Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PERFORMANCE-DRIVEN INTERCONNECT DESIGN BASED
ON DISTRIBUTED RC DELAY MODEL

J. Cong October 1992
K.-S. Leung CSD-920043

D. Zhou

Performance-Driven Interconnect Design Based on Distributed RC
Delay Model

Jason Cong and Kwok-Shing Leung
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90024

Dian Zhou
Department of Electrical Engineering

University of North Carolina
Charlotte, NC 28213

Abstract

Most previous works on the interconnect design are based on a simple model which assumes that in-
terconnection delay of a net is proportional to the total wirelength of the net. Such delay model becomes
less and less realistic as the fabrication technology reaches submicron device dimensions and gigahertz fre-
quency. In this paper, we study the interconnect design problem under a distributed RC model, and present
efficient solutions to interconnect topology design and wiresizing problems for performance optimization.
We study the impact of technology factors on the interconnect designs and present general formulations of
the interconnect topology design and wiresizing problems. We show that interconnect topology optimiza-
tion can be achieved by computing optimal generalized rectilinear Steiner arborescences and we present an
efficient algorithm which yields optimal or near-optimal solutions. We reveal several important properties
of optimal wire width assignments and present a polynomial time optimal wiresizing algorithm. Extensive
experimental results indicate that our approach significantly outperforms other routing methods for high-
performance IC and MCM designs. Our interconnect designs reduce the interconnection delays by up to
66% as compared to those by the best known Steiner tree algorithm.

1 Introduction

As the VLSI fabrication technology reaches submicron device dimension and gigahertz frequency, interconnec-
tion delay has become the dominant factor in determining circuit speed [6, 16]. Most previous works on this
problem are based on a simplistic linear delay model of witelength minimization, and many global routing
algorithms based on the Steiner tree formulation have been proposed, such as [12, 2}. Although these methods
produce good results in terms of wirelength minimization, they cannot achieve performance optimization in
the design of high-speed ICs and MCMs. Moreover, uniform wire width has been used for the connections of
most signal nets in the conventional routing methods. Very little is known about proper wiresizing for delay
optimization. There is a strong need for systematic studies in the interconnect topology design and wiresizing

problems for delay optimization in high-performance system designs.

However, limited progress has been reported in the literature for the performance-driven interconnect de-
sign problem. In [7], net priorities are determined based on static timing analysis; nets with high priorities
are processed earlier using fewer feedthroughs. In [11], a hierarchical approach to timing-driven routing was
outlined. In [13), a timing-driven global router based on the A* heuristic search algorithm was proposed in

building-block designs. In [3, 4], a timing-driven global router was proposed to minimize both the total wire-

length and the longest path from the source to any sink simultaneously. Although these routers tried to reduce
the interconnection delay by optimizing the routing topology, their objective functions were oversimplified due
to the use of linear delay model or the lumped RC delay model. Moreover, none of these algorithms study the
impact of wiresizing on interconnect delay minimization. Although wiresizing was used by Fisher and Kung [9]
in H-tree clock routing, the general wiresizing problem for arbitrary routing topology has not been well studied

before.

In this paper, we study the interconnect design problem under a distributed RC delay model developed
by Rubinstein, Penfield and Horowitz [15]. Using this model, we develop a routing algorithm based on the
efficient construction of rectilinear arborescences. We have also developed a polynomial time optimal wiresizing

algorithm which is applicable to arbitrary routing topology.

The remainder of this paper is organized as follows: In Section 2, we present the general formulation of the
routing and wiresizing problems based on the distributed RC delay model. In Section 3, we give an efficient
routing algorithm for delay minimization based on the construction of rectilinear arborescences. In Section 4,
we present an optimal wiresizing algorithm and a set of speed-up techniques. Section 5 shows the comparisons
among different approaches to the interconnect design problem based on circuit simulation results. Section 6

concludes this paper with the discussion of future works.

2 Problem Formulation

Traditionally, the minimum Steiner tree has been the preferred interconnect topology because: (1) it uses the
minimum wiring area, and (2) it results in the minimum wire capacitance which used to be the dominating
factor contributing to the interconnection delay in the conventional technology due to large driver resistance
and small wire resistance. However, in the submicron VLSI designs, the driver resistance is smaller and the
wire resistance is relatively larger. In this case, the distributed nature of a circuit must be considered. In this
case, the minimum delay is no longer achieved by an optimal Steiner tree. Figure 1 shows the simulation results
of an optimal Steiner tree and an a minimum-cost shortest-path tree. We can see clearly that the latter tree

results in a smaller delay, despite the fact it has larger total wirelength.

In this paper, we use a distributed RC delay model developed by Rubinstein, Penfield, and Horowitz [15].

Given a distributed RC circuit, the signal delay at a node is computed as follows:

it = Z Ry - Cy (1)

all nodes k

where Ry is the resistance between the source and the node k and C is capacitance at the node £.

There are several reasons that we choose this delay model: (i) Although this model is simpler than the
commonly used Elmore delay model [8] for distributed RC circuits, it still captures the distributed nature of
the circuit; (ii) It gives an accurate upper bound of signal delay at every node and correlates very well with
the Elmore delay [15]; {iii) It is much easier to use for interconnect design optimization since it gives a uniform

upper bound of the delay at every node.

Given a routing tree 7' implementing a net which consists of a source and a set of sinks, we shall use
Equation 1 to compute the signal delay #{T) at any node in tree T. In order to model a routing tree as a
distributed RC tree accurately, a grid structure is superimposed on the routing plane, and each wire segment

in the routing tree is divided into a sequence of wires of unit length as shown in Figure 2. (Grid points are unit

driver

)
T ks
Trce 2 1 ¥ Cu 200 1= Difference in delay at V(1) =09Vo (Vo=5V)
TeC |1
c
T ke 200 L
driver ¥ S
100
g ¢ om | | i |
K2 0.00 10.00 20.00 30,00 4000 5000
Time{psec)

Figure 1: Circuit responses of two different interconnect topologies. Tree 1 is an optimal Steiner tree. Tree 2
is optimized for delay minimization.

length apart.) When the wire width is fixed, both the wire resistance and the wire capacitance are proportional
to the wirelength. (We shall discuss the case of variable wire widths later.) Assume that a unit-grid-length
wire has wire resistance g and wire capacitance (p, then according to Equation 1, an upper bound of the

delay of a routing tree is:

t1) = Y (Ra + Ro pl(T))-(Co + C)

kel
= Y RsCo + Y Ropli(T)-Cx + 3 _Ro-ple(T)-Co + Y Ri-C (2)
keT keT keT keT

where R4 is the driver resistance, pli(T') is the wirelength from the source to node k in the routing tree T', and
C). is the extra capacitance (besides the wire capacitance) at node & in T'. Notice that the set of nodes includes
all grid points in the routing tree 7', not just sinks and branching nodes. If node k is a sink, then Cy is the
loading capacitance at the node. If there is a via at node k, it can also be formulated by adding some extra
capacitance at the node [18], which reflect the distributed nature of interconnection delay. For simplicity, we
assume that C} is non-zero only when node k is a sink, but wire capacitance Cy presents at every node. Note
that the summation in Equation 2 is over all nodes in the routing tree T, not just sinks. Based on this delay

model, we shall formulate a number of performance optimization problems in the subsequent subsections.

2.1 The Optimal Interconnect Topology Design

We can rewrite Equation 2 into the following form:

HT) = t(T) + t2(T) + t3(T) + ta(T) (3)

Figure 2: A grid structure for RC distributed model. (a) The layout of an interconnect 7' with 3 sinks (G, Gy,
and Gs). (b) The corresponding distributed RC model of T. Each edge in T connecting two adjacent nodes is
modeled as a RC element containing a resistance Ry and a capacitance Cp. Cp3, Cpa, and Cpg are the extra
loading capacitance at the sinks respectively.

where

t(T) = Ra-Cp-length(T) (4)
t2(T) = Ro- 3. Cr-ple(T) (5)

all sinks k
t3(T) = Ro-Co- Y ph(T) (6)

kel
ta(T) = Ra- >, Gk (7)

all sinks k

In Equations 4-7, length(T) is the total wirelength of the routing tree T, and pli(T) is the path length
from the source to the node k. Since the driver resistance Ry and the total loading capacitance at all sinks,
> ait sinks & Ck, are fixed for a given net, £4(T) is a constant. In order to minimize ¢(T), we only need to

minimize ¢;(T7) + £2(T) + ta3(7). It is interesting to see the physical meanings of these three terms.

The first term ¢,(7") is the product of the driver’s output resistance and the total wire capacitance. This
term is minimized when length{T) is minimum. In the conventional technology, ¢1(T) is the dominating term
since the driver’s output resistance is much larger than the wire resistance! (i.e. Rg 3> Ro - length(T)). This
explains partially why the conventional routing methods emphasize the total wirelength minimization. Clearly,

minimizing ¢1(T} leads to an optimal Steiner tree (OST).

In the summation of the second term #.(7T'), each term is a product of the loading capacitance Cy of each
sink and the pathlength plx(T") from the source to the sink & in T. Since the loading capacitance of a sink
in a given design is fixed, t3(7") is minimized when all the paths from the source to sinks are minimum in
length, which results in a shortest path tree rooted at the source. This shows that when all (or some) loading
capacitance are very large, we need to select the shortest paths to connect the source to these sinks. Therefore,

minimizing t3(T") leads to a shortest path tree.

1In the 2 ym CMOS technology, the typical values of driver resistance and unit wire capacitance are: By = 1k — 4k, Ry =
0.03€2/ pm.

The third term is more interesting. It is proportional to the summation of the pathlengths from the source
to all nodes (not just sinks) in T'. Intuitively, if there is a long source-to-leaf path P in T', t3(T") will be very
large since it contains a term »_,,p pli(T) which is roughly proportional to the square of the length of P.
Therefore, we prefer a routing tree of short paths in order to keep t3(T") small. This, in fact, justifies the work
by Cong, et al. [3] in which the radius (i.e. the longest source-sink path) of a routing tree is kept under certain
bound in the layout design. On the other hﬁnd, if length(T) is large, the number of nodes in T is large and it
may increase 3(T") as well. Therefore minimizing t3(7") leads to a routing tree which is “in-between” a shortest

path tree and an optimal Steiner Tree. We shall call a tree optimal under the cost function t3(7T) a Quadratic
Minimum Steiner Tree (QM ST).

Notice that the relative importance of these terms is determined by the ratio %:, which we call the Resistance
raiio. Because the resistance ratio was very large in the previous technology, conventicnal routing techniques
focused on total wirelength minimization and used minimum wire width for all segments in order to minimize
t1(T). However, as the technology advances to smaller device dimensions, according to the CMOS scaling rule
[1], driver resistance decreases while wire resistance increases, which leads to a significant reduction of the
resistance ratio. In this case, t2(7") and #3(7T") can no longer be ignored in the design of new generation VLSI
circuits. Although Equations 4-7 are obtained from a distributed RC delay model, the impact of resistance
ratio on interconnection design is true for distributed RLC delay model as well. Zhou, Preparata and Kang [17]

studied the interconnection delay in a single high-speed transmission line and have observed similar results.

In general, the minimum delay routing tree (M DRT) problem can be formulated as follows:

Given a signal net N = {Ng,Ny,---,Na_1} where Ny is the source and N — {Ny} is the set of
sinks, and three nonnegative constanis o, 8, and v, find a rectilinear routing tree T of the net N
such that

a-length(T) + 8- Z ple(T) + - E ple(T) (8)

all sinks keN all nodes keT
ts mintmized, where length(T) is the total wirelength of the tree T and ply(T') is the pathlength from
the source Ny to the node k in T

The M DRT problem is NP-hard in general since the problem degenerates into the classic Steiner tree
problem when both @ and ¥ equal zero. Although the SPT problem alone can be solved optimally in polynomial
time, the combination of the three different (possibly conflicting) cost functions makes the problem very difficult.
Figure 3 shows an example in which optimizations of ¢;(T), #2(7), and t3(T) independently leads to three
distinct trees. In Section 3, we shall study the problem of constructing M DRT trees in detail.

2.2 The Optimal Wiresizing

In the preceding subsection, we assume that wires in a routing tree have uniform width, which is widely used in
conventional layout designs. However, our study shows that for the new generation of VLSI technology, proper
sizing of the wires can lead to substantial reduction in signal delay. For example, Figure 4 shows two routing
trees of a three-terminal net. Both trees have the same routing topology (a T-tree with the source at the end
of the T-stem). But the first tree uses the uniform wire width, while in the second tree the width of the T-stem

is twice that of the two T-branches. As expected, simulation results show that the second tree has a smaller

Tree Topology:
H source
® sink
[0 othernode So S So
Optimal Tree Topology: OST SPT QMST
Total wirelength
etrg): 9 11 10
(optimal)
Sum Of
Source-to-Sink 37 29 31
pathlengths hz (T {optimal}
Sum Of
Source-to-grid-point 45 36 34
pathlengths 1'3 {Tk {optimal)

Figure 3: An example in which the OST, SPT, and QM ST all differ from each other.

signal delay than the first one. In this subsection, we shall formalize the general wiresizing problem for delay

optimization.

Voltage(V)

Tree 2

600 —

500 -

4.00 —

Difference in delay at V(1) =0.9Vo (Vo =5V}

| 3.00
Tree-2 %

2.00

| 1 |
0.00 50.00 100.00 15000 Time(psec)

Figure 4: Circuit responses of two trees with the same topologies but different wire widths. Tree 1 has uniform
wire width. Tree 2 has larger wire width for the “stem”.

Assume that we have a set of discrete wire widths, {W;, Wa, -- -, W}, to choose for each wire segment. Let

wy be the width of the incoming grid edge e(k) at node &. If the wire width at node k is wy, according to

Equation 1, the upper bound of the delay of a routing tree becomes:

tT) = Y (Ra+ Ro- Y. %)'(Co‘wk + Ci)

keT iePe(T)
1 1
= ZRd'CD'wk+ZRO Z E-Ck-i-ZRo- Z E‘Cu‘wk'f‘sz‘Ck
kel kel ieP(T) keT iePu(T) keT
= H(T) + t2(T) + t3(T) + t(T) (9)
where
W(T) = Rq-Cy-area(T) (10}
1

t20T) = Ro- 3, Ci- Y. — (11)

Wy
all sinks k iePu(T) ¢

ta(T) = Ro-Co-3. 3 2 (12)

w
keT icPu(T) ©

ta(T) = Ra- . Cy (13)

all sinks k
In these equations, area(T) is the total wiring area of T, and Pi(T) is the path from the source to the
node k in the routing tree T'. The meanings of the remaining terms are the same as in the previous subsection.
Again, we can show that t4(T') is a constant, and (T, t5(T"), and ¢3(7) have similar physical meanings as in

the previous subsection.

The wiresizing problem can be formulated as follows:

Given a set of wire segments S implementing a routing tree T and a set of possible widths W =
W, Wa,- - WoH, (Wi < Wig1 1 <4 < r— 1), the wiresizing problem is to find a wire width
assignment f : S — W such that the delay {(T) defined in Equation 9 is minimized.

In the formulation, a segment is a straight wire connecting two adjacent non-trivial nodes. A node is
non-trivial if it is a turning node, a branching node, a sink, or the source. Intermediate grid points on a
wire segment are called trivial nodes. We assume that each wire segment (rather than each edge) has a set
of discrete choices of wire widths since this resembles more closely to the realistic design style and reflects
the actnal technological constraint where arbitrary width variation within a segment is usually undesirable.
Nevertheless, this segment-based formulation can easily be generalized to handle the case where variable wire

width is allowed within a segment by introducing artificial non-trivial nodes along each segment.

Ideally, we want to determine the topology of the routing tree and perform wire width assignment to the
segments in the tree at the same time. However, the complexity involved in this problem is very high and it is
unlikely to be solved efficiently. Instead, we adopt the approach of first determining the interconnect topology
and then optimizing wire widths in the given routing tree. Solutions to the wiresizing problem will be discussed

in Section 4.

2.3 Definitions and Basic Concepts

For future discussion, we use p;, p, to refer to the x-coordinate and its y-coordinate of a node p, respectively.
We use dist;(p,q), disty(p,q), and dist(p, q) to denote the horizontal distance, the vertical distance, and the

rectilinear distance between nodes p and ¢ respectively. Given two nodes p and p’, we use Pr(p',p) to denote

the path connecting p and p’ in the tree T. Moreover, we define parent(p) as the non-trivial node other than

a turning node immediate preceding p along the path Pr(Ny, p).

It is helpful to look at the QM ST problem from another point of view for better understanding how tree
topology is related to the cost 3~ ., 4., & Ple(T). If we assign pli(T) as the cost of the edge er(k’, k) where
k" is the node immediate preceding & in Pr(k), then the total QM ST cost can be obtained by summing all the
edge costs of the tree T'. This is illustrated in Figure 5. We can, therefore, consider the QM ST problem as a
generalized version of the O.ST problem where the cost of each edge is a function of its location and the tree
topology, and our goal becomes finding a tree of minimum total cost. According to this definition, the difference
between the OST and QM ST problems is merely the cost function defined on each edge in the routing tree.
We use cost(T') to denote the cost of the tree T under the OST cost function, and costgmsT(T) to denote the
cost of the tree 1" under the QM ST cost function. Also, we use cost(P) (costoarsT(P)) to denote the sum of
edge costs of path P under the OST cost (QM ST cost).

-

Bl Source
1
- - ® Sinks
1
Oo—u [0 Other Nodes
OST cost =10 QMST cost =39

Figure 5: The QM ST problem can be transformed into the variable-cost QST problem. The edge cost of the
tree to the left is according to the OST cost function, and the edge cost of the tree to the right hand side is
defined according to the QM ST cost function.

3 Interconnect Topology Design
3.1 The Basic Approach

Since the general M DRT problem is NP-complete and there is no definite correlation between the three terms
t1(T), t2(T), and t3(T) for a general interconnect topology, we shall focus our attention to a special type of

routing topology, called the A-tree topology, which is defined as follows.

Definition 1 A rectilinear Steiner tree T is a called an A-free if every path connecting the source Ny and any

node p on the tree ts a shoriest path.

Notice that A-trees are generalization of the rectilinear Steiner arborescences studied in [14]. Given a set N
of n nodes lying in the first quadrant of E? (the Euclidean Plane), including a node at the origin, a rectilinear
Steiner arborescence is a directed tree rooted at the origin and contains all nodes in N, composed of horizontal
and vertical arcs oriented only from left to right or from bottom to top. However, an A-tree allows the nodes

in N to lie anywhere in E? as long as paths are always directed away from the origin.

There are several reasons that we are interested in A-trees. First, any A-tree is always a SPT. Therefore,
the 25(T') term is always minimum. Moreover, we shall show later (in Theorem 2) that an optimal Steiner
A-tree (OSA) is also a quadratic minimum Steiner A-tree (M SA) in most cases. Therefore, minimizing t; (7'}
is equivalent to minimizing #3(T). As a result, minimizing total wirelength of an A-tree leads to simultaneous
optimization of #1(T), 2(T), and t3(T). Such a harmony would be impossible to achieve for general routing
topologies. Furthermore, our experimental results show that we can develop efficient algorithm for computing
A-tree with optimal or near-optimal wirelength. Therefore, we restrict the solutions to the M D RT problem to

the class of A-trees.

Without loss of generality, we consider only the case when all the sinks are restricted to the first quadrant (i.e.
when the A-tree becomes an arborescence}. There are several well established results regarding arborescences
in the literature. In particular, Rao, et al. [14] presented a number of fundamental properties of the rectilinear
Steiner arborescence problem. Besides, most of the discussions on arborescences are also applicable to the
general A-trees. Moreover, by determining the best rectilinear Steiner arborescence in each quadrant satisfying
specific boundary conditions, and selecting the best topology among all possible combinations of tree topologies
considered, we can use an arborescence algorithm to construct general A-trees, and the overall complexity of

the new algorithm is O(n?) times that of the original arborescence algorithm [14].

Hence, we focus on solving the rectilinear Steiner arborescence problem from now on. Unless explicitly
specified, we will assume that the source Ny is located at (0,0), and all other sinks have nonnegative x- and y-
coordinates. We use cost(1) to denote the total wirelength of a tree T. Our goal is to construct a rectilinear

Steiner arborescence T such that cost(T) is minimized.

3.2 The A-tree Algorithm

The outline of the A-tree algorithm is as follows: Starting with a forest of n single-node arborescences, we
apply a sequence of moves. Each move introduces a path consisting of one or more segments, which either
“grows” an existing arborescence, or “combines” two arborescences into a new arborescence. This process is

completed when there is only one arborescence left in the forest (see Figure 6).

Before routing After routing
RARRRE S | BEEE -
@ -
BARRREEEE 3 BIEEEEE O
AR 1 AR L R 1. S R Rt -

Move 1
Combine two trees Grow a tree Combine two trees Combine two trees

Figure 6: Illustration of how an arborescence is constructed.

The central part of this algorithm is how to choose a good move. After we introduce several notations

describing the topology, we will describe three types of moves that are “optimal”.

Definition 2 Let Fy denote the forest constructed after the k** move by the A-tree algorithm. ROOT(Fy)

denoles the sel of root nodes in F.
Definition 3 Given a node p, NW(p) is the region “northwest” of p (i.e. NW(p) = {(x, y)|lz < ps,y > Py})

SE(p), SW(p), and NE(p) are similarly defined. Also, we use N(p), E(p), S(p), and W(p) to refer to
the region to the North, East, South and West of the node p. In other words, for a given node p, its entire
neighborhood is partitioned by these eight regional sets with respect to p.

Definition 4 Given two nodes p and q in Fy, p dominates q if p; > ¢, and Py = qy. Moreover, DOM(p, F)
is defined as the set of nodes in Fy, which are dominated by p.

Definition 5 Given two nodes p and q in Fy such that ¢ eNW(p), q is said to be blocked from p if there is a
node v € Fyy such that v, = x, and y, < yr < y,. Similarly, p is said to be blocked from q if there is a node
r € Fy such that y, = yp and 2, < 2, < z,. (Note thal p is blocked from q does not imply that q is blocked

from p, and vice versa.)

Definition 6 Given e node p in ROOT(F:), we use mz(p, Fy) to denote the node in NW({p) N ROOT(Fy)
that is not blocked from p and has the minimum horizontal distance from p. Moreover, dz(p, Fi) is defined as
the horizontal distance between p and mz(p, Fi) (or oo if ma(p, Fi) does not ezist). Similarly, my(p, Fy) is
defined as the node in SE(p, Fi.)N ROOT(Fy) that is not blocked from p and has the minimum vertical distance
from p, and dy(p, Fy.) is defined as the vertical distance between p and my(p, Fy,) (or oo if my(p, Fi.) does not

exist).

Definition 7 Given a node p, we define MF(p, F;) as the set of nodes in DOM (p, Fy) with the minimum
rectilinear distance from p, and df(p, Fi) as the distance between p and any node in M F(p, Fi). Among nodes
in MF(p, Ft), we define mfyesi(p, Fi) as the one with the smallest z-coordinate, and mf.oun(p, Fi) as the one

with the smallest y-coordinate (notice that mfyew(p, Fi) = Mfoousn(p, Fi) in some cases).

The definitions of these terms are illustrated in Figure 7(a)-(d). We now describe three important types of

moves, called safe moves, used in cur algorithm:

1. Type-1 Safe Move (S1-Move)

If d=(p, Fv) > df(p, Fi) and dy(p, Fi) > df(p, Fr) for a node p in ROOT(F;), we intro-
duce a path connecting p 1o mfyese(p, Fx)? (illustrated in Figure 8(a)). After the S1-move,
ROOT(Fr41) = ROOT(F:) — {p}.

2. Type-2 Safe Move (S2-Move)

If dz(p, F}) > df(p, F) and dy(p, Fv) < df(p, F) for a node p in ROOT(F};), we introduce
a vertical path of length min{disty(mfooun(p, Fi), p), dy(p, Fi)} from p southward to p' (illus-
trated in Figure 8(b)-(c)}). After the S2-move, ROOT(Fi41) = ROOT(F) — {p} + {p'}.

?In fact we can connect p to any node in M F(p, F}).

10

r
'
]
1
r
.
[l
[
r
r
'
'
r
'
'

.No ________________
(a)
® SinksSource in ROOT(FK)
B Nodes other than Sinks/Source in ROOT(Fk)
O Sinks/Source in F - ROOT(Fk)
[0 Nodes other than Sinks/Source in F - ROOT(Fk)
— — A SRR IR
M 2 I D L I . '
I . Coa e " R
: Z Lo 2 —lX__op ! :
LB L P R (AR "
P 2 - Fot . .
Goor @l @7 - [iroms, SO S 4 T .
. . —— ""'.‘"‘.‘"/‘.‘idy'.‘"f]' .
/":‘:\.pl-_.... X blocked from p,_ mf oo o ! . .
blocked from p, : X o :.--‘L-_.'éi[,f’-_ld.--.. ..’_.....é
B AR s AN A A N
P o B odiomy, T P T T T
FREEEEE EEE FERTE F FEES
ND.---L—--L---L....---L -t
(©) (d)

Figure 7: (a) Definitions of ROOT(F;). (b) Definitions of the regional sets. (c) Illustration of accessibility
(whether a node is blocked from another). (d) An example to clarify the definitions of mz(p, Fi.), my(p, %),
and mf(p, Fi). In this example, dz(p, F}) = 2, dy(p, Fx) = 2, and df(p, Fi) = 4 (rectilinear distance). There
are 8 arborescences in the forest Fj, containing 16 nodes.

3. Type-3 Safe Move (S§3-Move)

If dx(p, Fy) < df(p, Fi) and dy(p, Fi) > df(p, Fi) for a node p in ROOT(F}), we introduce a
horizontal path of length min{dist.(mfy.c.i(p, Fz),p), dz(p, Fx)} from p westward to p' (illus-
lrated in Figure 8(d)-(e}). After the $3-move, ROOT(Fy41) = ROOT(Fi) — {p} + {p'}.

In the next subsection, we will show that these three types of safe moves are optimal under a natural
definition of optimality. However, it is possible that after a sequence of safe moves, no safe move exists with
respect to the current forest (see Figure 9(a} for an example). In this case, we need to perform a heuristic move

— a move that may not be optimal. In this paper, we will use the following two heuristic moves suggested by

i1

Rao et al. [14].

1. Type-1 Heuristic Move (H1-Move)

Select a node p in ROOT(p, k) such thal p' = mfy,.(p, Fi) is farthest away from the source
and introduce a path connecling p to p’. After the Hl-move, ROOT(Fy 1) = ROOT(Fy)—{p)}.

2. Type-2 Heuristic Move (H2-Move)

Select two nodes py and py in ROOT(Fy) such that p’ = (min{(p1)z, (p2)=}, min{(p1)y, (p2)y }}
is farthest from the origin, and introduce two paths (one vertical and one horizontal) con-
necting py to p’, and py lo p' respectively (illusivated in Figure 9(c)). After the H2-move,
ROOT(Fy41) = ROOT(Fi) — {p1,p2} + {¥'}.

L T [B ey
,ma : . . \mx .
' - . . . P
- .-I -----------]—’4—. --------
............ PN, S P M p e
. R
------------ @---r---r--- P
V= oniin .
P U A I I P W AN S
................ ®-------. R
Bttt L. R SR ooy
® {d)
52-Move 53-Move
B T T TR L R,
Jmx . . mr .
PR N AR Y S S T f:'l‘_‘?
heeiba.. NS (T
: I Y
PR @ R
. N ‘my
I N S
A
(a} ()
S1-Move 52-Move

Figure 8: (a) Type-1 safe move. (b} Type-2 safe move: dy(p, Fi) < disty(mfyoutn(p, Fi),p). (c) Type-2 safe
move: dy(p, Fi) > disty(mfiouen(p, Fr),p). (d) Type-3 safe move: de(p, Fi) < disty(mfyest(p, Fr),p). (€)
Type-3 safe move: dx(p, Fi) > disty(mfuest(p, Fr), p).

In the A-tree algorithm, whether an Hl-move or an H2-move is performed depends on which move gives
a farther p’ from the source Ny. Notice that safe moves are given higher priority than heuristic moves — we
perform a heuristic move only if there is no safe move, but we stop making heuristic moves as soon as we find
one safe move. In the subsequent discussions, we shall use p’ — p to represent an S1-, §2-, S3-, or H1-move
which connects p (¢ ROOT(F})) to p, and use (p' — p1) U (p' «— pa) to represent an H2-move which connects
both pl and p2 (¢ ROOT(Fy)) to p'.

The A-tree algorithm for the construction of rectilinear Steiner arborescence can be summarized in Table 1.

12

Figure 9: {a) An example where no safe move exists with respect to the forest Fi. In this example, dz(p,, Fi} =
dy(pa, Fi) = oo, dy(p1, Fi) = dz(ps, Fi) = 1, and df (py, F) = df(p2, Fi) = 2. (b) Type-1 heuristic move. (c)
Type-2 heuristic move.

A-tree Algorithm

Procedure ATree()
ROOT(Fy) — Fp — the source and all sinks;
for each node p in ROOT do
Compute dz(p, Fi), dy(p, Fi), and df (p, Fi);
end for;
while |ROOT(Fy}| > 1 do
if there exist safe moves do
perform one safe move;
else
perform one heuristic move;
end if;
update dz(p, Fi.), dy(p, Fi), df(p, Fi.), and ROOT(F});
endwhile;
end procedure

Table 1: The A-tree algorithm.

3.3 Optimality Analysis

In this subsection, we shall show that safe moves are opfimal with respect to the current forest which has been

constructed so far. We first give a precise definition of the eptimalify of a move.

Definition 8 Let Fy be the forest constructed after the k** move by the A-tree algorithm. We define T (Fy)

as the minimum-cost rectilinear Steiner arborescence containing Fy, as a subgraph.

According to this definition, T*(Fy} is the optimal rectilinear Steiner arborescence. T™(F}) is the optimal
Steiner arborescence containing the path generated by the first move, and T*(Fas) is the arborescence con-
structed by the A-tree algorithm, where M is the total number of moves generated by the A-tree algorithm.
Since Fy, C Fry1, cost(T™(Fr)) < cost{T™(Fre41)).

Definition 9 If cost{T*(Fr41)) = cost(T"(Fy)), the k + 1'" move is called an optimal move.

13

For convenience, we shall assume that there exists an imaginary optimal algorithm A,p(F) to construct
T*(F) from the forest Fi. Agp(F}) uses the same iterative procedure as the A-tree algorithm, except every
move that A,p(F}) makes is optimal. Ay (Fy) starts with a given forest F = F; and iteratively introduces
optimal moves (i.e. the k + 1** (optimal) move, the k + 2'» (optimal) move, ---) until there is only one
arborescence left in the forest. The corresponding forests are Fy +1 Fr 42, and so on. The sequence of moves

generated by A,p:(Fi) can be derived from T*(Fi) according to the following procedure:

Let 7" be the optimal arborescence T™(F) and LEAF(T*) be the set of leaves in T*. Let N* =
ROOT(Fy)U N. We redefine parent(p) for all p in T* such that all nodes in N* are considered as candi-
dates of parent(p). This guarantees that every segment in T is either entirely contained in Fi or entirely
outside Fi. Then, we iteratively remove paths from T™ and derive the sequence of optimal moves generated
by Agpe(Fi): (i) If there is a node p in LEAF(T*) whose parent p* € N*, we remove the path Pp.(p*, p) from
T*. If the path is not in Fy, we output it as the optimal move generated by Agpi(Fi), and call it an Ol-move;
(ii) If no parent of the nodes in LEAF(T*) is in N*, we select two nodes p; and p» from LEAF(T*) with the
same parent p* (which is a Steiner node) and remove the paths Pr.(p*,p1) and Pp-(p*,p2) from T*. If both
paths are not in Fy, we output both of them together as the optimal move generated by Agpi(Fx) and call it
an O2-move. If only one path is not in F, we output that path as the optimal move generated by A, (F3),
and call it an Ol-move. Otherwise, if both of the paths are in F;, we do not output any move. After each

removal, LEAF(T™) is updated. The process is completed after all segments in T* have been removed.

Initial T* Node in ROOT(FK) Final T*

k 02-Move 01-Move 0O1-Move T Fk)

Figure 10: Illustration of how the moves generated by A,y (Fy) are derived from 7. The upper sequence
shows the removals of segments from T™, and the lower sequence shows the generation of optimal moves. Note
that some nodes in ROOT{F}) are trivial nodes in T*.

The derivation of the sequence of optimal moves by A, (Fi) starting with T* is illustrated in Figure 10.

We extend all of the previous definitions (i.e. dz(p, Ft), dy(p, Fi), etc.) to Aqpe(Fi) by considering the
optimal algorithm as an extension of the A-tree algorithm. We can easily see that the O1- and Q2-moves
generated by A, (Fi) have the same structures as the H1- and H2-moves. Notice that starting with a forest

with n roots, the Agp(Fy) algorithm always completes the construction of the optimal arborescence after

14

exactly n — 1 moves, whereas the A-tree algorithm might output more than n — 1 moves.

With these definitions, we proceed to prove that the safe moves are optimal.

Lemma 1 In the A-tree algorithm, if p ¢ ROOT(F) N ROOT(Fi41), then dz(p, Fy) < dz(p, Firy1) and
dy(p)Fk) S dy(p! Fk+1)'

Proof: Assume that there exist a node p and an index k such that dz(p, Fy) > dz(p, Fiy41). Let ¢’ ~— g be the
k + 1** move (take the vertical move if it is an H2-move), then it must be the case that ¢’ = maz(p, Fry) #
ma(p, Fi).

The k + 1** move cannot be an S1-move or an Hi-move because they do not introduce any rew node to
ROOT(Fg41). It also cannot be an $2-move or an H2-move because otherwise ¢’ has the same x-coordinate
and accessibility (i.e. whether blocked from p or not) as ¢, which implies that dz(p, Fy4,) = dz(p, F};). Hence,
the k + 1** move must be an $3-move. Moreover, ¢! # mz(g, Fi): because otherwise ¢’ and mz(q, Fx) would
then have the same horizontal distance and accessibility from p. Therefore, ¢, = m fues1(gq, Fi)r. We also know
that mfyes:(q, Fi) is in the region SW{p, F;) (rather than in W(p, Fi) or NW(p, Fi)) since ¢’ is not blocked
by m fuest(q, Fi) from p.

There are two cases: (i) If ¢ is in N{p, F}.) or NE(p, Fi), then dist(p,q) < dist(mfuese(q, Fi),q) (see
Figure 11(i}); (ii) If g is in NW (p, F}), then ¢ must be blocked from p by a node r in Fi (otherwise mz(p, Fi), >
8 > @ = mz(p, Fry1):), and dist(r, q) < dist(mfy.,:(q, Fi), ¢) (see Figure 11(ii)). In both cases, it contradicts
to the fact that mfyes:(p, Fi) is the closest node to ¢ among nodes in DOM(q, Fi). Therefore, the k + 1'%

move cannot be an S3-move either.

As a result, dr(p, F) < dz(p, Fy41) after each move by the A-tree algorithm. Similarly, we can also show

that dy(p, Fi) < dy(p, Fr41) after each move. a

@ P o ... ey

q L e Wt
...... i)+ + <+ = 5 4 . —g i sa e e

. . i X ; "I 'blockade”
------------- R I e R I . D
........... S

¢, ey

........... N P S S A

Figure 11: If dz(p, Fi) > dz(p, Fi41), then the & + 1** move is an S3-move originated from a node ¢ to the
vertical line & = mfy.,:(q, Fr)e and mfy..i(q, Fi) is in SW(p). In this case, ¢ is either (i) in N(p) U N E(p),
or (ii} in NW(p) and blocked from p by a node 7 in Fy.

Lemma 2 [n the A-tree algorithm, if p ¢ ROOT(Fy)NROOT(Fiy.), then df (p, Fi) > df(p, Fiq1). Moreover,
if df (p, Fi) > df(p, Fr41), then df(p, Fry1) > min{dz(p, F), dy(p, Fi)}-

15

Proof: 1t is trivial to see that df(p, ;) > df(p, Fr,,,) because df(p, Fi) = min{dist(p,q)|qg ¢ DOM(p, F;)}
and DOM (p, F,) C DOM(p, Fi4,1) for any node p in Fy.

Assume that there exist a node p and an index & such that df(p, Fi) > df(p, Fr+1), and that the £+ 1** move
q' — ¢ contains a new node z ¢ MF(p, Fry1) — MF(p, Fi). We can easily see that ¢’ must be in DOM(p, F).
The move ¢' — g, however, cannot be completely dominated by p, because otherwise z = ¢ ¢ Fy. Therefore,
the move ¢’ — ¢ spans at least two regional sets and z ¢ W(p) U S(p). In the following, we will consider the

case where z ¢ W(p).

If the & + 1" move is an S1-move (or an Hl-move), ¢ must be a node in NW(p), N(p), or NE(p). There
are three cases: (i} If ¢ is in NW(p) and dist (g, p) > dz(p, Fi), then df(p, Fy41) = dist(z, p) = distz(z,p) >
dist.(q,p) > dz(p, F}) (see Figure 12(i)); (i) If ¢ is in NW(p)} and dist,(q,p) < dz(p, F¢), then q¢ must be
blocked from p by a node r in Fi and dist(r,q) < dist(q’,q) = df(q, Fx), which leads to a contradiction (see
Figure 12(i1)); (in) If ¢ is in N(p) or NE(p), then dist(p,q) < dist(q’,q) = df(q, Fx), which also leads to a

contradiction (see Figure 12(iii)).

If the k + 1** move is an S2-move, dist-(q,p) is at least dz(p, F}) and therefore df(p, Fr41) = dist(z,p) =
dist,(z,p) = dist;(q,p) > dz(p, Fy). Moreover, the k + 1'* move cannot be an $3-move since no horizontal
path contains ¢ ¢ W(p) unless the path is completely dominated by p. If the & 4+ 1** is an H2-move, we can
consider the vertical path added as an S2-move (and the horizontal path as an 53-move), which again implies
that df(p, Fr41) = dist(z,p) = distz(z,p) > dz(p, Fi).

Therefore, dist(z,p) > dz(p, Fi) if z is in W{p). Using a similar argument, we can show that dist(z,p) >
dy(p, Fi) if z is in S(p). Since df(p, Fr+1) = dist(z, p), in both cases, we have that df(p, Fr41) = dist{z,p) >
min{dz(p, Fy,), dy(p, Fr)}. Therefore, given a node p in ROOT(F) N ROOT(Fy11), df(p, Fr) > df(p, Fi41)
implies that df(p, Fyy1) > min{dz(p, Fi), dy(p, Fx)}. O

Figure 12: The case when the k +1'* move is an S1-move or an H1-move, which introduces a path from a node
g to a node ¢’ € M F(q, F,) in SW(p). Assume that the new node z ¢ MF(p, Fr41) — M F(p, F+} is in W(p).
Then, ¢ is (i) in NW(p) and ¢, < mz(p, Fi)s, (ii) in NW(p) and ¢, > m(p, F}.), or (iii) in N(p) or NW(p).

Using similar arguments, we can also show that Lemma 1 and Lemma 2 are also true for the sequence of
forests F, Fy,,,--- generated by the Ay, (Fy) algorithm since O1- and O2-moves behave in the same way as

H1- and H2-moves.

16

Corollary 1 Let LB(p, Fi) = min{dz(p, F}), dy(p, Fi), df (p, Fi)} for each p e ROOT(F:). Then, LB(p, F}) <
LB(p, Fry1) if p ¢ ROOT(Fr44).

Proof: According to Lemma 1, mén{dz(p, Fry1), dy(p, Fr+1)} > min{dz(p, Fi), dy(p, Fx)}. If df(p, F}) =
df(p, Fi41), LB(p, Fr41) = min{dz(p, Fe41), dy(p, Fe41), df (p, Fiy1)} > min{dz(p, F), dy(p, Fi), df (p, Fi)} =
LB(p, Fy). Otherwire, df (p, F) > df{(p, Fi41). According to Lemma 2, df(p, Fi41) > min{dz(p, F}), dy(p, Fi)}.
LB(p, Fi41) = min{min{dz(p, Fi11), dy(p, Fr+1)},df (p, Fi4+1)} > min{dz(p, Ft), dy(p, 1)} > LB(p,Fi). O

Given a node p in ROOT(F}), it is clear that LB(p, Fi) gives a lower bound of dist(p’, p), where p’ is the
parent of p in the arborescence constructed by the A-tree algorithm. We shall show that LB(p, F;) also gives
a lower bound of dist(p®, p), where p* is the parent of p in T*(F;) constructed by A,p:(Fp).

Corollary 2 Let p be a node in ROOT(Fy), and p* be the parent of p in T*(Fy). Then dist(p*,p) > LB(p, F).

Proof: Assume that the path Pp.(py(p*, p) is introduced by the A,p(F%) algorithm in the j*» move (j > k).
If the 7** move is an Ol-move, dist(p*,p) > df(p, F7_,) because the Ol-move introduces a path from p to an
ezisting node in DOM (p, F;‘_l).

If the 7* move is an O2-move, then p* (a Steiner node) is the parent of p and another node p from
ROOT(F_y). If p* € W(p), dist(p™,p) > dz(p, F{_,); If p* € S(p), dist(p*,p) > dy(p, F}_,).

In all cases, dist(p*,p) > min{dz(p, F}_,), dy(p, F}_,), df(p, Fr_))} = LB{p,F;_;). And according to

Corollary 1, we have,
dist(p®,p) > LB(p,Fj_)) > LB(p,F;_;) > -+ > LB(p,F{) = LB(p, Fy) (14)

Hence, dist(p*,p) > LB(p, Fi). o

Theorem 1 S{-move, S2-move, and 53-move are oplimal.

Proof: We shall show that there exists a 7" (F;) which contains Fi4; as a subgraph if the & 4+ 1** move is a

safe move. Assume that the k + 1"

move is p’ «— p and that the parent of p in T*(F}) is p*.

1. Sl-move: de(p, Fi,) > df(p, Fr) and dy(p, Fi) > df(p, Fx)
According to Corollary 2, dist(p*,p) > LB(p, Fi) = min{dz(p, Fi), dy(p, Fi),df(p, Fr)} = df(p, Fi) =
dist(p’, p). Let T' be the tree modified from 7™ (F) by replacing the path Pr. g, y(p*, p) with a rectilinear
shortest path from p to p’. Then, cost(T') < cost(T*(F;)) and T' contains Fi,; as a subgraph.

2. S2-move: dz(p, Fi) > df(p, F}) and dy(p, Fi) < df (p, Fi)
There are three cases: (i) If p* ¢ S(p), the path Pp.(p,y(p*, p) always contains the vertical path generated
by the move p’ — p; (ii) If p* € SW(p), then p* must be one of the nodes in M F(p, F;) because all
new nodes introduced to M F(p, Fy41), M F(p, Fr4a), - - - are either in W(p) or S(p). Hence, replacing the
path Pr.(p (p*,p) with a shortest path from p to mf,,u:n(p, Fi) does not increase the cost of the tree
T"(Fr). Moreover, by restricting the new path Ppe(py(mfioun(p, Fi),p) to go first southward from p
and then westward to mfyoura(p, Fi), the modified tree contains Fiy, as a subgraph; (iii) If p* ¢ W(p),

17

then dist(p*,p) = dist,(p*,p) > min{dz(p, F}), df (p, Fi)} = df(p, Fr)}. Once again, replacing the path
Prep)(p*, p) with a shortest path from p to mf,ou:n(p, Fi} does not increase the cost of the tree T*(Fy.).
Moreover, by restricting the new path Pp.(g(mfioutn(p, Fi), p) to first go southward from p and then
westward to m fyoun(p, Fi), the modified tree contains Fi 4 as a subgraph.

3. S3-move: dx(p, Fi) < df(p, Fi) and dy(p, Fr) > df (p, Fx)
Because of the symmetry between S52-moves and $3-moves, we can show similarly that $3-moves are

optimal. .

Corollary 3 If all moves tntroduced by the A-tree algorithm during the construction of T are safe moves, T

15 an optimal Sleiner arborescence,]

Moreover, it can be shown that Corollary 3 is also true under the QM ST cost function defined in Section 2,
where costgarsr(T) = 3.1 . 7 Ple(T). Giveanode p and an integer d, let cgars7(p, d) denote Zle(px+py —1),

then we have the following result.

Lemma 3 Given an arborescence T and a node p. Lel p' = pareni(p) and d = dist(p’,p). Then, the total cost
of the path Pr(p',p) under the QM ST cost funclion is costqmst(Pr(p', p)) = ogmst(p, d).

Proof: Let py = p’,p1,p2, -, Pa—1.pa = p be the sequence of nodes on the path Pr(p’,p) from p’ to p,
and e(p;) be the unit-grid-length edge connecting p; and p;_1. Since costomst(e(pi)) = dist(Ng,po) +i =
dist(Ny, pg) — d + i, we have:

costomst(Pr(p’,p))

d
= ZCOStQMST(E(P:‘))
i=1
d d—1 d=1
= > (dist(No,pa) —d+1i) = » (dist(No,pa)—i) = I (p: +py—i) = oomsr(p,d)
i=1 =0 i=0

Note that if p is fixed, we have ogamsr(p, d1) > oomsr(p, d2) if and only if d; > dz. Based on this lemma,

we have the following result:
Theorem 2 Safe moves are optimal under the QM ST cost function.

Proof: Given a forest Fj, assume that the k + 1'* move p’ — p is a safe move. We define Tomst(Fi) as the
rectilinear Steiner arborescence containing Fi as a subgraph such that costgarsT(Tgprsr(F%)) is minimum.
Again, it suffices to show that there exists a Tjjpgp(F)) containing Fiy; as a subgraph. Let p* denote
parent(p) in T35, 67 (Fi). According to the proof of Theorem 1, we can replace the path P* connecting p* and
pin T 57 (Fi) by a path P’ of the same or smaller length which contains the path generated by the p — p
move. Let T' denote the resulting tree. Let d* = dist(p*, p) and d' be the length of P’. Since 7" contains Fj 4

18

and d' < d*, we have:

costomsT(Topsr(Fre1)) — costousr (Tprsr (Fr))
< costoumsT(T') — costomsT{TGusr(Fr))
= oomst(p,d') — sgmsri{p,d*) < 0

Hence, costousr(Toasr(Fe+1)) < costoust (Tprs7(Fi))- 0

Corollary 4 If the complele construction of an arborescence is done with only safe moves, then the A-tree is
an epitmal A-tree under the SPT, OST, and QM ST cost. m]

Qur experimental results indicate that 96% of the moves used by our A-tree algorithm are optimal in
practice, and 65% of the A-trees constructed by our algorithm are optimal under both of the QST and QM ST

cost function since they are generated by safe moves only.

3.4 Lower Bound of the Optimal Cost

In this subsection, we shall derive a lower bound of the cost of the optimal Steiner arborescence (i.e. cast(T*(Fp)))
based on the information obtained during the construction of the A-tree T. Let miy; denote the k + 1'%
move. We define SB(wi41) as follows: If w4y is a safe move, SB(mr41) = 0; If 754y is an Hl-move
p' — p, §B(mi41) = dist(p’,p) — LB(p, Fi); If 731 is an H2-move (p' — p1) U(p' — p2), SB(7i41) =
dist(p', p1) + dist(p', p2} + df (p', Fiy1) — LB(p1, Fi) — LB(pa, Fy).

We keep an accumulated error count ERROR (initialized to 0} during our A-tree construction. After we
make the k + 1** move, we set ERROR — ERROR+ SB(m4,). Now we shall prove that cost{T) — ERROR
is a lower bound of the cost of the optimal A-tree (i.e. cost(T*(Fy)) > cost(T) — ERROR).

Lemma 4 cost(T*(Fiy1)) — cost(T*(Fy)) < SB(mg41)-

Proof: If the & 4+ 1' move w4, is a safe move, according to Theorem 1, cost(T*(Fr41)) = cost{T*(Fy)).
If the & + 1** move is an Hl-move p’ «— p, let the parent of p in T*(F}) be p*. According to Corollary 2,
dist(p*,p) > LB(p, Fi). We obtain a modified tree T" containing Fi4, from T*(F;) by replacing the path
Pre(p(p”, p) with a shortest path from p to p’. Hence, the difference between cost(T™*(Fi41)) and cost(T*(Fy))
18 given by:

cost(T" (Fry1)) — cost(T™(Fy))

cost(T') — cost(T*(Fy))

dist(p’, p) — dist(p*,p) < dist(p’,p) — LB(p, Fx) = SB(mi41) (15)

IA

Otherwise, if the k+1'* move 7.4 is an H2-move (p’ — p1)U(p’ + p2), let the parents of py and py in T*(F) be
pi and p} respectively. According to Corollary 2, dist(p],pi} > LB(p1, Fi) and dist(p5, p2) > LB(p2, Fi). We
obtain a modified tree T” containing Fi11 from T (F%) by replacing the paths Pr.(r,(p1, p1) and Pp-(p,(p3, p2)
with shortest paths from p; to p/, from ps to p/, and from g’ to mfyca(p’, Fiy1). The difference between
cost(T*(Fr41)) and cost(T*(F;)) is given by:

cost(T*(Fiy1)) — cost(T™(Fi))

19

< cost(T") — cost(T*(Fy))

= dist(p', p1) + dist(p', p2) + df (¥, Fr1) — dist(p}, p1) — dist(p}, pa)

< dist(p', p1) + dist(p', p2) + df (¢, Fiyr) — LB(p1, Fi) — LB(p2, Fi)

= SB(mk41) (19)
0

Theorem 3 The cost of the arborescence construcied by the A-tree algorithm is al most Eﬁl SB(rg) higher

than that of the optimal arborescence, where M is the number of moves made by the A-iree algorithm.

Proof: Assume that Fjs is the forest constructed by the A-tree algorithm after M moves. According to

Lemma. 4,

cost(T™ (Fry1)) — cost(T™(Fi)) < SB(mpq1) (17)

Summing Equation 17 from & = 0 to M — 1, we obtain the following inequality:

M-1
cost(T* (Far)) = cost(T"(Fo)) < Y SB(mp41) (18)
k=0
Since cost(T"{Far)) = cost(Far), we have,

M
cost(T*(Fy)) > cost(Fy)— Y SB(m) (19)

k=1

Note that Ef‘le SB(m) can be computed easily during the A-tree construction. Using a similar argument,
we can derive the suboplimality bound for the heuristic moves under the QM ST cost function as follows: If mj)
is a safe move, SBgast(me+1) = 0; If meyy is an Hl-move p' — p, SBomsr(me+1) = ocomsr(p, dist(p’, p)) —
ocomst(p, LB(p, Fi)); If mryy is an H2-move (p' — p1) U (p' — p1), SB(7r41) = comsr(p, dist(p’,p1)) +
oQust(pe, dist(p', p1)) + cqusr (0, df (V' Fiy1)) — oQust(p1, LB(p1, Fr)) — oqusT(p2, LB(p2, Fy)).

Finally, a lower bound of the cost of the optimal quadratic minimum Steiner arborescence is given by:

AM
costomsT(Far) — Y _ SBoamst(m) (20)

k=1

In fact, there is a better strategy for finding a lower bound of cost(7™(Fu)) (and costomsr(THars7(Fo))):
We follow the A-tree algorithm, except that when a heuristic move is needed, we try to find a move = which
minimizes SB(x) rather than to find a move that mazimizes dist(No,p') as is the normal A-tree algorithm.

This strategy usually gives a lower bound of cost(T*(Fu)) (and T s7(Fo)) in practice.

Using the above strategy for lower bound computation, we are able to conclude that the arborescences

generated by our A-tree algorithm are on average at most 3% from the optimal.

Since the A-tree algorithm discussed above constructs an A-tree by iteratively introducing new edges, we

can directly extend the A-tree algorithm to handle the case when no restriction is imposed on the location

20

of the sinks. In the generalized version, routing is performed for all quadrants simultaneously. Most of the
results discussed, including the optimality analysis and the lower bound analysis, still hold for this generalized
version if the definitions of dz(p, Fi), dy(p, Fi), etc. are generalized accordingly. Experimental results show
that 94 % of the moves introduced by the generalized A-tree algorithm are optimal, and that 45 % of the
A-trees constructed are optimal under both of the OST and QM ST cost. On average, the A-trees generated
by the generalized A-tree algorithm are at most 4 % from the optimal.

4 Wiresizing

In this section, we shall discuss the properties of the wiresizing problem and present an efficient wiresizing
algorithm for performance optimization. First, we introduce a few definitions used in the discussion of the

wiresizing problem.

Given a fixed tree 7', we denote w(f, S;) as the width assignment of segment S; in the assignment f {or
simply w; if the context is clear), and f* as the optimal wire width assignment. In most cases, we will focus
on a special kind of trees, called single-stem trees (SS-trees). Each SS-tree contains only one segment (called
the stem of that tree) incident on the root node. A general routing tree can be decomposed into a set of
SS-trees, as illustrated in Figure 13. Although segments, rather than nodes, are involved in the discussion of
the wiresizing problem, we will borrow the notions of ancestors and descendants to refer to segments in the
same way as these terms are defined for nodes. In particular, we use ans(S;) to denote the set of all segments
on the unique path from the source Ny to the segment Sy, excluding S;, and refer des(S;) to the set of segments
{Sk | Si € ans(5)}. Moreover, we use Ts5(S;) to denote the single-stem subtree implemented by S; (as the
stem) and the set des(S;). We use sink(S;) to refer to the set of all sinks on 77(S;).

Root Node

(a) (b)

Figure 13: (a) Any general tree T can be decomposed into a set of independent single-stem trees; (b) A
single-stem tree consists of a stem and a set of single-stem subtrees.

From Equation 9, we know that the minimum wire width is desirable if the resistance ratio is very high,
making ¢, (7") the dominant factor in delay optimization. However, when the resistance ratio is small, wider
widths help reduce ¢,(T) and t3(T’), especially when the signal path is very long. According to Equations 11

and 12, we can see intuitively that larger wire width should be used for the segments near the source, and

21

thinner widths for the segments far away from the source. In fact, this turns out to be a very general property

of any optimal wire width assignment based on our distributed delay model.

Definition 10 Given a routing tree T, o wire width assignment f on T is a monotonic assignment if wp > we

whenever segment Sy is an ancestor of segment S..
Theorem 4 Any eptimal wire width assignment f* is a monotonic assignment.

Proof: The basic idea of the proof is to show that if we find two segments S, and S, in the optimal assignment
f* such that S, is the parent of S; and w, < w,, then the total delay will be reduced by simply increasing the
segment width of S, from w, to w, (see Figure 14), which leads to a contradiction to the optimality assumption

of f*. The formal proof is as follows:

Denote £(f) as the total delay of the routing tree T with wire width assignment f. We can rewrite Equation 9
to show the relationship between the width of a particular segment S; with other segments in the delay formula
as follows:

g, 1
t(f) = K(Si) + Ra-Co-wi - li + Ro- Z Ce — I

i

kesink(S;)
+ Ko - Cho- Z %-h + Ro-Co- Z %—--1’5 (21)
kedes($;) ' keana(5:) .

where ; is the length of the segment S;, and K (S;) involves terms independent of the width {w;) of the segment

S;. Note that the terms involved in Equation 21 refer to segments rather than grids.

Assume f* is not monotonic, then there must exist segments S, and S, such that S, is the parent of S,
and w, < w,. Since f* is optimal, reducing the wire width of S. from w. to w, would not reduce total delay

(see Figure 14).

Define 6t f*, 5., w. — wy) as the change in total delay of the routing tree when the width of S in f* is

changed from w, to w,. We can obtain from Equation 21 the following inequality:

1 1
8t(f*,Se,we = wp) = Ra-Co-(wp—we) -l + Ro- Z Ck'(;um_h@_).lc
kesink(S,) P ¢
Ch - We _ Wy, o Wp _ Wey.
+ Ry -Co Z (w wc) [. + Ry -Gy Z (w‘,c wk) i
kedes(S5.) F keans(S,)
= tml(Sc) + fim.g(Sc) + tma(Sc) + tm4(Sc)
> 0 (22)

where tm;(S.) is the j** term in the expansion of §(f*, S, w, — w,).

Now reconsider the original optimal solution f*. Increasing the wire width of 5, from w, to w. results in

the following change in delay:

1 1
6t(f*!Spuwp‘_>wc) = Rd‘Cg~(wc—wp)-lp + Ry Z Ck(w__w_)[P
kesink(S,) ¢ L
wy Wi we Wy
+Ry-Co Y, (w—c—"uj;)'fp-FRO'Co > (o " w)
kedes(5p) keans(5,)
= tml(Sp) o+ tmg(Sp) + t’l‘ns(Sp) + tm4(5p) (23)

(24)

22

where tm;(S,) is the j** term in the expansion of 6(f*,S,, Wy — W),

Since 5, is a child of S,, we have des(S.) C des(Sp), sink(S.) C sink(S,), and ans(S.) D ans(S;).

Therefore, we can express 6(f*, Sy, w, — w.) in terms of 8(f*, S, w. — w,) plus some adjustment terms.

{

tmi(S,) = ——tml(Sc)-I—p (25)
l | L

tmy(Sp) = —tmy(Se)-F + Ror 3 Ceo(z=—=)-b (26)
¢ kesink(Sp)—sink(5c) We Wp
Iy We Wi

tma(S,) = “tm;;(Sc)'l— + Ry-Cy- Z (—-—)-L (27)
€ kedes(5,)—des(5c) We Wp
i w

tmg(Sy) = —tma(S.) L — Ro-Co- Y (=% —22).4, (28)
¢ s, ok Wk

Sum all these terms together, we obtain:
6(f*’SP! wp — we)
= (M Sewe—) £~ A (-) — B L) Couwy) (29)
- e e Pr, Wy g Wp W, ¢ ’
where
A = Ro- 3 Cily >0
kesink(§,)—sink(5.)
B = Ry-Cy- Z wg -l > 0
kedes(Sp)—des(S.)
1
C = RO'CO'ZE;‘IP>U

k=5,

Note that w. > w, implies w, — w, > 0 and ch - wl’ < 0. Hence 6(f*,Sp,wp — w.) < —8(f*,Sc, w. —
wp) < 0. As a result, we can reduce the cost of f* by increasing the width of 5, from w, to w, (see Figure 14),

which leads to a contradiction. Hence, f* must be a monotonic assignment. o

According to the monotone property, the optimal wire width assignment f* can be represented by a set of
“wavefronts” Vi, Va, - - -, V; radiating outward from the source Ny. Each wavefront defines the boundary where
the segment width decreases, as illustrated in Figure 15. Wavefronts do not intersect {except that they may
touch each others at non-trivial nodes in the tree), and all the segments enclosed between Viy; and Vi have
width Wy,

4.1 Optimal Wiresizing Algorithm

According to Equation 21, the width assignment of segment S; depends only on the widths of its ancestors
and its descendants. Therefore, once S; and every segment in ans(S;) are assigned the appropriate widths, the
optimal wire width assignment for the single-stem subtrees Ts55(5: 1), T55(Si2), - -+, Tos(S &) (with respect to
the width assighment of S; and segments in ans(S;)) can be independently determined, where the segments
Si1, -+, Six are the children of S; (see Figure 16). Based on this property and the monotone property, we

have developed an optimal wiresizing algorithm.

23

..IW -No
. %
H Y
| 4
\]

Decreane width of
Sp, wp, . 8¢ from we to wp Sp, wp, . .
. .‘:.
L) l'; - “.
Se, we Sc, wp
. . ¥ e
4 i
‘Optimal’ Wiresizing Suboptimal Wiresizing
-MJ Decrease in Cost .N’a
k //’—-\-‘ i
Increase width of
Sp from wp to we
Sp, wp, A Sp. N
- ‘.
- h .-’. “t
Se, we Se, we
Fe -
i ‘
‘Optimal’ Wiresizing Better than the ‘Optimal’ Wiresizing 1!

Figure 14; Tllustration of the proof of the monotone property

Figure 15: The optimal wire width assignment can be represented by a set of wavefronts.

Assume we are given a single-stem tree Tsg(S;) with stem segment S;, and a set of possible widths
{Wy,Wa,. .-, W,}, we can determine the optimal assignment f* on Tss(S;) by enumerating all the possi-
ble width assignments of S;. For each of the possible width assignment W of S; (1 < k < r), we determine
the optimal assignment for each single-stem subtree Tss(S; ;) independently by recursively applying the same
procedure to each Tss(S; ;) with {Wy, Wy, -, Wi} as the set of possible widths {to guarantee the monotone

property). The optimal assignment for S; is the one which gives the smallest total delay.

24

T30

TS,

L TSl

Figure 16: 1f S; and every segment in ans(S;) are assigned the proper widths, the optimal wire width assignment
for the single-stem subtrees Ts5(S; 1), Tss(Si2), -+, Tss(Si k) can be independently determined.

If the original routing tree T is not a single-stem tree, we can decompose T into b single-stem trees, where
b is the degree of the root of T, and apply the algorithm to each individual single-stem tree separately (see

Figure 13(a)). Our optimal wiresizing algorithm (OW SA) is formally described in Figure 2.

Optimal Wire Sizing Algorithm (OWSA)

Function OWSA(Tss, r, assignment)
best_assignment — minimum width W, for all segments in Tss;
for each width Wi, 2 <k <rdo
stem width of Tsg — Wy;
for each single slemn subtree Tss; of Tss do
OWSA(Tss,i, k, assignment);
end for;
if delay{assignment) < delay(best_assignment) then
best_assignment « assignment;
end if;
end for;
return best_assignment,;
end function;

Table 2: The Optimal Wiresizing Algorithm (OWSA).

Theorem 5 Given a routing iree with n segments and r possible wire widths, the OWSA algorithm has a

worst case time complexily of O(n""1).

Proof: First, assume that T is a single-stem tree. Let N(n,r) be the mazimum number of calls to Function
OWSA among all possible single-stem routing trees with n segments and r possible choices of wire widths. For
n=1,o0r r =1, it is easy to see that N(1,r} = 1 and N{n,1) = 1. Consider a general n-segment single-stem
tree with b single-stem subtrees connected to the stem. Assume that the k'* subtrees has ny segments. For
each 2 < k < r, there are E?zl N(n;, k) calls to Function OWSA. Hence, the maximum number of calls to
Function OWSA would be 1 + Z;:z Z:’:l N{n;, 7). In short, we can express N(n,r) as follows:

1 n=lorr=1

r b .
N(n,r) — { maXgcadn—1,n1++np=n-—1 {1 + Zj:Z Zi:l N(n,-,_g)} n,r> 2 (30)

25

We proceed to prove that N(n,r) is bounded by n"~!

using mathematical induction on n and r: Forn =1,
we have N(1,r) =1 < 1" for » > 0. For r = 1, we have N(n,1) = 1 < n1~1 for n > 0. Assume that

N(k,r) < k™! for r > 0 and k& < m. Then,

r b
Nim+lr) = 1+ max N(n;i,j
() bni>0n 4 -+np=m {2; (i .7)
T b)
< 1 _g—l
= + b.ﬂ;)U,ﬂIflf)-{--{-nb:m Zzni
j=2i=1
r b j-1
< 1+ max "
- bni>0n1+ -+np=m ;(g ‘)
= 1 X mj—l
* blni>0,ﬂr:'lf"+ﬂb=m {"Z:;()
S - r—1 .
= 1+ij < 1'5'2(J).m-? = (m+1)r—1 (31)
j=1 i=1

By induction, N(n,r) < n"~! for any n and r.

If T is not a single-stem tree, however, we can consider T as a union of b single-stem trees where b is the
degree of the root (see Figure 13(a)), and apply OWSA to determine the optimal wire width assignment for
each tree independently. The overall complexity is O(n}™1) + O(ny™") + -+~ + O(n}™ ") = O(n""!), where
n; is the number of segments in the #*» single-stem tree, and Z?:l n; = n. Each call to Function OWS5SA
requires at most Q(B - r) time, where B is the maximum degree in the tree. Both B and r can be considered as
constants (in the Manhattan plane, B < 4, and r is a small constant in practice). Hence the overall complexity

of OWSA applying to single-stem trees is O(n""1). a

In essence, QW SA enumerates all the possible combinations of monotonic wire width assignments along
every source-to-leaf path in the routing tree. The complexity indeed can grow exponentially with respect to r.
This is the case when the tree is simply a chain of segments, where the total number of possible assignments

evaluated by the OWSA algorithm equals to (" -:i; 1) = Q(n").

Nevertheless, our optimal wiresizing algorithm is a significant improvement over the brute-force enumeration
method which has complexity O(r"). In the next two subsections, we shall show how to further improve the
runtime of the OWSA algorithm.

We would like to point out that a simple bottom-up dynamic programming approach, where the width
assignment of each subtree is determined independent of its ancestors, does not produce optimal solutions in
general. This is due to the fact that the optimal width assignment of any particular segment S; depends on the
wire width assignment of both its descendants and ancestors. In fact, our experimental results indicate that

the wire width assignments generated by such an approach are in general relatively poor in quality.

4.2 Greedy Wiresizing Algorithm

In this subsection, we present a simple greedy approach based on an iterative refinement technique for efficient

wire width assignrﬁent. We also present several important results that characterize the wiresizing solutions

26

produced by the greedy algorithm. These results allow us to achieve significant speed-up of the optimal
wiresizing algorithm when we incorporate the greedy algorithm into the OW S A algorithm.

Definition 11 Given e routing tree T, a wire width assignmeni f on S, and a particuler segment S; ¢ T. A
local refinement on S; is defined as the operation to determine the optimal segment width of S; (with respect to

the fized assignment of f on the other segments). w; is called the locally optimal width of S; with respect to f.

It is obvious that a single local refinement operation can be performed in linear time (in fact, constant time
if sufficient information is kept). Based on this operation, we have developed a greedy algorithm: starting with
an initial wire width assignment (say, all segments have the minimum width}, we traverse the tree and perform
refinement on each segment whenever possible. This process is repeated until no improvement is achieved on
any segment in the last round of traversal. The greedy wiresizing algorithm (GREWSA) is described formally
in Table 3.

Greedy Wire Sizing Algorithm (GREWSA)

Function Greedy Improvement(Tss)
width of the stem of Tss «— locally_optimal_width{current assignment);
For each single stem subtree Ti(k) of Tsg do
Greedy_Improvement(T; (k));
end for;
end function;

Procedure GREWSA(T)
For each single — stem subtree Tss of T do
repeat
Greedy_Improvement(Tss);
until no further improvement;
end for;
end procedure;

Table 3: The Greedy Wiresizing Algorithm (GREWSA).

Despite its greedy nature, GREWSA performs very well in terms of the quality of assignment and runtime
(see Section 5). In fact, GREWSA generates optimal assignments when there are only two choices of wire
widths.

Theorem 6 GREWSA is opltimal when v equals 2.

Proof: Assume that GREWSA is not optimal when r equals 2, i.e. the final wire width assignment f gen-
erated by GREWSA is not identical to f*. Then there must exist a segment S; on a source-to-leaf path
So,--,Si, -+, S, -, Sk such that S; and S; are the first and last segments in the path that the two width
assignments f and f* disagree (i.e. for every segment which is either an ancestor of S; or a descendant of S5,

its width assignments in f and f* are the same).

27

Let’s assume that w} > w; (we will omit the proof for the case w} < wj, which is similar to this proof).

The width assignments of f and f* must satisfy the following condition:

W, Sk € ans(S;) Wa Si € ans{5;)
w; = Wg Sk = SJ' and wp = W1 Sk = S;' (32)
Wi St € des(Sj) w1 Sk ¢ des(S;)
and therefore,
- wy Sk € ans(S;)
w4 > un See{Si,---, 55} (33)
= Wk Sk € des(Sj)

According to Equation 21, for the optimal assignment f*, the increase in cost induced by reducing the
width of S; from w} (= W3) to w; (= Wy) is given by:

S(f7,S;,Wo = W1) = Ry Co-(Wi—Wa)-lj + Ro- > Ci W W) l;

kesink(5;)
wp Wi W, W
. —& L —EYy. . - .
+ Ro C°kE£%&fiV1 w;) i+ RoCo 2 G =) h
edea(5; eans(5;)
> 0 (34)

According to Equation 21, for the assignment f generated by GREWSA, the increase in cost induced by
reducing the width of §; from w; (= W;)} to w} (= Wa) is given by:

B(f,5:, Wi — W2) = Rq-Co-(Wa-Wi) &k + Ra- Y. Ci ———) L
kesink(S,)
+ Ro-Cy Z (%——) L + Ro- Gy Z (——— i (35)
kedes(S:) | 2 keans(S,)

As in the proof of the monotone property, we can obtain a set of inequalities by comparing 84(f*, 5;, Wy —
W) and 8t(f, S;, Wy — Wa) term by term. We also use the fact that S; is a descendant of S;, Wy > W, and
w} > wy for all segments Sy, in ans(S;) U {S;} U des(S;):

L

Ro-Co-(Wh—=Wa) l; = —{Ro-Co-(Wy—Wy) L} (36)
i
1 1
Ry - z Ch - (—“——)‘fj < Rp- Z Ck'(W—W)"i
kesink(S;) kesink(5;) 1 z
1 I,
kesink(5)) ! '
Ro-Co Y. (——;’;)-t,- = R Co 3 (-———) ij
kedes(S;) z kedes(S5)
I
< —QRe-Co Y (gr-gr)-lip-i (38)
kedes(S)) 2 1 ¢
We
Ry - Cy Z(——mHiS%CoZ(_-—
keans(S;) k keans(S;) Wi
w: W, l;
= —{ Ro-Co z (w—z—?u—l-)-li i (39)
keans(5;) k k i

28

By adding up these inequalities, we obtain the following result:
Iy
0 < 8t(f,8;, We — W1) < —8U(f, 5, W — Wz)'f' (40)
i

The equality holds when 6t(f*,S;, Wo — W,) is zero and S; = Sj, meaning that no disagreement of
assignments among the ancestors and descendants of S;. If this is the case, a local refinement on S; will result

in an optimal assignment of w;, leading to a contradiction.

Hence, 8t(f, S;, Wi — Wa) < 0, and a local refinement on S; will reduce the total delay of the assignment
f. This is a contradiction to the assumption that f is the final assignment generated by GREWSA. m]

In addition to the good performance of the GREWSA algorithm on the designs with a small number of width
choices, we can show that assignments generated by GREWSA have the dominance property (defined below),
which allows us to derive the lower and upper bounds of each wire segment using the GREWSA algorithm very
efficiently. In most circumstances, we are able to obtain identical lower and upper bounds of all segments in

the tree using the GREWSA algorithm, which lead to an optimal assignment.

Definition 12 Given {wo wire width assignments f and f' on the same free T, f dominales f' if and only ¢f

w(f,S) > w(f,5) forall 5; ¢ T.

Theorem T Given a wire width assignment f (possibly suboptimal) and a segment S5; on fhe routing iree
T. Assume that f* is the optimal assignment and that f' is an assignment oblained by performing a local

refinement on the wire segment S; such thal

F'(s) = { {a((?is*), gi g (0

where w(S;) is the locally optimal width of S; with respect to f.
Then f' dominates (is dominated by} f* if and only if f dominates (is dominated by) f*.

Proof: According to Equation 21, the delay associated with the routing tree before the local refinement is

given by:
— 1
t(f) = K(&) + Ra-Co-wi-li + Rov Y. Ci-— -l
kesink(S;) Wi
+R-Coo S kit RCo Y ok (42)
i Wi
kedes(5;) keans(5:)

Grouping appropriate terms together, we obtain the following sum:

1
t(f)y = ¥([.S) + O(f, i) wi + ‘P(f,Sf)-; (43)
where
¥(f,8) = K(S) (44)
1
O(f,S) = Ri-Coli + Ro-Cor 3 o (45)
keans(S;)
O(fS) = Ro- D, Ci-li + Ro-Co- > we-k (46)
kesink(5) kedes(5)

29

Note that ¥(f,S;) is a constant during the refinement for S; since f is fixed for the rest of the tree. It is
easy to see that for any two assignments f) and f» such that f; dominates fo, we have O(f1, 5;) < ©(f2, Si)
and ®(f;,5;) > ®(f2, 5;).

During the local refinement of S;, the total cost of the routing tree is locally optimal if and only if the

following expression is minimized:
1
(S, 5) + O(f,) wi + (£, 5) — (47)
1

Let 45; be the locally optimal width of S; with respect to f, and w} is the segment width of S; in the optimal
assignment f*, the following inequality must hold:

WSS+ OULS) d + WLS) = < WES) + O(f,8) wf + LS o (48)

Moreover, since w} is locally optimal with respect to f*, the following inequality must also hold:

VLS + O(FLS) wp + BUTLS) e < WS+ OUTS) -+ BT, 8) — (49)

i
After summing up Equation 48 and Equation 49, and grouping appropriate groups together, we will get the
following inequalities:

O(f, 5i) — ®(f*, Si)

lﬁ,‘ w;-‘

{(e(f*,s,-)-e(f,s.-))+ }-(w:—w,-) < 0 (50)

If f is dominated by f*, we have ©(f*,5;) < O(/,S:) and &(f,S;) < ®(f*,5;). Therefore the factor

(w! — ;) in Equation 50 must be nonnegative, i.e. w > ;. Therefore f' is also dominated by f~.

If f dominates f*, we have @(f*,S;) > O(f, S;) and ®(f,S;) > ®(f*, Si). Therefore the factor (w; — ;)

in Equation 50 must be nonpositive, i.e. w} < ;. Therefore f' also dominates f*. 0

Theorem 7 immediately suggests a strategy of using the GREWSA algorithm to compute the lower and
upper bounds of each segment width of the optimal assignment. If we start with the initial assignment where
each segment has the minimum wire width, the resulting assignment computed by the GREWSA algorithm
gives a lower bound of the optimal width for each segment, since each intermediate assignment computed by
the GREWSA algorithm, including the last one, is dominated by the optimal assignment. Similarly, if we
start with an initial assignment where each segment has the maximum wire width, the resulting assignment

computed by the GREWSA algorithm gives an upper bound of the optimal width for each segment.

These lower bounds and upper bounds of wire segments can further be translated into lower and upper
bounds of the delay of the optimal assignment. Let w; jower and wjupper be the lower and upper bound
of the wire width of segment S; in T computed by the GREWSA algorithm, and fiower and fupper be the
“lower bound assignment” and the “upper bound assignment” respectively (i.e. fiower(Si) = Wijlower, and

fupper(Si) = Wi upper for all segments S;). We can obtain the following inequalities from Equation 10-13:

tw(T) 2 Rd'Cﬂ'zlk'wk,lawer (51)
keT
1
) 2 Roo 3 Ci D, gooem (52)
all sinks k iePc(T) i higher

g
3
Vv

Ru'Co-E Z 2k tower (53)

We re
keT iepy(T) higher

30

WT) > Ri- 3 G (54)

all sinks k
Therefore the sum of the right hand sides of the above inequalities gives a lower bound of the delay of the op-
timal assignment. Similarly, since both the lower bound assignment and the upper bound assignment computed

by the GREWSA algorithm are realizable, the upper bound of the delay is given by min{t(fiower), t{ frigher }}.

Given a routing tree with n segments, if we start with an assignment that is dominated by f*, say the
minimum width assignment, each iteration will generate a better assignment that remains dominated by f*.
Therefore, GREWSA will converge after at most n - (r — 1) calls to Functfion Greedy_Improvement, each of
which taking O(n) time. By the same argument, GREWSA will also converge after at most n . (r — 1) calls if
the initial assignment dominates f*. As a result, the worst case complexity of GREWSA is Q(n? - r) (Q(n?) if

we consider r as a small constant).

4.3 The Combined Approach to the Wiresizing Problem

We have presented an O(n"~!) time optimal algorithm, and an O(n? - r) time greedy algorithm with very good
petformance. It turns out that these two algorithrns can be combined to a new algorithm which guarantees the
optimal assignment and runs extremely fast. The combined algorithm, called GREWSA-OWSA, is described

as follows:

First, we obtain the lower and upper bounds of each wire segment using the GREWSA algorithm. Then,
we run a modified version of OWSA which only considers the assignments whose segment widths are consistent
with the lower and upper bounds computed by the GREWSA algorithm. Since the lower and upper bounds
obtained from the GREWSA algorithm are very close or even identical in most cases, the total number of
candidate assignments ever generated by OWSA algorithm is much smaller than that by the OWSA algorithm
alone. As a result, upper and lower bounds obtained help speed-up the algorithm significantly. For instance,
GREWSA-OWSA runs 10 times faster than QOWSA for the case of n = 16 and r = 4.

5 Experimental Result

We have implemented a generalized version of the A-tree algorithm and the wiresizing algorithm in ANSI C
for the IBM-PC and Sun SPARC station environments. We compared the A-tree and wiresizing algorithms
with other existing routing techniques on both MCM and advanced IC technologies. Section 5.1 — 5.3 show
the improvement achieved by the A-tree algorithm, the wiresizing algorithms, and the A-tree + Wiresizing

algorithms, and Section 5.4 shows the impact of resistance ratio and transistor sizing.

The results in Section 5.1 — 5.3 are based on a typical MCM technology [5] as shown in Table 4. We tested
our algorithms on signal nets of 4, 8, and 16 sinks. For each net size, 100 nets were generated on a 100mm x

100 mm routing region for the MCM technology. The grid resolution is 25 ym per unit-grid-length.

5.1 Effect of Interconnect Topology Optimization

The generalized A-tree algorithm used in this subsection does not restrict the sinks to be in the first quadrant,
and routing is performed for all quadrants simultaneously. The complexity of the general A-tree algorithm is

the same as the first-quadrant version of the A-tree algorithm, and in all cases the runtime is no more than

31

| Technology: | Multi-Chip Modules (MCMs) |

Driver Resistance: 25 Q
Unit Wire Resistance: 0.008 Q/ um
Loading Capacitance: 1000 fF
Unit Wire Capacitance: 0.060 fF/um
Unit Wire Inductance: 380 fH/um
Total Area: 100 mm x 100 mm
(4000 grids x 4000 grids)

Table 4: Technology parameters based on advanced MCM designs.

0.3 seconds. For comparison purpose, we have also implemented the batched 1-Steiner algorithm proposed by
Kahng and Robins [10], and the bounded-radius-bounded-cost (BRBC) algorithm proposed by Cong et al. {3].
Each of the three objective functions in Equation 8 and the average delay were compared in Table 5 for the
A-tree, 1-Steiner, and BRBC-algorithms. The average delay of each net is obtained by averaging the signal
delay at every sink using the two-pole circuit simulator developed by Zhou et al. [18]. Extensive experimental
results have shown that the two-pole simulator is comparable to SPICE in terms of delay simulation, but runs
much faster [18].

[# sinks | Weight Function || A-trec | 1-Steiner | BRBC-0.5 | BRBC-10 |

length(T) 6.039 x 10° [5.982 x 10° | 7.292x 10° | 6.699 x 10°
(-0.94%) {(+20.75%) (+10.93%)
> een (1) 1.068 x 10%¥ | 1.129 x 107 | 1.145x 10" | 1.133 x 10°

4 (+5.71%) (+7.21%) (+6.09%)
Y orer (T} 1218 x 107 | 1.324 x 107 | 1.533x 10" | 1.411 x 107
(+8.70%) (+25.86%) (+15.85%)

Delay 8.07Tns 9.10ns 8.09ns 7.88ns

(+12.76%) (+0.25%) (-2.35%)
length(T) 0174 x 10° | 8.750 x 10% | 11.447 x 10° | 10.441 x 10°
{-4.52%) (+24.78%) (+13.81%)
S een (D) 2122 x 107 | 2.463 x 107 | 2.355 x 107 | 2.457 x 10*

8 (+16.07%) | (+10.98%) (+15.79%)
Yoo (1) 1.892x 107 | 2291 x 107 | 2.608 x 107 | 2.521 x 107
(+21.09%) | (+37.84%) (+33.25%)

Delay 10.49ns 14.5Tns 11.85ns 12.57ns
(+38.89%) | (+12.96%) (+19.83%)
length(T) 1.356 x 107 | 1.242 x 10 | 1.686 x 107 | 1.540 x 107
(-8.41%) (+24.34%) (+13.57%)
Y ken (T) 4.347 x 107 | 5.666 x 107 | 5.206 x 107 [5.663 x 10°
16 (+30.34%) | (+21.83%) (+30.27%)
2 wer (T 3.038 x 107 | 3.966 x 107 | 4.567x 107 | 4.523x 107
(+30.55%) | (+50.33%) | (+48.88%)

Delay 14.92ns 26.14ns 21.04ns 23.31ns
(+75.20%) | (+41.02%) (+56.23%)

Table 5: Comparisons among the A-tree algorithm, the batched 1-Steiner algorithm, and the BRBC algorithms
in terms of the three cost functions defined in the formulation of the M DRT problem and the average delay
under the MCM technology specified in Table 4. BRBC-0.5 and BRBC-1.0 are two parameterized versions of
the BRBC algorithm with the control parameters ¢ chosen to be 0.5 and 1.0, respectively.

32

The batched 1-Steiner algorithm is one of the best known Steiner heuristics [10] and it is not surprising
that the batched 1-Steiner algorithm outperforms the A-tree algorithm (by 1-8 %) in terms of wirelength,
especially when the number of sinks is large. However, the A-tree algorithm significantly outperforms the
batched 1-Steiner algorithm in terms of the objective functions 3", n ple(T) (which determines the t3(T)
term) and ¥, 7 pli (T) (which determines the ¢3(T') term), especially when the size of the signal net is large.
The reduction in these terms offsets the wirelength advantage by the batched 1-Steiner algorithm. As a result,
the A-tree algorithm reduces the average by up to 43 % as compared to the batched 1-Steiner algorithm. Also,
the A-tree algorithm dominates the BRBC-0.5 and BRBC-1.0 algorithms in every term compared, and the
A-tree algorithm reduces the average delay by up to 29 % and 36 %, respectively.

5.2 Effect of Wiresizing Optimization

We tested the OWSA, GREWSA, and GREWSA-OWSA algorithms on 100 16-sink routing trees generated by
the A-tree algorithm. We compared the average delay, the runtime, and the average number of assignments

examined by these algorithms. The results are summarized in Tables 6-7.

| Number of Possible Wire Widths: | 2 | 3 | 4 [5 | 8 |

Average Delay

No Wiresizing (ns): | 18.7152 | 18.7152 | 18.7152 | 18.7152 | 18.7152

GREWSA starting from fiower (ns): | 13.0633 | 11.1765 | 10.2442) 9.7072 | 9.3699
GREWSA starting from fypper (ns): | 13.0633 | 11.1765 | 10.2441 | 9.7074 | 9.3695
OWSA (ns): | 13.0633 | 11.1760 | 10.2440 | 9.7070 | 5.3691

GREWSA-OWSA (ns): | 13.0633 | 11.1760 | 10.2440 | 9.7070 | 9.3691

Average Run Time
GREWSA starting from fiower (5): 1 0.056 0.051 0.053 0.054 0.056
GREWSA starting from fupper (s): 0.055 0.056 0.054 0.054 0.059

OWSA (s): | 0.078 0.173 0.538 1.624 4.710
GREWSA-OWSA (s): | 0.061 0.059 0.062 0.061 0.060

Table 6: Comparisons of the following wiresizing algorithms: GREWSA started with the minimum wire width
assignment fiower, GREWSA started with the maximum wire width assignment fupper, OWSA, and GREWSA-
OWSA. Widths used in this experiment are chosen from the set {W,,2-Wy,---,r- Wi}, where r is the number
of possible widths and Wy = 1bum.

These results show that the optimal wiresizing can further reduce average delay in routing trees by up to
50%. Moreover, we observed that the wire assignment solutions generated by GREWSA starting from fypper
and fiower are both very close to optimal in practice. While OWSA has achieved a significant speed-up over the
exhaustive enumeration methods, the lower and upper bounds of optimal wire widths computed by GREWSA
can further reduce the number of assignments examined by OWSA significantly. In most cases, the lower and
upper bounds of optimal wire widths computed by GREWSA uniquely determine the optimal assignments and
OWSA is rarely invoked. Therefore, GREWSA-OWSA algorithm computes the optimal wire width assignments
with far less computation time. In general, the runtime of OWSA is very sensitive to the parameter r, but the

runtime of GREWSA-OWSA hardly changes as r increases.

33

[Number of Possible Wire Widths: | 2 3 4 5 6
Total Number
of Assignment Examined
Exhaustive Enumeration: | 7.49 x 10° | 5.60 x 10'® | 9.22 x 10!® | 1.83 x 10®® | 9.37 x 10%®
Exhaustive Enumeration (with MP): | 1.75 x 10% | 7.67 x 10® | 5.27 x 101! | 1.16 x 10" | 1.16 x 10!®
OWSA: | 3.35x 101 | 2.02x10° | 853 x 10 | 3.00x 10® | 9.34 x 10°
GREWSA-OWSA: | 1.00x 10° | 1.27x10° | 2.13x 10° | 2.51 x 10° | 2.30 x 10°
Average Number
of Choices per Segment
OWSA: 2.0000 3.0000 4.0000 5.0000 6.0000
GREWSA-OWSA: 1.0000 1.0055 1.0129 1.0169 1.0151

Table 7: Comparison among the exhaustive enumeration methods (with and without considering the monotone
property), OWSA, and GREWSA-OWSA in terms of the average number of assignments examined. The
statistics are collected from the same set of test cases studied in the previous table, and the average number of
segments 1s 32.53.

5.3 Effect of A-tree + Wiresizing

We also tested the combined A-tree + Wiresizing algorithm and compared it with the batched 1-Steiner
algorithm and the BRBC algorithms (BRBC-0.5 and BRBC-1.0). The results of the comparison is summarized

in Table 8.

| # sinks | A-tree + Wiresizing | 1-Steiner | BRBC-0.5 | BRBC-1.0 |
4 5.27 ns 9.10 ns 8.09 ns 7.88 ns
(+72.68%) | (+53.51%) | (4+49.53%)
8 6.57 ns 14.57 ns 11.85 ns 12.57 ns
(+120.77%) | (+80.37%) | (+91.32%)
16 8.94 ns 26.14 ns 21.04 ns 23.31 ns
(+192.39%) | (+135.35%) | (+160.74%)

Table 8: Comparison of average delay under the MCM design technology. The percentages quoted is the
increase in average delay of the routing tree as compared to the average delay in the wiresized A-tree.

It is clear that the combined algorithm significantly outperforms the batched I-Steiner algorithm and the
BRBC algorithms. Moreover, the performance advantage of the A-tree + Wiresizing algorithm over the batched
1-Steiner algorithm becomes more significant as the net size becomes larger. This is because the distributed

nature of interconnect structures become more significant for large nets.

5.4 Effect of the Resistance Ratio and Transistor Sizing

Finally, we studied the impact of resistance ratio and transistor sizing on the improvement of the A-tree
algorithm over the existing routing algorithms. In particular, we compared the A-tree algorithm and the
batched 1-Steiner algorithm under four IC technologies, including the 2.0 gm, 1.5 pm, 1.2 pm, and 0.5 um
CMOS designs. The technology parameters are given in Table 9. The values of Ry and C} are computed for

the minimume-size transistors.

For each technology, we scaled the width of the driver transistor to 4, 6, 8, and 10 times its minimum width

34

(which is a commonly used technique to speed-up the critical nets), and obtained four different values of Rq,
which led to four different resistance ratios for each of the technology. We generated 100 8-sink signal nets
(uniformly distributed in a routing area of 0.5 mm x 0.5 mm) and routed them by the A-tree algorithm and
the batched 1-Steiner algorithm, respectively. Figure 17 shows the improvement of wiresized A-trees over the

batched 1-Steiner trees in terms of average delay for different technology and different transistor sizes.

[Technology [2.0 pgm CMOS [1.5 ym CMOS [1.2 pm CMOS | 0.5 pm CMOS |

R4 2970 O 1430 Q 1280 Q 1560 Q
Scaled R4 297-743 Q 143-357 Q 128-321 @ 156-390 €
Ry 0.0206 Q/pm | 0.0150 Q/pm | 0.0164Q/um | 0.1120 Q/um
Cr 5.175 fF 6.210 fF 4.416 fF 1.000 fF
Co 0.0540 fF/um | 0.0042 fF/um | 0.0053 fF/um | 0.0391 fF/um
&4 (x 105um) 0.144 0.095 0.078 0.014

Table 9: Technology parameters for 4 different IC technologies The 2.0 um, 1.5 pm, and 1.2 pm CMOS
technologies are provided by Robit Foresight Inc., and the 0.5 ym CMOS technology is provided by MCNC.
The driver resistances { Ry) and loading capacitances (Cy) are derived for minimum-size transistors.

% Improvement

20 —

10 x Minimum Transisior Width

& x Minimum Transistor Width
15 —
6 x Minimum Transisior Width

10 —] 4 x Minimum Transisor Widh

(i
{Minimum Transister Length { pm)

1.5 pm CMOS t 0.5 pm CMOS
2.0 pm CMOS 1.2 pm CMOS

Figure 17: Performance improvement of the A-tree algorithm over the batched 1-Steiner algorithm in terms of
delay as a function of the IC technology and the transistor size.

The results show clearly that given a fixed technology, the improvement of the A-tree approach over the
classical Steiner approach becomes more significant when the width of the driver transistor is increased, which
results in lower resistance ratio. Moreover, we have also observed a trend of increasing improvement by the
A-tree algorithm as the device dimension decreases. For the conventional 2.0 g CMOS technology, the A-tree
algorithm in fact performs worse than the batched 1-Steiner algorithm since the total wire capacity is the
dominating factor. However, for the advanced 0.5 pm CMOS technology, the A-tree algorithm consistently

outperforms the batched 1-Steiner algorithm by a significant margin®. Since technological advances result in

3In general, the performance improvement obtained by the A-tree algorithm for IC technology is less than for MCM technology

35

smaller and smaller device dimensions, we expect that our A-tree algorithm will achieve even more significant

improvement over the traditional Steiner tree approach.

6 Conclusion

In this paper we have studied the routing and wiresizing problems under a distributed RC delay model, and
presented efficient solutions to the interconnect topology design and wiresizing problems for performance opti-
mization. We have studied the impact of technology factors on the interconnect designs. We have formulated
the performance-driven interconnect topology design problem as one of computing optimal A-trees and pre-
sented an efficient A-tree algorithm which achieves optimal solutions in most cases. We have proved several
important properties of optimal wire width assignments, including the monotone property and the dominance
property, and presented a polynomial time wiresizing algorithm GREWSA-OWSA. Extensive experimental
results indicate that our approach significantly outperforms other routing methods for high-performance IC
and MCM designs. Our methods reduce the interconnection delays by up to 66 % as compared to those by the

best known Steiner tree algorithms.

We plan to further investigate the interconnect design problem in several directions. First, we shall extend
the interconnect topology design problem to the case where the required time at each sink is not uniform
(i.e. the sinks on the critical paths require a smaller delay and the sinks on the non-critical paths may have
a longer delay). In this case, we can modify the A-tree algorithm by introducing “forbidden region” for each
critical sink so that the critical sinks are connected directly or almost directed to the source. Also, we are
interested to develop a simple yet accurate delay model for distributed RLC circuits (where the non-monotonic
circuit response presents a great difficulty) so that such a model can be used effectively for interconnect design
optimization when inductance is taken into consideration. Finally, we shall study the interconnect topology
design and wiresizing problems under distributed RLC models so that we can consider the effect of reflection

and cross-talk in the interconnect designs.

References

[1] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, 1990, pp. 81-133.

[2] C. Chiang, M. Sarrafzadeh, and C. K. Wong, “Global routing based on Steiner min-max trees”, IEEE Intl.
Conf. on Computer-Aided Design, 1989, pp. 2-5.

[3] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, “Performance-driven global routing
for cell based 1C’s”, Proc. Intl. Conf. on Compuler Design, 1991, pp. 170-173.

[4] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, “Provably good performance-driven
global routing”, JEEE Trans. on CAD, 11(6), June 1992, pp. 739-752.

[5] W. Dai, Private communication, 1992.

[6] W. E. Donath, R. J. Norman, B. K. Agrawal, and S. E. Bello, “Timing Driven Placement Using Complete
Path Delays”, Proc. ACM/IEEE Design Automation Conf., 1990, pp. 84-89.

36

7 A E Dunlop, V. D. Agrawal, D N. Deutsh, M. F. jukl, P. Kozak, and M. Wiesel, «Chip layout optimiza-
tion using critical path weighting” , Proc. ACM/IEEE Design Automation Conf., 1990, pPp- 133-136.

8y W-.C. Elmore, “The Transient Response of Damped Linear Network with Particular Regard to Wideband
Amplifier”, J. Applied Physicas, 19(1948), pp- 55-63.

9] A. L. Fisher, and H. T. Kung, «“Gynchronizing Large Systolic Arrays”, Proc. SPIE 341, May 1982, pp-
44-52.

{10] A.B. Kahng, and G- Robins, “A New Class of Tterative Steiner Tree Heuristics with Good Performance”,
IEEE Intl. Conf. on Computcr-Aided Design, July 1992, pp. 8903-902.

[11] E. Kuh, M. A. B. Jackson, and M. Marek-Sadowska, “Timing-driven routing for building block layout”,
Proc. IEEE International Symposium on Circuits and Systems, 1987, pp. 518-519.

[12] K. W. Lee, and C. Sechen, “A New Global Router for Row-Based Layout”, [EEE Intl. Conf. on Compuier-
Aided Design, 1988, pp. 180-183.

[13] 5. Prastjutrakul, and W. J. Kubitz, «p timing-driven global router for custom chip design”, IEEE Intl.
Conf. on Computer-Aided Design, 1990, pp- 48-H1.

(14] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The Rectilinear Steiner Arborescence Problem”,
Algorithmica T (1992), pp- 277-288.

{15] J. Rubinstein, P. Penfield, and N. A. Horowitz, “Signal delay in RC tree networks”, [EEE Trans. on CAD,
5(3) (1983) pp- 202-211.

{16] S. Sutanthavibul, and E-. Shragowitz, “An Adaptive Timing-Driven Layout for High Speed yLSI?, Proc.
ACM/IEEE Design Aulomation Conf., 1990, pp- 90-95.

[17] D. Zhou, F. P. Preparata, and §. M. Kang, «fpterconnection Delay in Very High-speed VLSI”, [EEE
Trans. on Circuils and Systems 38(7), 1991,

[18] D. Zhou, S. Su, F. Tsui, D. S. Gao, and J. Cong, « Analysis of Trees of Transmission Lines”, technical
report UCLA, CSD-920010.

37

