
INTEGRATION, the VLSI journal 14 (1992) 49-65 49
Elsevier

A new algorithm for standard cell
global routing

Jason Cong

Department of Computer Science, Unit'ersity of California at Los Angeles, Los Angeles"
CA 90024, USA

Bryan Preas

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Received 5 November 1990
Rcviscd 11 May 1992

Abstract. In this paper, we present a new algorithm for standard cell global routing. The
algorithm considers all of the interconnection nets simultaneously; this produces superior
results since information about all of the nets is available throughout the global routing
process. Wc formulate the global routing problem as one of finding the optimal spanning
forest on a graph that contains all of the interconnection information. The results of an
important theorems allow us to prune many non-optimal connections before the global
routing process begins. This approach successfully solves the net ordering and congestion
prediction problems which other approaches suffer. The new algorithm was implemented as
part of the DATools system at Xerox PARC. The benchmarks from the Physical Design
Workshop are used as part of the comparison suite. The new algorithm achieves up to 11%
area reduction compared to the previous global routing package used in the DATools
system and obtains up to 17% reduction in the total channel density compared to the
Timberwolf 4.2 package.

Keywords. Global routing; standard cell design; spanning forests.

I. Introduction

The standard cell design style is widely used in the design of VLSI circuits;
the cells (either obtained from a library or constructed by a cell generator) are
arranged in horizontal rows. The aim of a standard cell design system is to
generate a correct physical design for a circuit from its logic design with the best

0167-9260/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

50 J. Cong, B. Preas / Standard cell global routing

uti l izat ion of chip area. D u e to the i n h e ren t complexi ty of physical design, the
process is usually divided into th ree steps: p l acement , global rout ing and
channe l rout ing. Dur ing p lacement , we d e t e r m i n e the row and the posi t ion
within the row for each cell in the logic design. Next , dur ing global rout ing, we
d e t e r m i n e the connec t i on pa t t e rn , or topology, for each net . Globa l rout ing
in t roduces feedthrough cells making connec t ions across the cell rows, selects the
pins (f rom the pins tha t are in ternal ly c o n n e c t e d within the cells) to be
connec t ed , and de t e rmines the rout ing channe ls tha t the net segments be long
to. Then , each channe l is r ou t ed individually by a channe l r o u t e r which assigns
specific layers and tracks for wires to i m p l e m e n t the co n n ec t i o n pa t t e rns
d e t e r m i n e d by global rout ing. This p a p e r s tudies the global rout ing p ro b l em in
s t anda rd cell designs.

T h e global r o u t e r in the High land system [1] was used as the b e n c h m a r k for
s t anda rd cell global rout ing at the Physical Des ign W o r k s h o p on P l a c e m e n t and
F loo rp l ann ing [2]. It builds a l umin imum spanning t ree for each net. T h e cost for
each net edge is a func t ion of channe l density, f e e d t h r o u g h availability and wire
length. An subsequen t op t imiza t ion s tep tr ies to improve the solut ion. Supowit
[3] gives an odd-even heur is t ic a lgor i thm for s t anda rd cell global rout ing. It
p roduc e s a solut ion within a fac tor of 1.5 of the op t imal solut ion (in t e rms of
total channe l density). However , Supowit ' s resul t applies only to p rob lems in

Jason Cong received his B.S. degree in computer science from the Peking
University in 1985. He received his M.S. degree and Ph.D. degree in
computer science from the University of Illinois at Urbana-Champaign in
1987 and 1990, respectively. Currently, he is an assistant professor in the
Computer Science Department of University of California, Los Angeles.
From 1986 to 1990, he was a research assistant in the Computer Science
Department of the University of Illinois. He worked at the Xerox Palo
Alto Research Center in the summer of 1987. He worked at the National
Semiconductor Corporation in the summer of 1988. His research interests
include computer-aided design of VLSI circuits, faulttolerant design of
VLSI systems, and design and analysis of efficient combinatorial and
geometric algorithms. He received the Best Graduate Award from the

Peking University in 1985. He was awarded a DEC Computer Science Fellowship in 1988. He
received the Ross J. Martin Award for excellence in research from the University of Illinois at
Urbana-Champaign in 1989. He received the National Science Foundation Engineering Research
Initiation Award in 1991.

Bryan T. Preas obtained the B.S. degree from Texas A&M University in
1968, the M.S. degree from Carnegie-Mellon University in 1969, and the
Ph.D. degree from Stanford University in 1979. He was with Bell Tele-
phone Laboratories, Whippany, NJ from 1968 to 1973 where the worked
on hardware and software design for large, multiprocessor computers.
From 1973 to 1981 he was with Sandia National Laboratories, Albu-
querque, NM with the CAD development group. He was Vice President
of Research and Development at VR Information Systems in Austin, TX
from 1981 to 1983 where he was responsible for development of CAD
software. In 1983, he joined the Xerox Palo Alto Research Center as
Area Manger of Design and Architecture and Principal Scientist. Dr.
Preas was awarded the Humboldt Senior Scientist prize and spent 1990 at

the University of Paderborn, Germany. Dr. Preas has published numerous technical papers and is
active in several professional organizations. He serves on the program committees of several
conferences and is Associate Editor of the IEEE transactions on CAD. He is currently Program
Chair of the Design Automation Conference.

J. Cong, B. Preas / Standard cell global routing 51

which all the nets are two-pin linear nets. Another global router developed for
standard cell designs is part of the Timberwolf package [SeSa86]. It first
connects each net by a minimum spanning tree based on wire length. Then it
employs an iteration algorithm (simulated annealing with t -- 0) to improve the
assignment of net segments to channels. The previous standard cell global
router [4] used in the DATools system at Xerox PARC [5] generates the
minimum number of feedthroughs. Feedthroughs are added only to connect the
nets. Feedthroughs are then placed, along with the other cells, as part of a
row-based placement improvement step. More recent work on standard cell
global routing includes the work by Mowchenko and Ma [6], which generalized
the left edge algorithm for channel routing to global routing, the work by Lee
and Sechen [7] which generated Steiner trees from minimum spanning trees, a
parallel router by Rose [8], which enumerated all possible two-bend nets, a
parallel router by Brouwer and Banerjee [9], which is based on Burstein and
Pelavin's hierarchical approach, and a global router by Meixner and Lauther
[10] based on network flow computation. In [11] and [12], a similar problem was
addressed for gate array designs, where the objective was to minimize the
maximum channel density.

A careful study shows that these approaches have one or more of the
following shortcomings:
(1) The final solution produced is sensitive to the order in which the nets are

considered because the nets are connected one by one. However, little is
known about what is a good net order. (In [6], they avoided net ordering
problems by carrying out the routing on a channel by channel basis. But still,
it is difficult to choose a good channel order.) 1

(2) These global routers are not capable of predicting congested area in chan-
nels when they add net segments. This is especially true in the early stage
when most net segments have not been included.

(3) The net connection patterns that can be produced are restricted by the
algorithms. Only a few predetermined topologies are allowed.

In this paper, we present a new algorithm for standard cell global routing which
successfully overcomes the shortcomings mentioned above. This algorithm pro-
cesses all the nets in parallel, so the results are independent of the order in
which the nets are considered. Furthermore, better results are produced since
information about all of the nets is available throughout the global routing
process. We introduce the net connection graph and formulate the problem as
finding an optimal spanning forest of the net connection graph. We prove a
theorem which allows us to simplify the net connection graph by pruning a large
number of non-optimal connections. This makes it computationally feasible to
consider the optimal connections in all the channels at the same time. Thus, our
algorithm can predict very accurately the densest areas in each channel and,
therefore, distribute density evenly over all channels to minimize the total
channel density. The new algorithm was implemented as part of the DATools

Parallel global routers usually avoid the net ordering problem.

52 J. Cong, B. Preas / Standard cell global routing

system at Xerox PARC. Benchmarks from the Physical Design Workshop are
used as part of the comparison suite. The new algorithm achieves up to 11%
reduction in area compared to the previous global routing package used in the
DATools system and obtains up to 17% reduction in the total channel density
compared to the Timberwolf 4.2 package. In no case does the new algorithm do
worse than its competitors.

The remainder of this paper describes the algorithm. Section 2 defines the
problem formulation. The two-stage algorithm is discussed in Section 3. The
comparative results are presented in Section 4. An extended abstract of this
paper was presented in ICCAD'88 [13].

2. Formulation of the problem

The goal of global routing is to determine the connection pattern for each net
and achieve the best utilization of chip area. The connection pattern is defined
by the positions for feedthroughs, the pins to be connected, and the channels in
which the net segments that connect the pins lie. Chip area is equal to the
product of the width of the chip and the height of the chip, where the width of
the chip is the maximum length (including any feedthroughs) of any row of the
chip, and the height of the chip is the sum of the heights of all cell rows and the
total channel density times the line-to-line spacing.

We define the net connection graph to be an undirected graph G = (V, E),
where V is the set of pins currently in the design. An edge (pi, Pj) is in E if the
two pins Pi and Pi are in the same net. We also call (pg, pj) a net segment if Pi
and Pi are in the same channel. Clearly, each net in the net connection graph is
a connected component and is represented by a complete graph on the pins of
the net. Note that V may grow as we perform the global routing because new
pins are introduced when feedthroughs are added. A global routing solution is a
spanning forest of the net connection graph. A spanning forest which yields the
minimum chip area is called an optimal spanning forest.

There are two problems involved in standard cell global routing. The first
problem is to determine whether and where to add feedthroughs. Generally
speaking, feedthroughs have two functions. One function is to complete the

I ! row3 I I row3

I I r ° w 2 [. ~ ~ I r°w2

I ~ ~ I rowl []~]~ I rowl

(a) (b)

Fig. 1. A feedthrough allows a net to cross a cell row. Thc feedthrough in row 2 is required to
complete the connection.

J. Cong, B. Preas / Standard cell global routing 53

. I

]row3 I
/

I r°w2 I ~.

_~]row1] I
(a) (b)

[row 3

] row2

Irow 1

Fig. 2. Feedthroughs can also be used to reduce the total channel density.

connections among pins that make up the nets. For the example shown in Fig.
l(a), we have to insert a feedthrough in row 2 to complete the connections for
the net as shown in Fig. l(b). The other function of feedthroughs is to reduce
the total channel density. Consider the net shown in Fig. 2(a). Although we can
complete the connection without adding any feedthroughs, by adding a
feedthrough in row 2 we save a long wire in channel 2. This may reduce the total
channel density. The second problem in standard cell global routing is to
determine the net segments to complete the connection of the nets after
feedthroughs have been added. Figure 3 shows three different choices of net
segments to connect a net. At this stage, since the width of the chip is fixed, the
problem is to build a spanning forest of the net connection graph to minimize
the total channel density.

In some standard cell families, many cells have build-in feedthroughs. In this
case, the feedthrough insertion problem is eliminated or simplified. In [3] and
[6], it was assumed that all the feedthroughs have been added and only the
problem of determining the net segments was studied. In [4] and [14], simple
methods were used to determine feedthrough locations for completing the
connections. Their algorithms concentrated on the problem of determining the
net segments. In our global router, we also use a rather straightforward method
to compute the feedthroughs first. Then, we focus on the optimal selection of
net segments.

The standard cell global routing problem is computationally difficult; we can
show the problem of finding an optimal spanning forest is NP-hard. In fact, the
problem of determining net segments itself is already NP-hard even for a small
number of cell rows (assuming that no feedthroughs need to be added). To be
more precise, we state the following theorem based on a result in [15]:

Theorem 1. Given a standard cell placement in which no feedthroughs are needed
to complete the net connections, the problem o f choosing net segments to minimize
total channel density is NP-hard i f there are five or more cell rows in the design.

I _ . ~ j j ! I t I f

[I [I [I
Fig. 3. For the net shown, three different choices of net segments.

54 J. Cong, B. Preas / Standard cell global routing

Proof. First, let us look at a simplified net segment selection problem. Suppose
that each net has two logical pins. Moreover, the two logical pins in each net are
in the cells of the same row. Such a net is called a two-pin linear net [3,16]. Since
each logical pin has two physical pins, there are two possible ways to connect
each linear net, one way to use the channel below the net and the other to use
the channel above the net (see Fig. 4). We want to connect each two-pin linear
net so that the total channel density is minimum. This problem is called the
two-pin linear net routing (TLNR) problem. Clearly, we do not need to introduce
feedthroughs to connect any net in the TLNR problem. Moreover, the two
possible ways of connecting a two-pin linear net correspond to the two net
segments of the net. Therefore , the TLNR problem is a special case of the
general net segment selection problem that we are interested. However, the
TLNR problem was shown to be NP-hard if there are five or more cell rows in
the design [15]. Thus, the net segment selection problem is NP-hard if there are
five or more cell rows in the design. []

In the remainder of this paper, we present an efficient heuristic algorithm for
computing a standard cell global routing solution.

3. The new standard cell global routing algorithm

Our global router works in two stages. In the first stage, we determine all the
feedthroughs to be added and determine their locations within the rows. In the
second stage, we choose which physical pins will be connected (and thus choose
the net segments) to complete connections for each net.

3.1. Determine feedthroughs

In most previous algorithms, feedthroughs are added only when connections
for some nets cannot be completed. In our algorithm, we use feedthroughs not
only to complete the connections but also to trade off the width and height of
the chip. Additional feedthroughs can often reduce track density and thus

I I
po . • p

V l : : V 2

I [I i
v ~ i . i ~2

L 1
Fig. 4. Two possible ways to connec t a two-pin l inear net.

J. Cong, B. Preas / Standard cell global routing 55

reduce chip height with no expense in width. An additional feedthrough on
other than the longest row will not increase the width of the chip.

We generalize Kruskal's minimum spanning tree algorithm [17] to build a
minimum spanning forest of the net connection graph. Feedthroughs are deter-
mined by the intersections of cell rows and the edges in the minimum weighted
spanning forest.

We weight each edge according to the length of the edge and the cost to
insert feedthroughs for the edge. For each edge e = (pi, Pi) in the net connec-
tion graph connecting two pins pi and p~ in the same net, we define the weight
of e

w (e) = [x i - x j l + K " ~ weight(Ri)
ef~Ri~dp

where x~ and xj are the horizontal coordinates for p~ and pj, respectively. K is
a constant factor, e n R i 4= c~ m e a n s that net edges e intersects row R i, weight(R i)
is the weight of row Rg, which is based on the current length of row Ri. Assume
we choose e to be included in the minimum weighted spanning forest. If Pi and
pj are in the same channel, we simply add e into the solution. If Pi and pj are in
different channels, we add feedthroughs fl, f2 , . . . , fl in rows Ri,, Ri2,... , Ri,
which intersect with e. Then we add the path from pi to pj through these
feedthroughs into the solution. The cost of an edge thus defined is a function of
both the wirelength and the cost of adding feedthroughs. By assigning different
weights to different rows, we discourage adding feedthroughs in the longest rows
since this will increase the width of the chip. On the other hand, when two pins
are far apart we may connect them to nearby pins in the same net, even at the
cost of extra feedthroughs. These extra feedthroughs may decrease the total
channel density and thus decrease the height of the chip. We adjust the factor K
to control the trade-off between the width and the height of a chip.

Note that the weight of each net edge is not static. After a feedthrough is
added, some pin locations and the weights of some rows may change. If we
construct the minimum spanning forest by building a minimum weighted span-
ning tree net by net, a different order for considering the nets will quite likely
lead to a different result. However, there is no efficient algorithm available to
determine an optimal net order. In order to avoid the net ordering problem, our
algorithm builds a minimum spanning forest directly by considering all of the
nets simultaneously based on a generalization of the Kruskal's minimum span-
ning tree algorithm [17]. It keeps adding the minimum weighted edge selected
from the entire net connection graph into the spanning forest as long as no cycle
is introduced. The edge insertion process ends when all the nets are connected.
Our algorithm for the first stage is shown as follows, in which F represents the
spanning fores to be constructed.

Algorithm 1. D e t e r m i n e Feedthroughs (* Stage 1 of global routing *)
1. V:= all the vertices in the net connection graph;

E .= all the edges in the net connection graph;
F.'= Q;

56 J. Cong, B. Preas / Standard cell global routing

2. while E () • do
remove the minimum weighted edge e from E;
if F W {e} does not have a cycle
then include e (or the path induced by e) in F;

if e crosses some cell rows
then introduce feedthroughs at the intersections and add them to V;

introduce edges connected to the new feedthroughs and add them
to E;

end-while
3. output F

The advantage of this algorithm is clear. Since we consider the edges of all nets
at the same time, the algorithm is independent of input net order. The spanning
tree for each net gets an equal chance to grow. Information about all nets is
available throughout the process.

It is necessary to show that this algorithm will converge since we keep adding
new vertices (induced by feedthroughs) to the net connection graph. In [1], a
limit is set on the total number of vertices allowed for each net. However, we
can show that our algorithm ends after a linear number of edge insertions.

Theorem 2. The Stage 1 algorithm will converge to a spanning forest after n - k
steps o f edge insertions, where n is the total number o f original pins in the design,
and k is the number o f nets.

Proof. Let m be the number of steps of edge inclusion that we execute to obtain
a spanning forest. Let V, be the set of vertices in the net connection graph after
the i-th step of edge inclusion. Let F i be the set of edges in the partially
constructed spanning forest after the i-th step of edge inclusion. Initially,
[VeIl = n and Ih , I - -0 . When we obtain a spanning forest, we have k con-
nected components and each of them is a spanning tree. Thus, I V,n [- I F,,, I = k.

Let e i = (ui, v,) be the edge included in the i-th step. There are two cases: (i)
If u i and v i are in the same channel, then V, = V,_ 1 and F i = F i i u {(ui, l~'i)}; (ii)
If u i and l;i are in different channels, suppose that f~, f 2 , . . . , fl are the vertices
along the path introduced by adding feedthroughs, then V,= V, i u { f j ,
f2 fl} and F i = F i 1W{(ui, f j) , (f l , f2) (fl, ci)}. In both cases, we have

I V,. I - I F, I = [V,_, I - I F,. 11-1

By induction, it is easy to show that

IV,,, I - I F,,, I = IV0 I - I e o l - m
It follows that k = n - m, i.e., m = n - k. []

In the implementation of Algorithm 1, we use the union-find operations [17].
Initially, we start with n sets. Each set contains a single vertex. When we include
an edge (u, t,), we union the two sets that vertices u and v belong to, together

J. Cong, B. Preas / Standard cell global routing 57

with the set of new vertices introduced by adding feedthroughs. At any time of
execution, each set contains a collection of vertices which have been connected.
Cycle detection becomes very easy. To see whether F u {(u, u)} contains a cycle,
we need to only check whether u and L, belong to the same vertex set. In fact,
after each edge insertion, we remove all the edges connecting vertices of the
same set. Moreover, we update all the edge costs after each edge insertion. Let
p be the maximum number of pins per net (in CMOS technology, p is bounded
by a small constant). Then, each edge insertion takes (kp 2) time. Since there are
n - k edge insertions and O (k p) = O(n), the time complexity is O(pn 2) for
Stage 1 of our global routing algorithm.

Note that after Stage 1 of our algorithm, we actually obtain a global routing
solution in which the feedthroughs are specified by the vertices in the spanning
forest and the net segments are specified by the edges in the spanning forest.
However, the selection of the net segments is made without consideration of
global density distribution, and may lead to a poor routing solution in terms of
minimizing the total channel density. Therefore, our algorithm will go through
the second stage, as described in the next subsection, to re-compute the best net
segment selection for total channel density minimization.

3.2. Determine net segments

After Stage 1, all of the required feedthroughs have been added and their
positions have been determined; we shall not add new feedthroughs. Thus, we
can remove those edges that cross the cell rows (but are not built-in edges that
represent feedthroughs or connections within the cells) from the net connection
graph. Figure 5 shows an example of a connected component induced by a net
in the net connection graph at the beginning of Stage 2. The solution of Stage 2
is a spanning forest S of the net connection graph such that each edge in S lies
entirely in one channel. Since the width of a chip is fixed after Stage 1, the
objective in Stage 2 is to minimize the height of the chip by minimizing the total
channel density.

v

Fig. 5. The connected component induced by a net in the net connection graph at the beginning of
Stage 2.

58 J. Cong, B. Preas / Standard cell global routing

Most previous approaches to global routing build a spanning tree for each net
one by one. And for each net, these algorithms keep adding the minimum
weighted feasible edge until a spanning tree is obtained. A serious problem
exists with these approaches. It is very difficult to decide whether and where a
net segment should be added to a channel since these algorithms have no
knowledge of the density distribution in the final solution, especially early in the
execution of the algorithms when only few net segments are present. Also, these
approaches face the problem of choosing a good order to process the nets.

To avoid these problems, we develop a new algorithm based on the iterative
deletion approach. First, the basic approach is described; then we will show the
performance improvements and refinements. The algorithm constructs a mini-
mum weighted spanning forest to approximate the optimal spanning forest. We
define the weight of an edge e to be w(e) = d (e) / d , where d(e) is the maximum
density over the edge in the channel to which e belongs, and d is the density of
the channel. First, we put all the edges in the net connection graph into an edge
set S. Then, we repeatedly remove the maximum weighted edge from S as long
as we do not disconnect any net. We update the weights of edges in a channel
whenever an edge is removed from that channel. The process terminates when S
is a spanning forest. Clearly, this approach has two advantages:
(1) Since all the edges are considered from the start, the algorithm has global

information and knows where the most congested areas are. The weight of
each edge during the construction reflects the relative density over that edge
in the resulting spanning forest, and the removal of the maximum weighted
edges distributes the routing density evenly in the design;

(2) Since we process all nets in parallel, the result of our algorithm does not
depend on the order in which nets are processed.

However, a straightforward implementation of the above algorithm may suffer
two problems. First, there may be ~(n 2) edges in the net connection graph at
the beginning of Stage 2 (even after we removed edges, other than the built-in
edges, which crossed cell rows), where n is the number of pins after Stage 1.
Since there are only O(n) edges in the final spanning forest, we may have to go
through O(n z) steps of edge deletion; which is quite time consuming. Moreover,
since most of the initial edges are to be removed, the weight of an edge at the
beginning of the deletion process may not closely approximate the channel
density over that edge in the final spanning forest. Both problems are due to the
fact that we may have to start with a quadratic number of edges at the beginning
of the edge deletion process. A careful study showed that we can further
simplify the net connection graph before we compute the optimal spanning
forest. We define the simplified net connection graph SG to be an undirected
graph, whose vertex set is the set of pins in the design, and for two pins Pi and
pj of the same net, (pi, Pj) is an edge of SG if and only if the two pins satisfy
one of the following conditions: (1) Pi and pj are on the same cell or feedthrough
and are connected internally (i.e., they are connected by a build-in edge); or (2)
p, and pj are in the same channel and there are no other pins of the same net in
the same channel between them. Figure 6 shows the example of a connected

J. Cong, B. Preas / Standard cell global routing 59

J

Fig. 6. The connected component induced by the same net in the simplified net connection graph
is much sparse than the one in Fig. 5. The optimal spanning forest is not lost by this simplification.

component induced by a net in the simplified net connection graph. Note it is
much more sparse than the one shown in Fig. 5. In fact, we can make the
following claims:

Theorem 3. Let n and m be the number o f vertices and edges, respectively, in the
simplified net connection graph. Then
(1) m ~ 1.Sn.
(2) The simplified net connection graph can be constructed in O(n log n) time,

where n is the total number o f pins in the design.
(3) The simplified net connection graph contains an optimal spanning forest.

Proof. (1) For each vertex v, the degree d(v) of v in the simplified net
connection graph is at most 3, since it can be connected to only its left closest
pin in the same net, its right closest pin in the same net, and its equivalent pin in
the same cell (see Fig. 6). We have

2m = ~ d(tdi) ~ 3n
i=1

Thus, m ~< 1.5n.
(2) The simplified net connection graph can be constructed by sorting pins in

each channel, then do a linear scan to compute the left closest pin and the right
closest pin in the same net for each pin in the channel. The total scanning time
is bounded by O(~/~_ lni), where k is the number of nets and n i is the number of
pins in channel i. Note that Z/k in i = n, thus, the complexity is dominated by the
total sorting time, which is

Y'. n i log n i <~ n i log ~ n i = n log n
i= I i i=1

(3) Let F be an optimal spanning forest. Suppose e = (u, v) is an edge in F
but e is not in the simplified net connection graph, without loss of generosity,
assume v is right to u. Let wj, w 2 w~ be all the pins of the same net in the
same channel from left to right between u and v. Clearly, (u, w~), (w~,

60 J. Cong, B. Preas / Standard cell global routing

w2),. . . , (w t, t~) are all in the simplified net connection graph. It is not difficult to
show that we can remove (u, t,) and add a set of edges (probably all) of (u, w~),
(w~, Wz),...,(wt, t~) to make another spanning forest F'. It is clear that
d(F') <~d(F). Thus, F ' is also an optimal spanning forest. By repeating this
process, we can remove all the edges in F but not in the simplified net
connection graph to obtain another optimal spanning forest which contains
edges only from the simplified net connection graph. []

The benefits from the theorem are clear. Since we only have to go through
approximately 0.Sn number of edge deletions, our algorithm runs much faster.
Also, since only a relatively small number of edges in SG are to be removed, the
weight of each edge measures more accurately the density over the edge in the
resulted spanning forest. Moreover, we can compute the simplified net connec-
tion graph efficiently without losing the optimal spanning forest. We summarize
our algorithm for Stage 2 as follows:

Algorithm 2. Determine the Net Segments (* Stage 2 of global routing *)
1. build the the simplified net connection graph;
2. S := all the edges in the simplified net connection graph;
3. repeat

Remove the maximum weighted edge in S that is in a cycle;
Update edge weights for the affected edges;

until S is a spanning forest;
4. outout S.

In our implementation, we use the graph biconnectivity algorithm in [18] to
identify all the edges which are in some cycles. An edge is in some cycle if and
only if it belongs to a biconnected component with no less than 3 vertices. We
can generate all the biconnected components of a graph in linear time using the
depth first search algorithm. Moreover, after removing an edge, we need to
update the weights of all the edges in the same channel. We may have O(n)
edges in the channel in the worst case, and a straightforward computation of
each edge weight takes O(L) time, where L is the number of physical pins in
the channel. Thus, updating all the edge weights takes O(nL) time, and the time
complexity of the second stage of our algorithm is O(n2L).

For large designs, we can use a data structure called segment tree [19] to
reduce the time for updating an edge weight from O(L) to O(log L). For each
channel C, we construct a segment tree T, so that the maximum density over
any given interval in the channel can be computed in O(Iog L) time. Without
loss of generality, we assume that L = 2 t for some I. Let x~, x2, . . . , x L be the
x-coordinates of the pins in the channel C. The segment tree T~: is a balanced
binary tree with L leaves in which each leaf corresponds to the x-coordinate of
a pin (i.e., an interval of length zero) and each internal node (root of a subtree)
corresponds to an interval (from the leftmost leaf to the rightmost leaf in the
subtree). Clearly, the root of the i-th subtree of height j corresponds to the

J. Cong, B. Preas / Standard cell global routing 61

interval [x(i_ l).2j+ 1, Xi'2J]" Such an interval is called a power interval. Each node
X in the tree has three fields: X interval stores the corresponding power
interval, X density stores the maximum density over the power interval X-inter-
val, and X_de le te indicates how many times that X_interval is deleted from the
subtree rooted at X. At the beginning of the iterative deletion algorithm, we
compute X density for each node in the tree T,. and set X_dele te to be zero.
For example, Fig. 7(a) shows a set of intervals and the corresponding segment
tree. Suppose that we want to remove an edge in channel C whose interval is I.
It is not difficult to show that I can be decomposed into O(log L) maximal
power intervals 11, I 2 , . . . , It, which correspond to a set of nodes X1, X 2 , . . . , X,
in the segment tree. For example, in Fig. 7(a), interval J5 = [5,7] can be
decomposed into intervals [5,6] and [7,7], and interval J8 = [3,8] can be decom-
posed into intervals [3,4] and [5,8]. For each I i, we make the following updates:

Xi delete = Xi delete + 1 and X i density = X, density - 1, 1 <~ i <~ t

Moreover, we update the nodes on the paths from the root to X~'s. Let Yi be
the sibling of X i and Zg be the parent node of X i. Then,

Z i density = max(X/ density, Yi d e n s i t y) - Z i delete

and the update of the density field propagates upward in the tree. We update
the density field of all the relevant nodes on the l-th level first before we move
to the (l - 1)-th level. For example, Fig. 7(b) shows the corresponding segment
tree after we remove intervals J5 and J8 from Fig. 7(a). In order to compute the
maximum density over a given interval I, we, again, decompose I into O(log L)
maximal power intervals 11, 12 , I,. Let X~, X 2 , . . . , X t be the corresponding
nodes in the tree. Let P~ be the path in the tree T,. from the root to the parent
node of X i. Then, the maximum density over the interval I~ is

d[Ii] = X i density - ~ , Y d e l e t e ,
Y~Pi

and the maximum density over I is max~_ld[Ii]. For example, the maximum
density over the interval J2 in Fig. 7(b) is

max(d[4],d[5,6]) = max(3 - 1, 3 - 1)= 2

Therefore, we can update each edge weight in O(log L) time after we remove
an edge from the channel. With this refinement, the second stage of our global
routing algorithm can be implemented in O(n 2 log L) time.

4. Experimental results

We implemented our algorithm in the Cedar language running on Xerox
Dorado workstations (2-MIPS machines) and incorporated it into the DATools
system developed at Xerox PARC. Table 1 summarizes the examples used to
compare the new algorithm with the previous global router in the DATools

62 J. Cong, B. Preas / Standard cell global routing

4 / 0 ~ 3 / i ~
I a l I I J# I I J~]

[J4] [J5 I

[J6 I I Jv I

I % I (a)

J1 I
I
J6

(b)

[J2 I I J3 I J4] ', J . 5 . _ _ ~ _ . ',

I I J7 I

: X- :

Fig. 7. (a) A set of intervals and its corresponding segment tree. The labels at each node X specify
X density/X delete, respectively. (b) The new segment tree after intervals J5 and J8 are

deleted.

Tablc 1
A summary of the example circuits used to compare the new algorithm with the previous
algorithm and with the global router in Timberwolf 4.2

Example #cells #IOS #nets #pins

16-bit adder 144 50 177 546
16-bit counter 173 56 206 609
32-bit adder 288 98 355 1090
32-bit counter 342 104 396 1203
64-bit adder 576 194 707 2178
64-bit counter 681 200 783 2393
Primary 1 752 81 904 2737
Primary 2 2907 107 3029 8758

J. Cong, B. Preas / Standard cell global routing

Table 2
Comparisons with the previous global routing package in the Xerox PARC DATools system

63

Example #of previous algorithm new algorithm improvement
r o w s

width height width height

16-bit adder 4 1104 812 1104 764 6.3%
16-bit counter 5 1320 1120 1320 1008 11.1%
32-bit adder 6 1528 1415 1528 1324 6.8%
32-bit counter 7 1904 1736 1904 1624 8.5%
64-bit adder 8 2448 1956 2448 1860 5.1%
64-bit counter 9 3096 2744 3096 2456 11.7%

system and with the global router in Timberwolf 4.2. The counters and adders
are the circuits synthesized by the DATools system when no performance
requirements are imposed. Both types of circuits are simple, ripple-carry de-
signs. Primary 1 and Primary 2 are the benchmarks from the Physical Design
Workshop [2].

Table 2 summarizes the experiments comparing the old and new algorithms.
Compared to the previous standard cell global routing package used in the
DATools system, the new algorithm achieves a 6 to 11% area reduction. In
general, more feedthroughs are added by the new algorithm, but the chip widths
are not increased. The extra feedthroughs are being used to reduce chip height
by reducing total track density.

We also compared our global routing results with the results produced by the
Timberwolf 4.2 global routing on the two Physical Design Workshop bench-
marks. In both examples, the global routing is performed on the same placement
(the one produced by Timberwolf). Figure 8 illustrates the comparison process.
Table 3 shows the comparisons on these examples. We obtained 5 to 17%
reduction in total track density and over 20% reduction in the number of
inserted feedthroughs compared to Timberwolf 4.2. We could not compare our
algorithms with other algorithms since we were unable to obtain the common
placement solutions. (We observed that the placement solution affects both the
number of feedthroughs and the total channel density significantly. Thus, it

Timberwolf
Placer

Timberwolf
G-router

DATools
G-router

Fig. 8. Comparison of global routing solutions is based on the same placement solution.

64 J. Cong, B. Preas / Standard cell global routing

Table 3
Comparisons with thc global routing algorithm in Timberwolf 4.2 [14] on Primary 1 and Primary 2
benchmarks from thc Physical Design Workshop

Example #of Timberwolf new algorithm improvement
r o w s

#FTs #tracks #FTs #tracks #FTs #tracks

P1 17 1380 223 1120 190 23.2% 17.4%
P2 29 4621 474 3761 449 22.9% 5.6%

would be very inaccurate to compare global routing results based on different
placement solutions.)

Our global router is a straightforward implementation of the algorithm
described here. As a result, there are a number of opportunities for further
improvement of the results. Some standard cell global routing packages improve
the global routing (and further reduce area) by exchanging adjacent cells in the
same row or modifying the cell orientation [1,4,14]. In addition, the cells in the
Physical Design Workshop Benchmarks (Primary 1 and Primary 2) have a large
number of built-in feedthroughs that are exploited by Timberwolf, but not by
the global router described here. (The standard cells used at Xerox PARC do
not have built-in feedthroughs so this feature was not included.) We did not
implement these refinements in the current version of our global routing
package.

5. Remarks and conclusions

In this paper, we present a new algorithm for standard cell global routing. By
processing all the nets in parallel, we avoid the problems associated with net
ordering and the problems created by lack of congestion information early in the
global routing process. By simplifying the net connection graph and applying an
iterative deletion algorithm for building spanning trees, we can more accurately
predict congested areas. This global routing algorithm produces high quality
solutions in polynomial time.

In both Stage 1 and Stage 2, the weights for edges in the net connection graph
are dynamic. A significant amount of time is spent on updating edge weights in
our current implementation. We are studying how to reduce the computation
time for updating edge weights. One possibility is to use more sophistical data
structures to identify those edges whose weights need to be updated more
efficiently (without scanning all the edges). This will certainly speed up the
re-computation for edge weights. Another possibility is not to update the edge
weights after every iteration but to update them after several iterations. Our
experience is that small errors in the edge weights will not affect the quality of
final solution significantly.

J. Cong, B. Preas / Standard cell global routing 65

Acknowledgment

This research is partially supported by the National Science Foundation
under grant MIP-9110511.

References

[1] Roberts, K.A., Automatic layout in the Highland system, Proc. of Int. Conf. on Computer-Aided
Design (1984) pp. 224-226.

[2] Preas, B., Benchmarks for cell-based layout systems, Proc. of 24th Design Automation Conf.
(1987) pp. 319-320.

[3] Supowit, K.J., Reducing channel density in standard cell layout, Proc. of 20th Design
Automation Conf. (1983).

[4] Preas, B., The standard cell package, Xerox PARC internal document, 1986.
[5] Barth, R., L. Monier, and B. Serlet, PatchWork: layout from schematic notations, Proc. of

25th Design Automation Conf. (1988) pp. 250-255.
[6] Mowchenko, J.T. and C.S.R. Ma, A new global routing algorithm for standard ccll ICs, Proc.

of IEEE International Symposium on Circuits and Systems (May 1987) pp. 27-30.
[7] Lee, K.W. and C. Sechen, A new global router for row-based layout, Proc. of Int. '1 Conf. on

Computer-Aided Design (1988) pp. 180-183.
[8] Rose, J., LocusRoute: a parallel global router for standard cells, Proc. of 25th Design

Automation Conf. (1988) pp. 189-195.
[9] Brouwer, R. and P. Banerjee, Phigure: a parallel hierarchical global router, Proc. of 27th

Design Automation Conf. (1990) pp. 650-653.
[10] Miexner, G. and U. Lauther, A new global router based on a flow model and linear

assignment, Proc. of Int. Conf. on Computer-Aided Design (1990) pp. 44-47.
[11] Aoshima, K. and E.S. Kuh, Multi-channel optimization in gate-array LSI layout, Proc. of

IEEE International Symposium of Circuits and Systems (1983) pp. 1005-1008.
[12] Lin, L., S. Sahni and E. Shragowitz, An enhanced heuristic for multi-channel optimization in

gate-array layout, Proc. of Int. Conf. on Computer-Aided Design (1986) pp. 242-244.
[13] Cong, J. and B. Preas, A New Algorithm for Standard Cell Global Routing, Proc. of. Int.

Conf. on Computer-Aided Design (1988) pp. 176-179.
[14] Sechen, C. and A. Sangiovanni-Vincentelli, Timberwolf3.2: a new standard cell placement

and global routing package, Proc. of 23rd Design Automation Conf. (1986)pp. 432-439.
[15] Blair, J., S. Kapoor, E. Lloyd, and K. Supowit, "Minimizing channel density in standard cell

layout, Algorithmica 2 (1987) 267-282.
[16] Kapoor, S., Topics in the design and analysis of combinatorial algorithms, Ph.D. Thesis, Dept.

of Computer Science, Univ. of Illinois, Urbana, IL, 1986.
[17] Aho, A., J.E. Hopcraft and J.D. Ullman, The Design and Analysis of Computer Algorithms

(Addison-Wesley, Reading, MA, 1974).
[18] Reingold, E.M., J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice

(Prentice-Hall, Englewood Cliffs, N J, 1977).
[19] Preparata, F.P. and M.I. Shamos, Computational Geometry (Springer, New York, 1985).

