y + d_y^T Y$$
  
$$\phi(x) = X^T C X + d^T X$$

#### Constraints

- The center of gravity constraints
  - At level *l*, chip is divided into  $q (\leq 2^l)$  regions
  - For region p, the center coordinates:  $(u_p, v_p)$
  - $M_p$ : set of modules in region p
  - Matrix from for all regions

$$\sum_{m \in M_p} F_m \cdot x_m = u_p \times \sum_{m \in M_p} F_m$$

- Lastly, we have

$$A^{l}X = u^{l}$$
, where  $a_{pm} = \begin{cases} F_m / \sum_{m \in M_p} F_m, \\ 0 \end{cases}$ 

1

if 
$$m \in M_p$$

otherwise

#### **Problem Formulation**



Linearly constrained Quadratic Programming problem  $LQP: \min_{x \in R^{m}} \{\Phi(x) = X^{T}CX + d^{T}X \text{ such that } A^{l}X = u^{l}\}$ 

#### **Hessian Matrix**

- Second order partial derivatives of f
  - Determine the concavity of the graph of f
  - Useful to find local optimal solutions
  - Our WL function is quadratic
    - · Hessian will have constants only
  - Laplacian is Hessian!



|                | $\displaystyle \left[ {\ {\partial^2 f\over\partial x_1^2}}  ight.$ | $\frac{\partial^2 f}{\partial x_1\partial x_2}$ |    | $rac{\partial^2 f}{\partial x_1\partial x_n}$   |  |
|----------------|---------------------------------------------------------------------|-------------------------------------------------|----|--------------------------------------------------|--|
| $\mathbf{H} =$ | $\frac{\partial^2 f}{\partial x_2\partial x_1}$                     | $\frac{\partial^2 f}{\partial x_2^2}$           |    | $rac{\partial^2 f}{\partial x_2  \partial x_n}$ |  |
|                | ÷                                                                   | :                                               | ۰. | ÷                                                |  |
|                | ${\partial^2 f\over\partial x_n\partial x_1}$                       | $\frac{\partial^2 f}{\partial x_n\partial x_2}$ |    | $rac{\partial^2 f}{\partial x_n^2}$             |  |

#### **Hessian matrix**

| $ \begin{pmatrix} \frac{25}{6} \\ -\frac{2}{3} \\ 0 \\ 0 \\ 7 \end{pmatrix} $          | $ \begin{array}{r} -\frac{2}{3} \\ \frac{23}{6} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{array} $ | $ \begin{array}{c} 0 \\ -\frac{1}{2} \\ \frac{25}{6} \\ -\frac{7}{6} \\ 0 \end{array} $      | $ \begin{array}{c} 0 \\ -\frac{1}{2} \\ -\frac{7}{6} \\ \frac{23}{6} \\ 0 \end{array} $ | $-\frac{7}{6}$<br>0<br>0<br>$\frac{23}{6}$ | $-\frac{1}{2}$<br>-1<br>$-\frac{2}{3}$<br>0<br>$-\frac{1}{2}$                                                                      | $\begin{array}{c} 0 \\ 0 \\ -rac{2}{3} \\ 0 \\ 0 \end{array}$                                                    | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$        | 0<br>0<br>0<br>0                                                                                                                              | $\begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}$                                  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $ \begin{array}{c} -\frac{7}{6} \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ |                                                                                                    | $ \begin{array}{c} -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ 0 \\ 0 \\ 0 \end{array} $ | $     \begin{array}{c}       0 \\       0 \\       0 \\       -1     \end{array} $      |                                            | $ \begin{array}{r} -\frac{2}{3} \\ \frac{31}{6} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ 0 \end{array} $ | $ \begin{array}{c} -\frac{2}{3} \\ \frac{8}{3} \\ 0 \\ -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{array} $ | $-\frac{2}{3}$<br>0<br>$\frac{10}{3}$<br>$-\frac{2}{3}$<br>0 | $ \begin{array}{c} -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ \frac{11}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{array} $ | $ \begin{array}{c} 0 \\ -\frac{2}{3} \\ 0 \\ -\frac{2}{3} \\ \frac{10}{3} \end{array} $ |

#### Laplacian

## **3 Types of Quadratic Programming**

Our Gordian QP

LQP: 
$$\min_{x \in \Re^m} \left\{ \phi(x) = \frac{1}{2} x^T C x + d^T x | A^{(l)} x = u^{(l)} \right\}$$

- 3 Types of QP: Depends on C
  - Positive Definite Hessian Matrix (Bowl)
    - All its eigenvalues are positive
    - One optimal value: Convex
  - Semi-definite Hessian Matrix (Trough)
    - All its eigenvalues are non-negative
    - Line of optimal values: Convex
  - Indefinite Hessian Matrix (Saddle)
    - Optimal is on the boundaries: Non-Convex
    - NP Hard







.

#### **Gordian Laplacian**

- Our Laplacian C
  - C is positive definite if C's eigenvalues are nonnegative
  - C is positive definite if  $x^TCx$  is positive
  - C is positive definite if <u>C is diagonal and the entries are positive</u>
  - So, C is positive definite
- So, Gordian QP:

LQP: 
$$\min_{x \in \Re^m} \left\{ \phi(x) = \frac{1}{2} x^T C x + d^T x | A^{(l)} x = u^{(l)} \right\}.$$
 (7)

Since  $\phi(x)$  is a convex function (*C* is positive definite) and the linear equality constraints (5) define a convex subspace of  $\Re^m$ , (7) has a unique global minimum  $\phi(x^*)$ .

## Partitioning

- Recursive partitioning is needed
  - to resolve module overlap in global placement
  - global placement problem will be solved again with two additional center\_of\_gravity constraints



## Repartitioning

- Module exchange after each cut to improve cut size
  - terminal propagation using global placement positions
- Repartitioning
  - to 'undo' the mistake made at the previous level:

```
Procedure repartition(l)

if overlap exists

for each r∈R(l-1)

merge-regions(r, r', r'');

partition(r, r', r'');

setup-constraints(l);

global-optimize(l);

endif
```

#### **Summary of Gordian**



**Complexity:** space = O(m), time =  $O(m^{1.5} \log^2 m)$ **Final placement:** standard cell, macro-cell & SOG

#### **Experimental Results**

|                      | Area After Routing/mm <sup>2</sup> |             |               |  |
|----------------------|------------------------------------|-------------|---------------|--|
| Circuit              | GORDIAN                            | Min-Cut     | Annealing     |  |
| scb1                 | 2.7                                | 3.1         | 2.6           |  |
| scb2                 | 5.8                                | 5.3         | 5.0           |  |
| scb3                 | 15.7                               | 25.6        | 9.1           |  |
| scb4                 | 14.0                               | 16.9        | 13.2          |  |
| scb5                 | 10.6                               | 11.3        | 10.9          |  |
| scb6                 | 11.3                               | 12.7        | 12.8          |  |
| scb7                 | 16.4                               | 20.2        | 19.8          |  |
| scb8                 | 51.7                               | 89.2        | 59.5          |  |
| scb9                 | 54.0                               | 98.6        | 80.0          |  |
| CPU-time scb8        | 120s                               | 366s        | <b>39851s</b> |  |
| <b>CPU-time scb9</b> | 135s                               | <b>440s</b> | 34709s        |  |
| ratio                | 1                                  | :3          | :300          |  |

**Comparison of Results for Standard Cell Blocks** 

## **GORDIAN** Placement

- Perform GORDIAN placement
  - Uniform area and net weight, area balance factor = 0.5
  - Undirected graph model: each edge in k-clique gets weight 2/k



## IO Placement

#### Necessary for GORDIAN to work





Practical Problems in VLSI Physical Design

**GORDIAN Placement (2/21)** 

# Adjacency Matrix

- Shows connections among movable nodes
  - Among nodes *a* to *j*

Practical Problems in VLSI Physical Design

**GORDIAN Placement (3/21)** 

## Pin Connection Matrix

- Shows connections between movable nodes and IO
  - Rows = movable nodes, columns = IO (fixed)





**GORDIAN Placement (4/21)** 

## Degree Matrix

- Based on both adjacency and pin connection matrices
  - Sum of entries in the same row (= node degree)





**GORDIAN Placement (5/21)** 

# Laplacian Matrix

Degree matrix minus adjacency matrix

$$\begin{pmatrix} \frac{25}{6} & -\frac{2}{3} & 0 & 0 & -\frac{7}{6} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{2}{3} & \frac{23}{6} & -\frac{1}{2} & -\frac{1}{2} & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{25}{6} & -\frac{7}{6} & 0 & -\frac{2}{3} & -\frac{2}{3} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{7}{6} & \frac{23}{6} & 0 & 0 & 0 & 0 & -1 \\ -\frac{7}{6} & 0 & 0 & 0 & \frac{23}{6} & -\frac{1}{2} & 0 & -1 & 0 & 0 \\ -\frac{1}{2} & -1 & -\frac{2}{3} & 0 & -\frac{1}{2} & \frac{31}{6} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & -\frac{2}{3} & 0 & 0 & -\frac{2}{3} & \frac{8}{3} & 0 & -\frac{2}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & -1 & -\frac{2}{3} & 0 & \frac{10}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & \frac{11}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & -1 & 0 & 0 & -\frac{2}{3} & 0 & -\frac{2}{3} & \frac{10}{3} \end{pmatrix}$$



Practical Problems in VLSI Physical Design

**GORDIAN Placement (6/21)** 

## Fixed Pin Vectors

Based on pin connection matrix and IO location

Each entry *i* in  $d_x$ , denoted  $d_{x,i}$ , is computed as follows:

$$d_{x,i} = -\sum_j p_{ij} \cdot x(p_j)$$

where  $p_{ij}$  denotes the entry of the pin connection matrix, and  $x(p_j)$  is the x-coordinate of the corresponding IO pin j.

Y-direction is defined similarly



# Fixed Pin Vectors (cont) $d_{x,1} = -(\frac{2}{3} \cdot 0 + \frac{2}{3} \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + \frac{1}{2} \cdot 2 + 0 \cdot 3 + 0 \cdot 4 + 0 \cdot 4) = -1$

By examining the remaining 9 movable cells, we get





**GORDIAN Placement (8/21)** 

#### Fixed Pin Vectors (cont)

$$d_{y,1} = -\left(\frac{2}{3} \cdot 1 + \frac{2}{3} \cdot 2 + 0 \cdot 3 + 0 \cdot 4 + \frac{1}{2} \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 2\right) = -2$$

By examining the remaining 9 movable cells, we get





**GORDIAN Placement (9/21)** 

## Level 0 QP Formulation

No constraint necessary

Minimize

$$\phi(x) = \frac{1}{2}x^T C x + d_x^T x$$

and

$$\phi(y) = \frac{1}{2}y^T C y + d_y^T y$$

We use MOSEK and obtain the following solution:

 $x^{T} = \begin{pmatrix} 0.95 & 0.92 & 1.21 & 1.32 & 1.32 & 1.61 & 1.98 & 2.13 & 2.59 & 2.51 \end{pmatrix}$  $y^{T} = \begin{pmatrix} 1.27 & 1.83 & 2.48 & 2.61 & 1.16 & 1.45 & 1.84 & 0.92 & 1.41 & 2.03 \end{pmatrix}$ 



**GORDIAN Placement (10/21)** 

## Level 0 Placement

• Cells with real dimension will overlap





## Level 1 Partitioning

- Perform level 1 partitioning
  - Obtain center locations for center-of-gravity constraints



## Level 1 Constraint

We first sort the nodes based on their x-coordinates:

$$\{b,a,c,e,d,f,g,h,j,i\}$$

We perform partitioning under  $\alpha = 0.5$ :

$$S_{\rho'} = \{b, a, c, e, d\}, \ S_{\rho''} = \{f, g, h, j, i\}$$

The center location vectors are:

$$u_x^{(1)} = \begin{pmatrix} 1\\ 3 \end{pmatrix}, \ u_y^{(1)} = \begin{pmatrix} 2\\ 2 \end{pmatrix}$$

We build the matrix  $A^{(1)}$  for the center-of-gravity constraint at level l = 1:

$$A^{(1)} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

Practical Problems in VLSI Physical Design

**GORDIAN Placement (13/21)** 



## Level 1 LQP Formulation

We now solve the following Linearly constrained QP (LQP) to obtain the new placement for the movable nodes:

Minimize 
$$\phi(x) = \frac{1}{2}x^T C x + d_x^T x$$
, subject to  $A^{(1)} \cdot x = u_x^{(1)}$   
Minimize  $\phi(y) = \frac{1}{2}y^T C y + d_y^T y$ , subject to  $A^{(1)} \cdot y = u_y^{(1)}$ 

The solutions are as follows:

$$x^{T} = \begin{pmatrix} 0.70 & 0.71 & 1.17 & 1.21 & 1.22 & 2.17 & 3.10 & 2.84 & 3.56 & 3.33 \end{pmatrix}$$
  
 $y^{T} = \begin{pmatrix} 1.34 & 1.94 & 2.66 & 2.76 & 1.30 & 1.83 & 2.45 & 1.32 & 1.91 & 2.49 \end{pmatrix}$ 



## Level 1 Placement





## Verification

• Verify that the constraints are satisfied in the left partition

The following cells are partitioned to the left: a(0.70, 1.34), b(0.71, 1.94), c(1.17, 2.66), d(1.21, 2.76), and e(1.22, 1.30). Thus, the center of gravity is located at:



## Level 2 Partitioning

- Add two more cut-lines
  - This results in  $p_1 = \{c, d\}, p_2 = \{a, b, e\}, p_3 = \{g, j\}, p_4 = \{f, h, i\}$



## Level 2 Constraint

The center location vectors are:

$$u_x^{(2)} = \begin{pmatrix} 1\\1\\3\\3 \end{pmatrix}, \ u_y^{(2)} = \begin{pmatrix} 3.2\\1.2\\3.2\\1.2 \end{pmatrix}$$

Next, we build the matrix  $A^{(2)}$  for the center-of-gravity constraint at level l = 2. Recall that  $p_1 = \{c, d\}, p_2 = \{a, b, e\}, p_3 = \{g, j\}, p_4 = \{f, h, i\}$ . Thus,

where the rows denote the partitions  $p_1$  through  $p_4$ , and the columns denote the cells *a* through *j*.

## Level 2 LQP Formulation

We now solve the following LQP to obtain the placement of the movable nodes:

Minimize 
$$\phi(x) = \frac{1}{2}x^T C x + d_x^T x$$
, subject to  $A^{(2)} \cdot x = u_x^{(2)}$   
Minimize  $\phi(y) = \frac{1}{2}y^T C y + d_y^T y$ , subject to  $A^{(2)} \cdot y = u_y^{(2)}$ 

The solutions are as follows:

 $x^{T} = \begin{pmatrix} 0.83 & 0.78 & 1.00 & 1.00 & 1.39 & 2.28 & 2.89 & 3.06 & 3.66 & 3.11 \end{pmatrix}$  $y^{T} = \begin{pmatrix} 1.01 & 1.78 & 3.08 & 3.32 & 0.82 & 1.44 & 3.18 & 0.59 & 1.57 & 3.22 \end{pmatrix}$ 



## Level 2 Placement

Clique-based wiring is shown





**GORDIAN Placement (20/21)** 

## Summary

- Center-of-gravity constraint
  - Helps spread the cells evenly while monitoring wirelength
  - Removes overlaps among the cells (with real dimension)



#### Linear vs. Quadratic Objective



Quadratic:  

$$\varphi_q = l_{\alpha}^2 + l_{\beta}^2 + l_{\gamma}^2 = 2(l - l_{\gamma})^2 + l_{\gamma}^2$$
  
 $\varphi'_q = -4(l - l_{\gamma}) + 2l_{\gamma} = 0$ , So the optimal  $l_{\gamma} = \frac{2}{3}l$ 

#### Linear:

$$\varphi_l = l_{\alpha} + l_{\beta} + l_{\gamma}$$
, So the optimal  $l_{\gamma} = l$ 

## Linear vs. Quadratic Objective

#### • Quadratic objective function

- tends to make very long net shorter than linear objective function
- lets short nets become slightly longer



Linear objective function

Quadratic objective function

## **Optimizing Linear Objective**

Global Placement with linear objective function

$$\phi_q = \sum_{v \in N} \sum_{u \in M_v} (x_{uv} - x_v)^2 \rightarrow \text{quadratic objective function}$$
$$\phi_l = \sum_{v \in N} \sum_{u \in M_v} |x_{uv} - x_v| \rightarrow \text{linear objective function}$$

- Trick
  - use quadratic programming to minimize linear objective function

$$\phi_{l} = \sum_{v \in N} \sum_{u \in M_{v}} \frac{(x_{uv} - x_{v})^{2}}{|x_{uv} - x_{v}|} = \sum_{v \in N} \sum_{u \in M_{v}} \frac{(x_{uv} - x_{v})^{2}}{g_{uv}}$$
$$g_{uv} = |x_{uv} - x_{v}|, g_{v} = \sum_{u \in M_{v}} |x_{uv} - x_{v}|$$



Figure: Sum of wire lengths versus #pins

**Quadratic objective function** Linear objective function



(a) Global placement with 1 region

**Quadratic objective function** Linear objective function



(b) Global placement with 4 regions

**Quadratic objective function** Linear objective function





(c) Final placements