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New Spectral Methods for Ratio Cut 
Partitioning and Clustering 
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Abstract-Partitioning of circuit netlists is important in many 
phases of VLSI design, ranging from layout to testing and 
hardware simulation. The ratio cut objective function [29] has 
received much attention since it naturally captures both min- 
cut and equipartition, the two traditional goals of partitioning. 
In this paper, we show that the second smallest eigenvalue of a 
matrix derived from the netlist gives a provably good approx- 
imation of the optimal ratio cut partition cost. We also dem- 
onstrate that fast Lanczos-type methods for the sparse sym- 
metric eigenvalue problem are a robust basis for computing 
heuristic ratio cuts based on the eigenvector of this second ei- 
genvalue. Effective clustering methods are an immediate by- 
product of the second eigenvector computation, and are very 
successful on the “difficult” input classes proposed in the CAD 
literature. Finally, we discuss the very natural intersection graph 
representation of the circuit netlist as a basis for partitioning, 
and propose a heuristic based on spectral ratio cut partitioning 
of the netlist intersection graph. Our partitioning heuristics 
were tested on industry benchmark suites, and the results com- 
pare favorably with those of Wei and Cheng [29], 1321 in terms 
of both solution quality and runtime. This paper concludes by 
describing several types of algorithmic speedups and directiops 
for future work. 

I. PRELIMINARIES 
S SYSTEM complexity increases, a divide-and-con- A quer approach is used to keep the circuit design pro- 

cess tractable. This recursive decomposition of the syn- 
thesis problem is reflected in the hierarchical organization 
of boards, multi-chip modules, integrated circuits, and 
macro cells. As we move downward in the design hier- 
archy, signal delays typically decrease; for example, on- 
chip communication is faster than inter-chip communi- 
cation. Therefore, the traditional metric for the decom- 
position is the number of signal nets which cross between 
layout subproblems. Minimizing this number is the es- 
sence of partitioning. 

Any decision made early in the layout synthesis pro- 
cedure will constrain succeeding decisions, and hence 
good solutions to the placement, global routing, and de- 
tailed routing problems depend on the quality of the par- 
titioning algorithm. As noted by such authors as Donath 
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[7] and Wei and Cheng [32], partitioning is basic to many 
fundamental CAD problems, including the following: 

Pacbging of designs: Logic is partitioned into 
blocks, subject to I/O bounds and constraints on 
block area; this is the canonical partitioning appli- 
cation at all levels of design, arising whenever .tech- 
nology improves and existing designs must be re- 
packaged onto higher-capacity blocks. 
Clustering analysis: In certain layout approaches, 
partitioning is used to derive a sparse, clustered net- 
list which is then used as the basis of constructive 
module placement. 
Partition analysis for  high-level synthesis: Accurate 
prediction of layout area and wireability is crucial to 
high-level synthesis and floorplanning; predictive 
models rely on analysis of the partitioning structure 
of netlists in conjunction with output models for 
placement and routing algorithms. 
Hardware simulation and test: A good partitioning 
will minimize the number of inter-block signals that 
must be multiplexed onto a hardware simulator; sim- 
ilarly, reducing the number of inputs to a block often 
reduces the number of vectors needed to exercise the 
logic. 

A. Basic Partitioning Formulations 
A standard mathematical model in VLSI layout asso- 

ciates a graph G = (V, E) with the circuit netlist, where 
vertices in V represent modules, and edges in E represent 
signal nets. The vertices and edges of G may be weighted 
to reflect module area and the multiplicity or importance 
of a wiring connection. Because nets often have more than 
two pins, the netlist is more generally represented by a 
hypergraph H = (V,  E‘) ,  where hyperedges in E’ are the 
subsets of V contained by each net [25]. A large segment 
of the literature has treated graph partitioning instead of 
hypergraph partitioning since not only is the formulation 
simpler, but many algorithms are applicable only to graph 
inputs. In this section, we will discuss graph partitioning 
and defer discussion of standard hypergraph-to-graph 
transformations to Section 111. 

Two basic formulations for circuit partitioning are the 
following: 

Minimum Cut: Given G = (V, E), partition V into 
disjoint U and W such that e( U, W ) ,  i.e., the number 
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of edges in {(U, w) E E \U E U and w E W } ,  is min- 
imized. 
Minimum-Width Bisection: Given G = ( V ,  E ) ,  par- 
tition V into disjoint U and W ,  with \ U 1 = I W 1, such 
that e(U,  W )  is minimized. 

By the max-flow, min-cut theorem of Ford and Fulk- 
erson [lo], a minimum cut separating designated nodes s 
and t can be found by flow techniques in O(n3) time, where 

minimum cut using n - 1 minimum cut computations in 
0(n4)  time. However, this time complexity is rather high, 
and the minimum cut tends to divide modules very un- 
evenly (Fig. 1). 

Because minimum-width bisection divides module area 
equally, it is a more desirable objective for hierarchical 
layout. Unfortunately, minimum-width bisection is NP- 
complete [13], so heuristic methods must be used. Ap- 
proaches in the literature fall naturally into several classes. 
Clustering and aggregation algorithms map logic to a pre- 
scribed floorplan in a bottom-up fashion using seeded 
modules and analytic methods for determining circuit 
clusters (e.g., Vijayan [28] or Garbers et al. [12]). The 
top-down recursive bipartitioning method of such authors 
as Charney [4], Breuer [7], and Schweikert [25] repeat- 
edly divides the logic until subproblems become small 
enough for layout. 

In production software, iterative improvement is a 
nearly universal strategy, either as a postprocessing re- 
finement to other methods or  as a method in itself. Itera- 
tive improvement is based on local perturbation of the 
current solution and can be either greedy (the Kemighan- 
Lin method [17], [25] and its algorithmic speedups by 
Fiduccia and Mattheyses [9] and Krishnamurthy [19]) or 
hill-climbing (the simulated annealing approach of Kirk- 
patrick et al. [ 181, Sechen [26], and others). Virtually all 
implementations use multiple random starting configura- 
tions [21], [32] in order to adequately search the solution 
space and yield some measure of “stability,” i.e., pre- 
dictable performance. 

For our purposes, an important class of partitioning ap- 
proaches consists of “spectral” methods which use ei- 
genvalues and eigenvectors of matrices derived from the 
netlist graph. Recall that the circuit netlist may be given 
as the simple undirected graph G = ( V ,  E )  with I I/\ = n 
vertices u l ,  * * , U , .  Often, we represent G using the 
n X n adjacency matrix A = A ( G ) ,  where A ,  = 1 if 
( U , ,  U , )  E E and A ,  = 0 otherwise. If G has weighted 
edges, then A ,  is equal to the weight of ( U , ,  U , )  E E, and 
by convention A,, = 0 for all i = 1, * a ,  n. If we let 
d(u, )  denote the degree of node U ,  (i.e., the sum of weights 
of all edges incident to U , ) ,  we obtain the n X n diagonal 
degree matrix D defined by D,, = d ( u , ) .  (When no con- 
fusion arises, we may also use d,  to denote d ( u , ) . )  The 
eigenvalues and eigenvectors of such matrices are studied 
in the subfield of graph theory dealing with graph spectra 

Early theoretical work by Barnes, Donath, and Hoff- 

s n = \VI.  Cut-tree techniques [5] will yield the global 

[61. 
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Fig. 1 .  The minimum cut albcdefwill have cutsize = 18, but gives a very 
uneven partition. The optimal bisection abdlcefhas cutsize = 300, much 
worse than the more natural partitioning ablcde f which has cutsize = 19 
and gives the optimal ratio cut. 

man [ 11, [7], [8] established relationships between the 
spectral properties and the partitioning properties of 
graphs. More recently, eigenvector and eigenvalue meth- 
ods have been used for both module placement in CAD 
(Frankle and Karp [ 1 13 and Tsay and Kuh [27]) and graph 
minimum-width bisection (Boppana [2]). In the context 
of layout, these previous works formulate the partitioning 
problem as the assignment or placement of modules into 
bounded-size clusters or chip locations. The problem is 
then transformed into a quadratic optimization, and a La- 
grangian formulation leads to an eigenvector computa- 
tion. 

A prototypical example is the work of Hall [ 151, which 
we now outline. This work is particularly relevant since 
it uses eigenvectors of the same graph-derived matrix Q 
-= D - A (the same D and A defined above) that we will 
discuss in Section 11. Boppana, Donath and Hoffman, and 
others use slightly different graph-derived matrices, but 
exploit similar mathematical properties (e.g., symmetry, 
positive-definiteness) to derive alternate eigenvalue for- 
mulations and relationships to partitioning. 

Hall’s result [ 151 was that the eigenvectors of the matrix 
Q = D - A solve the one-dimensional quadratic place- 
ment problem of finding the vector x = (x,, x2, * * * , x,) 
which minimizes 

n n  

z = 1 c (xi - x ~ ) ~ A ~  2 1 , l  j = l  

subject to the constraint 1x1 = ( x ~ x ) ” ~  = 1 .  

form the Lagrangian 
It can be shown that z = xTQx, so to minimize z we 

L = X’QX - A(x‘x - 1). 

Taking the first partial derivative of L with respect to x 
and setting it equal to zero yields 

~ Q x  - 2hr = 0 

which can be rewritten as 

(Q - AZ)X = 0 

where I is the identity matrix. This is readily recognizable 
as an eigenvalue formulation for A, and the eigenvectors 
of Q are the only nontrivial solutions for x. The minimum 
eigenvalue 0 gives the uninteresting solution x = 
(1 /&, 1 /&, - * e ,  1 / &), and hence the eigenvector 

I 

. .. .. ” ~. . ”. . 
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corresponding to the second smallest eigenvalue is used. 
Hall’s work heuristically derived a two-dimensional clus- 
tering placement from the eigenvectors of the second and 

placements). 

B. Ratio Cuts 

size increases, in contrast to the “error catastrophe” 
common to local search heuristics for combinatorial 
problems, particularly on “difficult” instances [3], 

The remainder of this paper is organized as follows. In 
Section 11, we show a new theoretical connection between 
graph spectra and optimal ratio cuts. Section I11 presents 
EIG1, our basic spectral heuristic for minimum ratio cut 

the module is unnecessarily In the tio cut partition directly from the eigenvector associated 

different result than standard iterative methods which rely 
on local information. Modules in some sense make a con- 
tinuous, rather than discrete, choice of location within the 
partition, and only a single numerical computation is re- 

third smallest eigenvalues (i.e., two one-dimensional [211. 

One easily notices that requiring an exact bisection, 
rather than, say, allowing up to a 60%-40% imbalance in partitioning and analysis* We derive a good ra- 

instance of Fig. 1 ,  the optimal bisection does not give a 
very natural partitioning. Penalty functions as in the 

with the second eigenvalue of Q = D - A .  The spectra1 
approach useS global information, giving a qualitatively 

r-bipartition method of Fiduccia and Mattheyses 191 have 
been used to permit not-quite-perfect bisections. How- 
ever, these can require rather ad hoc thresholds 
and With this in mind, the ratio cul ob,ective 
proposed by Wei and Cheng [29], [32], and separately by 
Leighton and Rao [20], has proved highly successful. 

quired. section IV gives Performance 
pansons with Previous 

and ‘Om- 
MCNC and Other in- 

Minimum Ratio Cut: Given = (v, E ) ,  vinto 
disjoint U and W such that e( U, W) /( I U I * 1 W1) is min- 
imized . 

dustry benchmarks, as well as classes of “difficult” inputs 
from the literature. Our method yields significant im- 
provements over the ratio cut partitioning program 
RCut1.0 of Wei and Cheng 1291 7 v21 7 and for both par- 
titioning and clustering applications we derive essentially 
optimal results for the difficult problem classes of [31 and 
[12]. Section V shows that the spectral method for mini- 
mum ratio cut can be extended to the dual intersection 
graph of the netlist hypergraph- Because of technological 
limits On fanout, particularly in cell-based designs, the 

algorithms than the graph obtained from the netlist through 

gorithm are much better than those of EIG1, yielding 24% 
average improvement Over RCutl .O for the MCNC layout 
benchmark suite. We conclude in Section VI with exten- 

The ratio cut metric intuitively allows freedom to find 
7 partitions: the numerator captures the mini- 

mum-cut criterion, while the denominator favors an even 
(see ~ i ~ .  1) .  Recent work shows that this 

is extremely useful: on indust,,, benchmarks, ~291 reports 
average cost improvement of 39 % Over results from a 
standard Fiduccia-Mattheyses implementation [9]. The 
ratio cut also has important advantages in other of intersection graph is much better suited to sparse-matrix 
CAD, most notably for test and hardware simulation ap- 
plications. Wei and Cheng [29], [32] and the recent Ph.D. the net Of Our EIG1-lG 
dissertation of Wei [3] report extraordinary cost savings 
of up to 70% for such applications in a number of industry 
settings, and ratio cut partitioning has indeed 
widespread interest. Unfortunately, finding the minimum sions and for future 
ratio cut of a graph G is NP-complete by reduction from 
Bounded Min-Cut Graph Partition in [ 131. Multicommod- 
ity flow based approximations have been proposed [5], 

11. A NEW CONNECTION: GRAPH SPECTRA AND 
RATIO CUTS 

[2OI, but are Prohibitively 
Wei and Cheng [29i 9 [32i therefore use an Of 

the shifting and group swapping techniques Of Fiduccia- 

for large Problems. In this section, we develop a theoretical basis for our 
method, Recall that two standard matrices derivable from 
the circuit netlist are the adjacency matrix A and the di- 

Mattheyses [9]. 

tremely useful for computing good ratio cuts. This con- 
clusion is based on new theoretical results as well as im- 
plementation of fast numerical algorithms. Our approach 
exhibits a number of desired attributes, including the fol- 
lowing: 

agonal degree matrix D .  We use the matrix Q = D - A 

[341. Following are several basic properties of Q: 

In this p a p r ,  we show that heuristics are ex- mentioned above, which is known as the Laplacian of G 

(a) is symmetric and non-negative definite, i.e., (i) 
QoxlxJ >- 0 V x ,  and (ii) all eigenvalues 

(b) The smallest eigenvalue of Q is 0 with eigenvector 

(c) The inner product corresponds to ‘‘squared 
wire length,” i.e., 

xTQx = 
of Q are 1 0. 

1 = (1, 1, - - * , 1). 
Speed: The low-order COmpkXity is compatible with 
current CAD methodologies; our method also par- 
allelizes well and allows a tradeoff between solution 
quality and CPU cost; = X’DX - x’AX 

= C d l x :  - C A,x1xJ 

= C d , x :  - 2 C xlxJ 

Stability: Predictable performance is obtained with- 
out resorting to multiple solutions derived from ran- I 1 , J  

Scaling: Solution quality is maintained as problem I i , j E E  

dom starting points; and 
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which we simply may write as the complete square 

(d) Finally, the Courant-Fischer Minimax Principle 
xTQX = c(i,,)E~(X; - X j )  2 . 

[34] implies 
x 'Qx X = min - 

X I  1 , X f O  lXl2 

where X is the second smallest eigenvalue of Q. 

Properties (c) and (d) establish a new relationship be- 
tween the optimal ratio cut cost and the second eigenvalue 

Theorem I :  Given a graph G = ( V ,  E )  with adjacency 
matrix A ,  diagonal degree matrix D, and 1 VI = n,  the 
second smallest eigenvalue X of Q = D - A yields a lower 
bound on the cost c of the optimal ratio cut partition, with 

Proof: Consider the partition which minimizes 
e(U,  W)/(IUI IWI) .Wemaywri te IU(  = p n a n d ) W (  
= qn, with p ,  q 2 0 and p + q = 1 .  Construct the vector 
x by letting 

X of Q = D - A .  

c I (X /n ) .  

q,  if vi E U 

-p ,  if v i  E W. 
xi = [ 

Note that x is perpendicular to 1, since by construction 
x 1 = 0. Also note that xi - xj = q - ( - p )  = 1 for 
edges eii crossing the ( U ,  W )  partition, but xi - xj = 0 if 
eii does not cross the partition. Property (c) then implies 

= e(U,  W). 

Spectral algorithm template 
~~ 

Input H = ( V ,  E ' )  = netlist hypergraph 
Transform H into graph G = ( V ,  E )  
Compute A = adjacency matrix and D = degree matrix 

Compute second smallest eigenvalue X(Q) 

Compute x, the real eigenvector associated with X(Q) 
Map x into a heuristic ratio cut partition of H 

of G 

of Q = D - A  

Fig. 2. Basic spectral approach for ratio cut partitioning of netlist hyper- 
graph H. 

A .  Hypergraph Model 
Our mapping of hyperedges in the netlist to graph edges 

in G is based on the standard clique model [21], where 
each k-pin net contributes a complete subgraph on its 
k modules, with each edge weight equal to l/(k - 1). 
In other words, the adjacency matrix A is constructed as 
follows: For each pair of modules vi and vj with p 1 1 
signal nets in common, let I s1 \ ,  Is2\ ,  - , lspl be the 
number of modules in the common signal nets sl, s2, 
* , sp, respectively. Then 

. We have also considered several sparsifying variants, 
e.g., ignoring less significant (non-critical, large) nets, or 
thresholding small Q, to 0 until Q has sufficiently few 
nonzeros. Such variants are important because most nu- 
merical algorithms will have faster runtimes on sparse in- 
puts. Preliminary experiments with these sparsifying heu- 
ristics, as well as with a new cycle net model which also 
yields a sparser Q matrix, have been quite promising. 
However, the results reported below are derived using 

Finally, note that 1xI2 = q'pn + p2qn = pqn( p + 4 )  = 

pqn = ( 1  U1 I W l ) / n .  Since minXLl(xTQx)/lxl2 = 
from (d) above' we have (xTQx)/lx12 = 
(e (U,  W) n) / ( lUI  * Iwl) I A, implying 

e(U, w > / ( (  UI I WI) I X/n .  0 only the standard weighted clique model, since the clique 

This is a tighter result than can be obtained using earlier 
techniques which are essentially based on the Hoffman- 
Wielandt inequality [ 11 .  If we restrict the partition to be 
an exact bisection, Theorem 1 implies the same bound 
shown by Boppana [2], but our derivation subsumes that 
of Boppana. 

111. NEW HEURISTICS FOR RATIO CUT PARTITIONING 
The result of Theorem 1 immediately sugests the fol- 

lowing partitioning method: compute X(Q) and the cor- 
responding eigenvector x, then use x to construct a heu- 
ristic ratio cut. 

A basic algorithm template is shown in Fig. 2. 
Clearly, a practical implementatip of this approach re- 

quires closer examination of three main issues: (a) the 
transformation of the netlist hypergraph into a graph G;  
(b) the calculation of the second eigenvector x; and (c) 
the construction of a heuristic ratio cut partition from x. 
The following subsections address these aspects in greater 
detail. 

model is consistent with the usual net modeling practice 
in VLSI layout [21], and even without sparsifying Q, we 
obtain a fast and effective algorithm. 

B. Numerical Methods 
The theoretical results of Section I1 notwithstanding, it 

might appear that the computational complexity of the ei- 
genvalue calculation precludes any practical application. 
However, significant algorithmic speedups stem from our 
need to calculate only a single (the second smallest) ei- 
genvalue of a symmetric matrix. Furthermore, netlist 
graphs tend to be very sparse due to hierarchical circuit 
organization and technology constraints. This allows us 
to apply sparse numerical techniques, in particular, the 
Lanczos method. 

Given an n X n matrix Q, the Lanczos algorithm iter- 
atively computes a symmetric tridiagonal matrix T whose 
extremal eigenvalues will be very close to the extremal 
eigenvalues of Q. So long as only a few extremal eigen- 
values are needed, the number of iterations needed to de- 

i 

i; 
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rive T will typically be much less than n.  Since T is tri- 
diagonal and symmetric, we can quite rapidly calculate 
an eigenvalue X of T and use X to compute the correspond- 
ing eigenvector x of Q. The Lanczos method, which orig- 
inated in 1950, is well-studied and has been used in a 
wide variety of applications; for a more detailed exposi- 
tion, the reader is referred to Golub and Van Loan [ 141. 
Tradeoffs between sparsity and runtime are implicit in the 
Lanczos approach; thus, the sparsifying approaches men- 
tioned in Section 111-A are indeed of interest since the 
clique model introduces many nonzeros when there are 
large signal nets in the design. 

The results below were obtained using an adaptation of 
an existing Lanczos implementation [23]. The numerical 
code is portable Fortran 77; all other code in our system 
is written in C, with the entire software package running 
on Sun-4 hardware. 

C. Constructing the Ratio Cut 
We have considered the following heuristics for con- 

structing the ratio cut module partition from the second 
eigenvector x :  

(a) partition the modules based on sgn ( x ) ,  i.e., U = 
{module i :  xi 2 0 }  and W = (module i: x, < O}; 

(b) partition the modules around the median xi value, 
putting the first half in U and the second half in W; 

(c) exploit the heuristic relationship between x and a 
one-dimensional quadratic placement, whereby a 
“large” gap in the sorted list of xi values indicates 
a natural partition (cf. Section 111-D); and 

(d) sort the xi to give a linear ordering of the modules, 
then determine the splitting index r that yields the 
best ratio cut. 

To describe (d) more precisely: the n components xi of 
the eigenvector are sorted, yielding an ordering U = ul,  
. . .  , U,, of the modules. The splitting index r ,  1 5 r I 
n - 1, is then found which gives the best ratio cut cost 
when modules with index > r are placed in U and mod- 
ules with index I r are placed in W. Because (d) sub- 
sumes the other three methods and because its cost is 
asymptotically dominated by the cost of the Lanczos com- 
putation, we use (d) as the basis of the EIGl algorithm. 
The evaluation of the n - 1 partitions may be simplified 
by using data structure techniques similar to those of Fi- 
duccia and Mattheyses [9], allowing cutsize to be quickly 
updated as each successive module is shifted across the 
partition. Our construction of a heuristic module partition 
from the second eigenvector is summarized in Fig. 3. 

D. Experimental Results: Ratio Cut Partitioning 
Using EIGl 

Given the above implementation decisions, our algo- 
rithm EIGl is as summarized in Fig. 4. In this section, 
we present computational results using the EIGl algo- 
rithm. Since the eigenvector formulation ignores module 
area information, it is more suited to cell-based and sea- 

Module assignment to partitions 

Compute eigenvector x of second eigenvalue X(Q) 
Sort entries of x, yielding sorted vector v of module in- 

dices 
Place all modules in partition U 
for i = 1 to n 

Move module vi from partition U to partition W 
Calculate ratio cut cost of (U, W) partition 

Output best ratio cut partition found 
Fig. 3. Conversion from the sorted eigenvector to a module partition. 

Algorithm EIGl 

H = (V, E’) = input netlist hypergraph 
Transform each k-pin hyperedge of H into a clique in G 

Compute A = adjacency matrix and D = degree matrix 

Compute second-smallest eigenvalue of Q = D - A by 

Compute associated real eigenvector U 

Sort components of U and find best splitting point for in- 

Output best ratio cut partition found 

= (V ,  E) with uniform edge weight 1 / k  - 1 

of G 

Lanczos algorithm 

dices (i.e., modules) using ratio cut metric 

Fig. 4. Outline of Algorithm EIGl. 

of-gates methodologies. Thus, our initial experiments 
tested EIGl on the MCNC Primary1 and Primary2 stan- 
dard-cell and gate-array benchmarks. Table I compares 
our results with the best reported results for the RCutl .O 
program [29], [31], [32]. Note that the results reported in 
[29] are already an average of 39% better than Fiduccia- 
Mattheyses output in terms of the ratio cut metric. Our 
partitioning results were obtained by applying the Lanc- 
zos code, and then using the actual module areas’ in de- 
termining the best split of the sorted eigenvector accord- 
ing to the ratio cut metric. 

The fact that the EIGl spectral approach is oblivious to 
module weights is not a difficulty for many large-scale 
partitioning applications in CAD, e.g., test or hardware 
simulation, where the input is simply the netlist hyper- 
graph with uniform node weights. For example, [31] re- 
ports that ratio cut partitioning saved 50% of hardware 
simulation costs of a 5-million-gate circuit as part of the 
Very Large Scale Simulator Project at Amdahl; similar 
savings were obtained for test vector costs. With such ap- 
plications in mind, we also compared our method to 
RCut1 .O on unweighted netlists, including the MCNC 
Test02-Test06 benchmarks and two circuits from Hughes 
[29], [32]. The RCutl.0 program was obtained from its 

‘We followed the method in [29], where I/O pads are assumed to have 
area = 1. 
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TABLE I 
COMPARISON WITH BEST VALUES REPORTED FOR THE R C U T ~  .O PROGRAM I N  [29], [31], AND [32] ON STANDARD-CELL A N D  GATE-ARRAY 

BENCHMARK NETLISTS. AREA SUMS MAY VARY, DUE TO ROUNDING. ON AVERAGE, EIGl RESULTS GIVE 17.6% IMPROVEMENT. NOTE THAT EIGl RESULTS 
ARE COMPLETELY UNREFINED; No LOCAL IMPROVEMENT HAS BEEN PERFORMED ON THE EIGENVECTOR PARTITION 

Wei-Cheng (RCutl .O) Hagen-Kahng (EIG1) 
Test Number of Percent 

Problem Elements Areas Nets Cut Ratio Cut Areas Nets Cut Ratio Cut Improvement 

PrimGAl 833 502 : 2929 11 7.48 x 751 : 2681 15 7.45 x 1 
PrimGA2 3014 2488 : 5885 89 6.08 x 2522:5852 78 5.29 X 15 
PrimSC 1 833 1071 : 1682 35 1.94 x IO-’ 588:2166 15 1.18 x lo-’ 40 
PrimSC2 3014 2332 : 5374 89 7.10 x 2361 :5345 78 6.18 X lo-‘ 14 

TABLE I1 
COMPARISON WITH R C U T ~  .o ON BENCHMARK NETLISTS WITH UNIFORM MODULE WEIGHTS. RESULTS REPORTED FOR R C U T ~  .o A R E  BEST OF TEN 

CONSECUTIVE RUNS ON EACH INPUT. AGAIN, THE EIGl RESULTS DO NOT INVOLVE ANY LOCAL IMPROVEMENT OF THE INITIAL EIGENVECTOR PARTITION 

Wei-Cheng (RCutl .O) Hagen-Kahng (EIGl) 
Test Number of Percent 

Problem Elements #Mods Nets Cut Ratio Cut #Mods Nets Cut Ratio Cut Improvement 

bm 1 
19ks 
Prim1 
Prim2 
Test02 
Test03 
Test04 
Test05 
Test06 

882 
2844 

833 
3014 
1663 
1607 
1515 
2595 
1752 

9:873 
1011:1833 

152 : 681 
1132 : 1882 
372: 1291 
147 : 1460 
401 : 11 14 

1204: 1391 
145 : 1607 

1 
109 

14 
123 
95 
31 
51 

110 
18 

1.27 x 21:861 
5.9 x 387:2457 

1.35 x 150:683 
5.8 x IO-’ 725:2289 

1.98 x 213:1450 
1.44 x 794:813 
1.14 X 71 : 1444 
6.6 x lo-’ 429:2166 
7.7 x lo-‘ 9 : 1743 

I 
64 
15 
78 
60 
61 

6 
57 

2 

5 .5  x lo-’ 

1.46 x 
4.7 x lo-’ 

9.4 x lo-’ 
5.9 x lo-’ 

1.27 x 

6.7 x IO-’ 

1.94 X lo-‘ 

6.1 x lo-’ 

57 
- 14 
- 8  

19 
2 

35 
49 

7 
- 65 

authors and run for ten consecutive trials on each netlist, 
following the experimental protocol in [29]. The EIGl 
output averaged 9% improvement over the best RCutl .O 
outputs, as summarized in Table 11. 

The CPU times required by EIGl are competitive with 
those of RCut1 .O; for example, the eigenvector co-mpu- 
tation for PrimSC2, using our default convergence toler- 
ance of lop4, required 83 s of CPU time on a Sun4/60, 
versus 204 s of CPU time for ten runs of RCutl.O. 

As shown by these experimental results, EIGl gener- 
ates initial partitions which are already significantly better 
than the output of the iterative Fiduccia-Mattheyses style 
RCutl.O program of Wei and Cheng [29]. In fact, using 
the single sorted eigenvector, we often find many parti- 
tions that are better than the RCutl.O output. Therefore 
in this paper we do not consider iterative improvement 
methods, although this puts our results at some disadvan- 
tage. Certainly, post-processing improvement would be 
appropriate in a production implementation. 

I v .  EIGl GIVES CLUSTERING FOR “FREE” 

A number of authors have noted that finding natural 
clusters in the netlist is useful for several applications. 
Examples include: a) multi-way partitioning, particularly 
when the sizes of the partitions are not known a priori; 
b) floorplanning or constructive placement; and c) situa- 
tions when the circuit design is so large that clustering 
must be used to reduce the size of the partitioning input. 
This last application is particularly interesting: Bui et al .  

[3] and Lengauer [21] have noted that applying an itera- 
tive partitioning algorithm to such a “condensed” netlist, 
then reexpanding the clusters, yields a better result than 
if we were to have applied the iterative algorithm directly 
to the original netlist. 

In this section, we show that clustering is “free” with 
our approach, in that the second eigenvector x contains 
both partitioning and clustering information. This is in 
line with the original observations of Hall [ 151, who used 
eigenvectors of Q to derive a two-dimensional clustering 
placement. Our results below demonstrate that a straight- 
forward interpretation of the sorted second eigenvector can 
immediately identify the natural clusters of a graph. In 
particular, we obtain very good results for the classes of 
“difficult” partitioning inputs proposed by Bui et al .  [3] 
and Garbers et al. [12]. For such inputs, which have op- 
timal cutsize significantly smaller than the optimal cutsize 
of random graphs with similar node and edge cardinali- 
ties, the Kernighan-Lin and simulated annealing algo- 
rithms return solutions that can be an unbounded factor 
worse than optimal [3]. Indeed, for graph bisection, these 
standard approaches give results that are essentially no 
better than random solutions, an observation which again 
brings into question the continued utility of iterative tech- 
niques as problem sizes become large. It is therefore note- 
worthy that our approach can so easily deal with such 
“difficult’ ’ partitioning instances. 

We first consider the class of random inputs 
GBUi(2n, d, b) ,  developed by Bui et al. [3] in analyzing 
graph bisection algorithms. Such random graphs have 2n 
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Vode Component 
58 -8.029803-02 
53 -7.909113-02 
70 -7.861593-02 
71 -7.785503-02 
60 -7,683193-02 
54 -7.559313-02 
63 -7.475463-02 
59 -7.440153-02 
62 -7.410083-02 
72 -7.387843-02 
56 -7.309053-02 
55 -7.137423-02 
57 -7.125793-02 
50 -7.03936E02 
65 -6.990653-02 
66 -6.968213-02 
51 -6.667373-02 
61 -6.813453-02 
69 -6.773303-02 
64 -6 768363-02 
52 -6.759183-02 
67 -6.725843-02 
43 -5.865933-02 
66 -5.106273-02 
73 -5.055223-02 
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Node Component 
74 -4.697323-02 
47 -1.091573-02 
36 1.972593-02 
45 2.393923-02 
44 2.61149602 
48 2.790493-02 
49 2.9095t3-02 
42 3.745553-02 
35 3.746063-02 
34 3.801843-02 
28 3.850213-02 
32 3.851183-02 
38 3.871513-02 
33 3.68343E02 
30 4.000603-02 
26 4.006223-02 
31 4.04879E02 
46 4.095483-02 
41 4.245973-02 
29 4.300743-02 
27 4.364733-02 
39 4.415803-02 
37 4.651593-02 
40 4.745093-02 
25 7.447583-02 

(ode Component 
0 -0.215306 
7 -0.211889 
6 -0.206269 
42 -0.199676 
28 -0,189419 
30 -0.188609 
23 -0.145966 
8 -0.142736 
3 -0.129631 
15 -0.120541 
39 -0.118946 
38 -0.114429 
27 -0.112974 
46 -0.108921 
19 -0.108893 
12 -0.107840 
35 -0.107710 
33 -0.107241 
31 -9.939703-02 
4 -9.789493-02 
16 -9.299263-02 
29 -9.225213-02 
14 -9.104693-02 
13 -8.839663-02 
41 -8.405473-02 

Node Component 
2 -8.180213-02 
18 -7.700743-02 
45 -7.412163-02 
5 -7.396433-02 
37 -7.382163-02 
9 -7.372293-02 
11 -7.327703-02 
10 -6.222913-02 
17 -6.125893-02 
40 -5.859743-02 
49 -5.528883-02 
24 -5.446733-02 
32 -5.431973-02 
48 -5.351673-02 
44 -5.28886E02 
43 -4.952003-02 
26 -4.364133-02 
1 -4.121963-02 
36 -3.990693-02 
22 -2.752233-02 
34 -2.641483-02 
20 -2.372433-02 
25 -1.926343-02 
21 -2.000133-03 
4i 1.0’20433-0’2 

l ode  Component 
66 1.328463-02 
98 2.384923-02 
93 3.229763-02 
55 4.345223-02 
91 4.75056E02 
73 5.39718E02 
71 5.84973E02 
65 5.93850E02 
92 6.69472E02 
83 6.71358E02 
53 6.717823-02 
78 6.790493-02 
60 7.617673-02 
87 7.694903-02 
89 7.92344E02 
66 8.66147E02 
54 8.74412E02 
97 8.802223-02 
61 8.877843-02 
76 8.95560E02 
69 9.021423-02 
64 9.337583-02 
88 9.498013-02 
75 9.514913-02 
96 9.559613-02 

9.560383-02 
9.860333-02 

90 9.936333-02 
82 1.00400E01 
56 1.00670E01 
99 1.020753-01 
58 1.045063-01 
77 0.105093 
67 0.105109 
81 0.107045 
70 0.108180 
95 0.108719 
59 0.109054 
68 0.109451 
79 0.109522 
72 0.109647 
84 0.110152 
74 0.111162 
50 0,112822 
94 0.117317 
62 0,122495 
57 0.125205 
85 0,132424 
80 0.138341 
52 0.139806 

Fig. 5 .  Sorted second eigenvector for random graph in G,,,(100, 3 ,  6). 
“Expected” clusters contain modules 0-49 and 50-99. 

nodes, are d-regular and have minimum bisection width 
almost certainly equal to b. We generated random graphs 
with between 100 and 800 nodes, and with parameters 
(2n, d ,  b) exactly as in Bui’s experiments (Table I ,  p. 188 
of [3])2. In all cases, the module ordering given by the 
sorted second eigenvector immediately yielded the ex- 
pected clustering. Fig. 5 gives the second eigenvector for 
a random graph in the class GBui(100,3,6). The expected 
clustering places modules 0-49 in one half, and modules 
50-99 in the other. The sorted eigenvector clearly reflects 
this. 

The second type of input is given by the random model 
GGar(n, m, pint, p,,,) of Garbers et al. [12], which pre- 
scribes n clusters of m nodes each, with all n - C(m, 2) 
edges inside clusters independently present with proba- 
bility pint and all m2 - C(n, 2) edges between clusters in- 
dependently present with probability pext .  We have tested 
a number of 1000-node examples of such clustered inputs, 
using the same values (n, m, pint, p,,,) as in Table I of 
[12]. In all cases, quite accurate clusterings were imme- 
diately evident from the eigenvector, with most clusters 
being completely contiguous in the sorted list, and occa- 
sional pairs of clusters being intermingled. Fig. 6 depicts 
the second eigenvector for a smaller random graph, from 
the class G,,,(4, 25, 0.167, 0.0032). The pint and pext val- 
ues are of the same order as in the examples from [ 121, 
with pint = 8 ( m - ’ j 2 ) .  The expected clustering groups 
modules 0-24, 25-49, 50-74, and 75-99. Again, the ei- 
genvector in Fig. 6 strongly reflects this. Note that be- 
cause of the random construction, the “correct” cluster- 
ing may deviate slightly from expected clustering, so that 
the “out of place” entries x47 and x73 may in fact be op- 
timal. As with the GBui class, the GGar inputs are patho- 
logical for the Kemighan-Lin and simulated annealing al- 

’A very slight modification of the construction in [3] was made: to avoid 
self-loops, we superposed d random matchings of the n nodes in a cluster, 
rather than making a single matching on dn nodes and then condensing into 
n nodes. 

23 -0.120929 
21 -0.118308 
1 -0.115762 
17 -0.115104 
10 -0.114198 
6 -0.114083 
5 -0.112286 
9 -0.111083 
8 -0.110700 
12 -0.110309 
20 -0.110163 
0 -0.110106 
22 -0.109719 
4 -0.108896 
11 -0.108043 
15 -0.107415 
18 -1.048163-01 
2 -1.042623-01 
14 -1.033833-01 
24 -1.018043-01 
7 -1.01130E01 
13 -1.009313-01 
16 -9.886303-02 
3 -9.176683-02 

iode Component 
88 9.728163-02 
79 0.124942 
86 0.128686 
87 0.132406 
97 0.133227 
85 0.135566 
75 0.138987 
98 0.140964 
76 0.141252 
81 0.141296 
82 0.142007 
91 0.144033 
80 0.149802 
95 0.150069 
92 0.151593 
84 0.152478 
94 0.152605 
90 0.153824 
83 0.154241 
69 0.155534 
99 0.155569 
96 0.160441 
77 0.163642 
78 0.165712 
93 0.176925 

Fig. 6 .  Sorted second eigenvector for random graph in GG,,(4, 25,  0.167, 
0.0032). “Expected” clusters contain modules 0-24, 25-49, 50-74, and 
75-99. 

gorithms, especially as pint >> pext ,  but this is exactly 
where the eigenvector method will succeed. 

It is easy to envision other clustering interpretations of 
the sorted second eigenvector which are quite distinct from 
previous methods that use multiple eigenvectors. For ex- 
ample, the correspondence between A( Q) and quadratic 
placement suggests interpreting large gaps between ad- 
jacent components of the sorted eigenvector as delimiting 
the natural circuit clusters. We may also use “local min- 
imum’’ partitions in the sorted eigenvector (those with 
lower ratio cut cost than either of their neighbor parti- 
tions) to delineate clusters. In other words, we cluster 
modules whose indices lie between consecutive locally 
minimum ratio cut partitions. This is intuitively reason- 
able since many distinct splitting indices correspond to 
high-quality bipartitions. Initial experiments show both of 
these clustering approaches to be promising. We believe 
that such heuristics will grow in importance as problem 
sizes increase and bottom-up clustering becomes a more 
critical precursor to a well-considered partitioning. 

V. USING THE SECOND EIGENVECTOR OF THE 
INTERSECTION GRAPH 

In examining the performance of EIGl versus iterative 
ratio cut and bisection algorithms, we noticed several in- 
teresting relationships between the size of a given net and 
the probability that this net is cut by the heuristic (ratio 
cut or minimum-width bisection) circuit partition. These 
observations led to an alternate application of the spectral 
construction which significantly improved partition qual- 
ity for virtually every input that we tested. 

A. The Intersection Graph 
Consider the following simple thought experiment: 

Given a 2-pin net and a 14-pin net in a circuit netlist, 
which is more likely to be cut in the optimal ratio cut 

7 
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partition? A simple random model would indicate that it 
is much less likely for all 14 modules of the larger net to 
be on a single side of the partition than it is for both mod- 
ules of the smaller net to be on a single side of the parti- 
tion. Therefore, we might guess that the 14-pin net is 
much more likely to be cut, and in fact that the cut 
probability for a k-pin net would be something like 
1 - 2-(k-’’. This rough relationship has indeed been 
confirmed for heuristic minimum-width bisections of var- 
ious small netlists from industry and academia, including 
ILLIAC IV printed circuit boards. 

However, our analysis of EIGl and RCutl.O outputs 
for both the minimum-width bisection and the minimum 
ratio cut metrics has shown that this intuitive model does 
not necessarily remain correct, particularly as circuit sizes 
grow large. For example, a typical locally minimum ratio 
cut for the MCNC Primary2 netlist yields the statistics 
shown in Table 111. 

The obvious interpretation of these statistics is that 
while a random model may suffice for small circuits, 
larger netlists have strong hierarchical organization, re- 
flecting the high-level functional partitioning imposed by 
the designer. Thus, nets themselves may very well con- 
tain “useful” partitioning information. Furthermore, if 
we reconsider partitioning from a slightly different per- 
spective, we realize that assigning modules to the two 
sides of the partition to minimize the number of net cuts 
is equivalent to assigning nets in order to maximize the . 
number of nets that are not cut. In other words, we want 
to assign the greatest possible number of nets completely 
to one side or the other of the partition. This objective can 
be captured using the graph dual of the input netlist, also 
known as the intersection graph of the hypergraph. 

The dualization of the problem is as follows. Given a 
netlist hypergraph H = ( V ,  E’) with (VI = n and 
(E’(  = m ,  we consider the graph G’ = (V’ ,  EGO which has 
I V’(  = m ,  i.e., G‘  has m vertices, one for each hyperedge 
of H (that is to say, each signal in the netlist). Two ver- 
tices of G’ are adjacent if and only if the corresponding 
hyperedges in H have at least one module in common. G’ 
is called the intersection graph of the hypergraph H .  For 
any given H ,  the intersection graph G’ is uniquely deter- 
mined; however, there is no unique reverse construction. 
An example of the intersection graph is shown in Fig. 7. 

We note that the intersection graph has had only limited 
previous application in the CAD literature. Pillage and 
Rohrer [22] applied a “nets-as-points metric” to module 
placement, the idea being that a heuristic two-dimen- 
sional placement of nets could guide module placement. 
Their scheme attempts to place each module within the 
convex hull of the locations of nets to which it belongs. 
An iterative, ad hoc solution method is required because 

A’,,= IR( lR+ 1/3)=0.42 

A’, ,=IR(lR+ 1/5)=0.35 

A’, = 1/1(1/3 + 1/74 =0.83 

A’, 
A’,= L/I(LR+ 1/5)=0.70 

lR(l/3 + 1/5) + L/l(l/3 + 1/5) =0.80 

- 
Ne14 

Na3 Net4 Neb @ (a) (b) 

Fig. 7. (a) The hypergraph for a netlist with four signal nets (each node 
represents a module). (b) The intersection graph of the hypergraph (each 
node represents a signal net). The intersection graph edge weights A ;  are 
also shown. 

TABLE 111 

PROBABILITY OF A NET BEING CUT I N  THE HEURISTIC PARTITION DOES NOT 

INTUITION 

STATISTICS FOR &-PIN NETS C U T  IN PRIMARY2 RATIO C U T .  NOTE THAT THE 

NECESSARILY INCREASE MONOTONICALLY WITH NET SIZE,  COUNTER TO 

_ _ _ _ _ ~  

Net Size Number of Nets Number Cut 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
23 
26 
29 
30 
31 
33 
34 
37 

1836 
365 
203 
192 
120 
52  
14 
83 
14 
35 

5 
3 

10 
3 
1 

72 
1 
1 
I 
1 
1 
1 

14 
1 
I 

21 
29 
18 
26 
5 

12 
0 
5 
1 
0 
0 
0 
0 
0 
0 

22 
1 
0 
1 
0 
0 
0 
4 
0 
0 

Given the above definition of G‘ ,  the adjacency matrix 
A ’ (G’)  of the intersection graph has nonzero elements 
AAb exactly when signal nets s, and sb share at least one 
module. There are a number of possible heuristic edge 
weighting methods for the intersection graph. We have 
tried several approaches. Surprisingly, most of the meth- 
ods we tried led to extremely similar, high-quality results: 
the intersection graph seems to be a very robust, natural 
representation. The results reported below are derived us- 
ing the following construction: For each pair of signal 
nets s, and sb with q 2 1 modules U , ,  * , uq in com- 
mon, let IsaI and lSbl be the number of modules in s, and 
s b ,  respectively. The element AAb is then given by 

the intersection graph is not naturally suited to module 
placement. For partitioning, Kahng [ 161 used diameters 
of the intersection graph to yield an approximate hyper- 
graph bisection heuristic; more recently, Yeh et al .  [33] 
proposed to compute cutsize gains from a “net perspec- 
tive” in an iterative multiway partitioning approach. 

where dl is the degree of the lth common module U / .  This 
weighting scheme is designed so that overlaps between 
large nets are accorded somewhat lower significance than 
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overlaps between small nets. The diagonal degree matrix 
D’ is constructed analogously to the matrix D described 
in Section I-A above, with the Di entry equal to the sum 
of the entries in thej th  row of A’. Thus, D i  indicates the 
total strength of connections between signal net sj and all 
other nets which share at least one module with sj . 

Given A ’  and D’, we find the eigenvector x ’  corre- 
sponding to the second smallest eigenvalue A’ of 
Q’ = D’ - A‘, using the same Lanczos code as in the 
EIGl implementation. We sort the eigenvector to obtain 
an ordering v ’  of the signal net indices, which we use to 
derive a heuristic module partition. 

Our method is patterned after the method of Section 
111-C, but has additional features. Note that it is too sim- 
plistic to construct the (U, W) partition merely by assign- 
ing all the modules of signal net sv; to U, all the modules 
of signal net s,; to W ,  etc. Such assignments will soon 
conflict, with a net assigned to U containing some module 
that also belongs to a net already assigned to W .  If we 
stop the module assignment when no more nets can be 
completely assigned, then many modules may remain un- 
attached to either side of the partition. To avoid such dif- 
ficulties, we assign a module vi to U only when enough 
of the nets containing vi have been assigned to U. This is 
accomplished with a heuristic weighting function, where 
each net imposes a “weight” on its component modules 
inversely proportional to the size of the net. In practice, 
to guarantee that every module is assigned to a partition, 
we put all netdmodules in U, then move the nets one by 
one to W, beginning with s,; and continuing through s,;. 
A module will move to W only when enough of its total 
incident net-weight wi (i.e, more than some threshold pro- 
portion) has been shifted to W. In the pseudocode below, 
as well as in the reported experiments, we use a threshold 
of (1 /2) * wi. Symmetrically, we also start with all nets/ 
modules in W ,  and shift nets beginning with s,;, since this 
yields a different set of heuristic module partitions. We 
then output the best ratio cut partition among the up to 
2 (n - 1) distinct heuristic partitions so generated. The 
conversion of the sorted second eigenvector to a heuristic 
module partition is summarized in Fig. 8. 

With these implementation decisions, our algorithm 
EIG1-IG, based on the second eigenvector of the netlist 
intersection graph, has the high-level description shown 
in Fig. 9. 

B. Computational Results: EIGI-IG 
Table IV shows computational results obtained using 

the EIGl-IG algorithm on a number of MCNC bench- 
marks, as well as the two benchmarks from Hughes tested 
in [32]. The results show an average of over 23% im- 
provement in ratio cut cost over the best results obtained 
using 10 runs of Rcutl.0. 

We note that runtimes are significantly faster with the 
EIG1-IG implementation, since the input to the Lanczos 

Module assignment to partitions using intersection 

w = array containing the total net weight of each module 
z = array containing the moved net weight of each mod- 

Compute eigenvector x’ of second eigenvalue A(Q’) 
Sort entries of x’, yielding sorted vector U ’  of net indices 

{ * initialize net-weight vector *} 
w = o  
for i = 1 to n = number of modules 

graph 

ule 

for each signal net sj containing module vi 

{ * begin with all netdmodules assigned to partition 

z = o  
forj  = 1 to m = number of nets 

for each module vi in net s,; 

Add 1 /Isj  I to wi 

U *I 

Add 1 /IS,;( to zi 

if z; 2 (wi/2) move module U; from partition U 
to partition W 

Calculate ratio cut cost for (U, W) partition 

{ * begin with all netdmodules assigned to partition 

z = o  
f o r j  = m down to 1 

w *> 

for each module vi in net s,; 

Add 1 / 1 st,j I to Z; 
if zi 2 ( w i / 2 )  move module vi from partition W 

to partition U 
Calculate ratio cut cost for (U, W) partition 

Output best ratio cut partition found 
Fig. 8. Conversion from sorted second eigenvector of intersection graph 

to module partition. 

computation is often much sparser than that obtained 
using the original clique-based hypergraph-to-graph 
transformation. For example, on the MCNC Test05 
benchmark, the second eigenvector computation for the 
intersection graph requires 48 s on a Sun 4/60, versus 
619 s for the EIGl eigenvector computation. This 
speedup reflects the fact that for the Test05 netlist, the Q’ 
matrix has 19 935 nonzeros, while Q has 219 811 non- 
zeros. At the same time, the EIGl-IG results are signifi- 
cantly better than those of EIG1. While it is possible to 
run both EIGl and EIGl-IG and then choose the better 
result, we believe that a production tool might rely on the 
EIGl-IG algorithm alone. 

VI. FUTURE WORK AND CONCLUSIONS 
There are several obvious speedups to the numerical 

computations used in EIGl and EIG1-IG. A promising 
variant uses the condensing strategy proposed by Bui et 
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Input H = (V,  E ' )  = netlist hypergraph 
Compute intersection graph G' = ( V ' ,  EGf)  of H 
Compute A' = adjacency matrix and D' = degree matrix of G' 
Compute second smallest eigenvalue X(Q ') 
Compute associated real eigenvector X'  

Sort components of x' to yield vector U' of ordered net indices 
Compute vector w of net-weights for modules in V 
Put all nets and modules in U ;  shift nets one by one, moving module vi 

Put all nets and modules in W; shift nets one by one, moving module ui 

Output best ratio cut partition found 

to W when 2 wi/2 of its net-weight has been shifted 

to U when 1 wi/2 of its net-weight has-been shifted 

Fig. 9 .  Outline of Algorithm EIGI-IG. 

I 

A 

TABLE IV 
OUTPUT FROM THE EIGI-IG ALGORITHM RESULTS ARE 24% BETTER ON AVERAGE THAN THOSE OF RCUTI 0. 

t 
Wei-Cheng (RCutl 0) Hagen-Kahng (EIGI-IG) 

Test Number of Percent 
Improvement Ratio Cut Problem Elements Areas Nets Cut Ratio Cut Areas Nets Cut 

bml 
19ks 
Prim 1 
Prim2 
Test02 
Test03 
Test04 
Test05 
Test06 

882 
2 844 
833 

3014 
1663 
I607 
1515 
2595 
1752 

9:873 
101 1 : 1833 

152 : 681 
1132 : 1882 
372 : 1291 
147 : 1460 
401: 1114 

1204: 1391 
145 : 1607 

1 
109 
14 

123 
95 
31 
51 

110 
18 

12.73 x IO-' 21 :861 
5.88 x 662:2182 
1.35 x 154:679 
5.77 x IO-' 730:2284 
1.98 x 228:  1435 

14.44 x lw5 787:820 
11.42 x lo- '  71:  1444 
6.57 x 103:2492 
7.72 x 143: 1609 

1 
92 
14 
87 
48 
64 
6 
8 

19 

5.53 x lo-' 
6.37 x IO-' 

5.22 x IO-' 

9.92 x IO-' 

1.34 X 

1 .47  x 

5.85 x 1 0 - ~  
3 . 1 2  x 
8.26 x IO-' 

57 
- 8  

1 
10 
26 
31 
49 
53 
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al. [3] and cited above. Sparsifying heuristics can also be 
employed, such as simply thresholding small nonzero ele- 
ments of Q to zero. A second type of speedup occurs 
through weakening the convergence criteria in the Lan- 
czos implementation. For example, on the PrimGA2 
benchmark our experiments indicate that we can speed up 
our current Lanczos computation by a factor of between 
1.3 and 1.7 without any loss of solution quality. Imple- 
mentations of the Lanczos algorithm on medium- and 
large-scale vector processors are also of interest, since the 
algorithm is amenable to parallel speedup. 

A second research direction involves post-processing 
improvement of our current results. As noted in Section 
I11 above, we have deferred such post-processing since 
our initial partitions are already significantly better than 
previous results. However, in practice Fiduccia-Mat- 
theyses style methods may be applied to initial partitions 
generated by EIGl or EIG1-IG. I 

Finally, following the successes reported by Wei and 
Cheng [31], [32], EIGl and EIG1-IG should be applied 
to ratio cut partitioning for other CAD applications, es- 
pecially test and the mapping of logic for hardware sim- 

ulation. Our results above certainly suggest that for ap- 
plications where the ratio cut has already proved 
successful, our spectral construction will afford further 
improvements. Extensions to handle multi-way partition- 
ing are relatively straightforward, e.g., by using locally 
minimum partitions in the sorted eigenvector. Lastly, we 
note that devising a netlist transformation which accounts 
for arbitrary node weights remains an important open is- 
sue. 

In conclusion, we have presented theoretical analysis 
showing that the second smallest eigenvalue of the Lapla- 
cian Q = D - A yields a new lower bound on the cost of 
the optimum ratio cut partition. The derivation of the 
bound suggests that good heuristic partitions can be con- 
structed directly from the second eigenvector of Q. In 
conjunction with sparse-matrix (Lanczos) techniques, this 
leads to new algorithms for ratio cut partitioning which 
are significantly superior to previous methods in terms of 
both solution quality and CPU cost, and which scale well 
with increasing problem size [14]. Our algorithm EIGl 
performed an average of 17% better than the RCutl.O 
program of [29] on cell-based designs. As expected, EIGl 
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was also effective for ratio cut partitioning of unweighted 
graphs, e.g., for test and simulation applications. More- 
over, high-quality circuit clustering is “free” with the 
second eigenvector computation. Next, analysis of net cut 
probabilities as a function of net size led to algorithm 
EIG1-IG, which constructs a node partition from the sec- 
ond eigenvector of the netlist intersection graph. For the 
MCNC layout benchmark suite, EIG1-IG gave an aver- 
age of 24% improvement over the previous methods of 
Wei and Cheng. The EIGl-IG algorithm is also faster 
than EIGl,  due to the sparsity of the intersection graph. 
Both the EIGl and EIGl-IG algorithms derive a solution 
from a single, deterministic execution of the algorithm, 
i.e., the spectral approach is inherently stable, and does 
not require multiple runs as with other approaches. The 
spectral approach thus satisfies virtually all of the desir- 
able traits listed in Section I. 

No previous work applies numerical algorithms to ratio 
cut partitioning, mostly because the mathematical basis of 
ratio cuts has been developed only recently. However, 
from a historical perspective it is intriguing that spectral 
methods have not been more popular for other problem 
formulations such as bisection or k-partition, despite the 
early results of Bames, Donath, and Hoffman and the 
availability of standard packages for matrix computa- 
tions. We speculate that this is due to several reasons. 
First, progress in numerical methods and progress in VLSI 
CAD have followed more or less disjoint paths: only re- 
cently have the paths converged in the sense that large- 
scale numerical computations have become reasonable 
tasks on VLSI CAD workstation platforms. Second, early 
theoretical bounds and empirical performance of spectral 
methods for graph bisection were not generally encour- 
aging. By contrast, Theorem 1 shows a more natural cor- 
respondence between graph spectra and the ratio cut met- 
ric, and our results confirm that second-eigenvector 
heuristics are indeed well-suited to the ratio cut objective. 
Finally, it has been only with growth in problem com- 
plexity that possible scaling weaknesses of iterative ap- 
proaches have been exposed. In any case, we strongly be- 
lieve that the spectral approach to partitioning, first 
developed by Bames, Donath, and Hoffman twenty years 
ago, merits renewed interest in the context of a number 
of basic CAD applications. 
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