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Floorplan Design of VLSI Circuits I 

D. F. Wong 2 and C. L. Liu 3 

Abstract. In this paper we present two algorithms for the floorplan design problem. The algorithms 
are quite similar in spirit. They both use Polish expressions to represent floorplans and employ the 
search method of simulated annealing. The first algorithm is for the case where all modules are 
rectangular, and the second one is for the case where the modules are either rectangular or L-shaped. 
Our algorithms consider simultaneously the interconnection information as well as the area and shape 
information for the modules. Experimental results indicate that our algorithms perform well for many 
test problems. 
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1. Introduction. Floorplan design [He 82], [Ma 82], [Ot 82], [LD 85], [PC 85], 
[WW 86] is the first stage of VLSI circuit layout. It is the problem of placing a 
given set of circuit modules in the plane to minimize a weighted sum of the 
following two quantities: (1) the area of the bounding rectangle containing all 
the modules; and (2) an estimation of the total interconnection wire length (or 
any suitable proximity measure). A given module can be classified as either rigid 
or flexible. A module is said to be rigid if its shape and dimensions are fixed. 
Predesigned library macrocells are examples of rigid modules. In this paper we 
consider both rectangular and L-shaped rigid modules. (A programmable logic 
array is an example of an L-shaped module.) A module is said to be flexible if 
its shape and dimensions are not fixed. Such flexibility represents the designer's 
freedom to manipulate the modules' internal structure at the floorplanning stage 
of design. We assume all flexible modules are rectangular. For each flexible 
module, we are given its area and limits of its allowed aspect ratio, where aspect 
ratio equals height divided by width. Floorplan design is a generalization of the 
classical placement problem [PV 79], [La 80], [SD 85] in which all modules are 
rectangular rigid modules. Traditional placement algorithms are no longer 
effective for this more general problem. For each flexible module, a floorplan 
design algorithm should be able to take advantage of the freedom of selecting a 
representative among many alternatives. For each L-shaped module, a floorplan 
design algorithm should consider the specific shape of the module rather than 
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just replacing the module by a bounding rectangle (which in general introduces 
unnecessary dead spaces). 

Afloorplan for n given modules (named 1, 2 , . . . ,  n) consists of an enveloping 
rectangle R subdivided by horizontal and vertical line segments into n or more 
nonoverlapping rectilinear regions; n of these regions are labeled 1, 2 , . . . ,  n. 
Region i must be large enough to accommodate module i. (Unlabeled regions, 
if any, correspond to dead spaces that sometimes are needed to achieve a more 
compact packing of the modules.) We require that the aspect ratio of R be 
between two given numbers p and q. We are also given an n • n interconnection 
matrix C = (cg) . . . .  with c~j---0, 1 -  i, j - n ,  which provides information on the 
wiring density between each pair of modules. The center of a region is the center 
of mass of the region. The distance between two regions is the Manhattan distance 
between their centers. For every pair of modules i and j, let d o be the distance 
between regions i and j. We use W=Y.I_<~o< n cud~ j as an estimate of the total 
interconnection wire length. Let A be the area of  R. A and W will be referred 
to as area and total wire length of the floorplan, respectively. We use A + h W to 
measure the quality of  a floorplan, where A is a user-specified constant that 
controls the relative importance of A and W. The objective of the floorplan design 
problem is to find a floorplan such that A + A W is minimized. Our approach is 
quite flexible with respect to different quality measures. In particular, W can be 
replaced by any other proximity measure. 

In this paper we present two algorithms for the floorplan design problem. The 
algorithms are quite similar in spirit. They both use Polish expressions to represent 
tloorplans and employ a search method called simulated annealing [Ki 83]. The 
first algorithm is designed for the case where all modules are rectangular. The 
second algorithm is designed for the case where the modules are either rectangular 
or L-shaped. Many of the existing algorithms derive the final solution in two 
stages: they first determine the relative positions of the modules using primarily 
interconnection information, then they use the area and shape information to 
minimize the area of the bounding rectangle; whereas our algorithms consider 
simultaneously the interconnection information as well as the area and shape 
information. Also, existing algorithms that employ the method of simulated 
annealing either use a representation that leads to an unnecessarily large number 
of states and thus ultimately a slower rate of  convergence [SS 85], or apply the 
search method only at a particular stage of a heuristic floorplan design algorithm 
lOG 84]. Finally, most existing algorithms can only handle rectangular modules. 

This paper consists of  two parts. Part 1 is for the case where all modules are 
rectangular. Part 2 is for the case where the modules are either rectangular or 
L-shaped. 

2. Part 1: Rectangular Modules. In this section we assume the given modules 
are all rectangular. 4 A rectangular floorplan is a floorplan where all the regions 
are rectangles. The rectangular regions in a rectangular floorplan are referred to 

4 A preliminary version of this section was presented in [WL 86]. 
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as basic rectangles. We shall only consider rectangular floorplans. Let (A1, rl,  sl), 
(A2, r2, s2 ) , . . . ,  (An, rn, sn) be a list of n triplets of numbers corresponding to 
the n given modules. The triplet of numbers (Ai, ri, si), with ri <- si, specifies the 
area and the limits of the allowed aspect ratio for module i. Each module can 
also have a f ixed or free orientation. If  the orientation is free, rotation of the 
module (by 90 ~ ) is allowed. Otherwise, rotation of the module is not allowed. 
Let O1 be the set of modules with fixed orientation, and 02 be the set of modules 
with free orientation. Let w~ be the width and hi be the height of  module i, we 
must have: 

(1) wihi = Ai. 
(2) ri <- hi/wi <- si if i c O1. 
(3) ri <-hi/w~ <-s~ or 1/s~ <-hi/w~ <- l/r~ if  i~  02.  

Note that module i is a rigid module if and only if ri = si. Let xi be the width 
and y~ be the height of  region i. Clearly, we must have x~ --- wi and Yi -> hi. 

2.1. Slicing Floorplans. To cut a rectangle we mean to divide the rectangle into 
two rectangles by either a vertical or a horizontal line. A slicing floorplan is a 
rectangular floorplan with n basic rectangles that can be obtained by recursively 
cutting a rectangle into smaller rectangles (see Figure l(a)). A slicing floorplan 
can be represented by an oriented rooted binary tree, called a slicing tree (see 
Figure l(b)).  Each internal node of the tree is labeled either * or +, corresponding 
to either a vertical or a horizontal cut, respectively. Each leaf corresponds to a 
basic rectangle and is labeled by a number between 1 and n. 

A slicing tree is a hierarchical description of the types of the cuts (vertical or 
horizontal) in a slicing floorplan. However, no dimensional information on the 
position of  each cut is specified. In general, there are many floorplans represented 
by the same slicing tree. These floorplans differ in the geometric dimensions for 
the basic rectangles as well as in the adjacency relationship among the basic 
rectangles. We now define an equivalence relation ~ on the set of all slicing 
floorplans. Let A and B be two slicing floorplans. We define A -  B iit they have 
the same slicing tree representation. The equivalence r e l a t i on -  partitions the set 
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Fig. 1. Slicing floorplan and its slicing tree representation. 
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Fig. 2. Two different slicing trees for the same slicing floorplan. 

of  slicing floorplans into equivalence classes. Each equivalence class of  slicing 
floorplans with n basic rectangles is called a slicing structure. 

Note also that for a given slicing floorplan, there may be more than one 
slicing-tree representation (see Figure 2). The different slicing trees that represent 
the same floorplan correspond to different orders in which consecutive vertical 
cuts and consecutive horizontal cuts are made. A skewed slicing tree is a slicing 
tree in which no node and its right son have the same label in {*, +} (see Figure 
3). A slicing tree obtained by making consecutive vertical cuts in the order of  
from right to left, and making consecutive horizontal cuts in the order of  from 
top to bot tom is a skewed slicing tree. All other slicing trees representing the 
same floorplan are not skewed. Hence we can use skewed slicing trees to represent 
slicing floorplans. We have the following lemma, the proof  of  which is rather 
obvious and is thus omitted. 

LEMMA 1. There is a 1-1 correspondence between all skewed slicing trees with n 
leaves and all slicing structures with n basic rectangles. 

2.2. Solution Space. A slicing structure represents a set of  equivalent slicing 
floorplans. We shall see in Section 2.4 that we can efficiently select the "best"  
floorplan among all these equivalent floorplans. Thus, instead of using the set of  
all slicing floorplans as the solution space, we can use the set of  all slicing 
structures as the solution space. This substantially reduces the size of  the solution 
space. We use a representation of slicing structures called normalized Polish 
expressions that is particularly suitable for the method of simulated annealing. 
Consequently, we use the set of normalized Polish expressions as the solution 
space. ~ . . . . .  "--~ 

/ \  / \  / \  
1 �9 * 3 1 + 

/ \  / \  / \  
2 3 1 2 2 3 

(a) (b) 

Fig. 3. (a) A nonskewed slicing tree; (b) skewed slicing trees. 
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A binary sequence bib2" �9 �9 bm is said to be a balloting sequence iff for any k, 
1 - k -  < m, the number of 0's is less than the number of the l 's in bib2 �9 �9 �9 bk. Let 
tr be a function o-: {1,2 . . . .  , n , * , + } ~ { 0 ,  1} defined by t r ( i )=  1, l<- i<-n ,  and 
or(*) = or(+) = 0. A sequence a~a2" ' �9 a2,-1 of  elements from {1, 2 , . . . ,  n, *, +} 
is said to have the balloting property if  C r ( o ~ l ) o ' ( o t 2 )  �9 " �9 c r ( a 2 n _ l )  is a balloting 
sequence. 

If  we traverse a slicing tree in postorder [Ah 74], we obtain a Polish expression. 
Note that a Polish expression is a sequence of  elements from {1, 2 , . . . ,  n, *, +} 
with the balloting property. A Polish expression is said to be normalized if there 
is no consecutive *'s or +'s in the sequence. (For example, 1 2 + 4 3  *+ is a 
normalized Polish expression, while 1 2 + 4 3 * * is not.) It is easy to see that the 
Polish expression obtained from a skewed slicing tree is normalized. Con- 
sequently, we have the following lemma and theorem. (Theorem 1 follows from 
Lemmas t and 2.) 

LEMMA 2. There is a 1-1 correspondence between the set o f  normalized Polished 
expressions o f  length 2n - 1 and the set o f  skewed slicing trees with n leaves. 

THEOREM 1. There is a 1-1 correspondence between the set o f  normalized Polish 
expressions o f  length 2n - 1 and the set o f  slicing structures with n basic rectangles. 

A slicing tree can be viewed either as a top down or a bottom up description 
of  a slicing floorplan. From a top down point of  view, a slicing tree specifies how 
a given rectangle is cut into smaller rectangles by horizontal and vertical cuts. 
From a bottom up point of view, a slicing floorplan can also be described by 
how smaller slicing floorplans are combined recursively to yield larger slicing 
floorplans. Indeed, we can interpret the symbols * and + as two binary operators 
between slicing floorplans. If  A and B are slicing floorplans, we can interpret 
A + B and A * B as the resulting slicing floorplans obtained by placing B on top 
of  A, and B to the right of  A, respectively, as shown in Figure 4. (From now on, 
we shall refer to the elements in {1, 2 , . . . ,  n} as operands, and the elements in 
{*, +} as operators.) 

2.3. Neighborhood Structure. A sequence dlda" �9 �9 dk of  k operators is called a 
chain of  length k. (Note that d~ ~ d~+l in a normalized Polish expression, for all 
1 -< i -  < k -  1.) We use l (c)  to denote the length of  a chain c. A chain of  length 0 
is defined to be the empty sequence. It is clear that for every k > 0, there are only 
two possible types of  chains of  length k in a normalized Polish expression: 

Fig. 4. Binary operators for slicing floorplans. 
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1 2 3 * + 5 4 + *  

nl ~2 ~3 c3 ~4 ~5 cs 

c 0 = c ~ = c 2 = c 4 = the empty sequence. 

Fig. 5. Chains in a Polish expression. 

* + *  + *  �9 �9 �9 and  + *  + *  + .  �9 �9 We define the complement of  a cha in  to be the  
chain  ob t a ined  by  in te rchanging  the ope ra to r s  * and  + (e.g., the c o m p l e m e n t  o f  

* + * + *  is + * + * + ) .  Let  or=  t~lOl 2 �9 �9 �9 t~2n_ 1 be  a no rma l i z e d  Pol ish  express ion .  

Note  tha t  ~ can also be  wri t ten  as COqTlClq'I'2C 2 " ~ " Cn_l"ITnCn, where  ~'1, ~ r 2 , . . . ,  cr~ 
is a p e r m u t a t i o n  o f  1, 2 , . . . ,  n, the c~'s are chains  (poss ib ly  o f  zero length) ,  and  
Y.~ l(c~) = n - 1 (see F igure  5). Two o p e r a n d s  in iv are  sa id  to be adjacent ill  they  
are  consecut ive  e lements  in ~rl.  �9 �9 ~n- An  o p e r a n d  and  an o p e r a t o r  are  said to 
be adjacent iff they  are consecut ive  e lements  in a~o~2 �9 �9 ' a2n-1 .  We define three  
types  o f  moves ,  M1, M2, and  M3, that  can  be used  to m o d i f y  a given no rma l i z e d  
Polish express ion .  The def ini t ions  o f  M1, M2, and  M3 are as fol lows:  

M1. Swap  two ad j acen t  operands .  
M2. C o m p l e m e n t  a cha in  o f  nonze ro  length.  
M3. Swap  two ad jacen t  o p e r a n d  and  opera to r .  

See F igure  6 for  a p ic to r ia l  i l lus t ra t ion  o f  these  three  types  o f  moves.  
I t  is c lear  tha t  M1 and  M2 always  p r o d u c e  a no rma l i zed  Pol ish  express ion .  

This  is not  the  case for  M3. In  fact,  M3 might  p r o d u c e  a sequence  tha t  conta ins  
ident ica l  consecut ive  ope ra to r s  or  a sequence  tha t  v iola tes  the  ba l lo t ing  proper ty .  
We shal l  on ly  accept  those  M3 moves  tha t  resul t  in no rma l i zed  Pol ish  express ions .  
(Whe the r  a given M3 move  will  resul t  in a no rma l i zed  Pol ish  express ion  can be  
tes ted  efficiently in cons tan t  t ime.) 

These  three  types  o f  move  are  used  to define the  n e i g h b o r h o o d  s t ructure  o f  
our  so lu t ion  space.  Two no rma l i zed  Pol ish express ions  are sa id  to be  neighbors 
i f  one  can  be  ob t a ined  f rom the o ther  via  one  o f  these  three  moves.  F o r  a given 
no rma l i zed  Pol ish  express ion  or, we first r a n d o m l y  select  a type  o f  move,  and  
then  r a n d o m l y  select  a ne ighbor  accord ing  to the  type  o f  move  selected.  The 
three  types  o f  moves  are  sufficient to ensure  tha t  it is poss ib le  to t r ans fo rm any 

no rma l i zed  Pol ish  express io l i  into any o the r  via  a sequence  o f  moves  as the  
fo l lowing  theo rem shows.  

THEOREM 2. Let a and or' be two normalized Polish expressions. There exists a 
sequence of  at most 2n2+  2 n neighboring normalized Polish expressions between a 
and a'. 

PROOF. We observe  tha t  given any no rma l i zed  Pol ish express ion  or, a is reach-  
able  f rom Oto = 12 * 3 * �9 �9 �9 * n via a sequence  o f  moves ,  and  vice versa.  Therefore ,  
for  any  pa i r  o f  no rma l i zed  Pol ish express ions  ot and  a ' ,  there  exists a sequence  
o f  moves  tha t  will  t r ans fo rm ~t' into ot wi th  ~to as an in te rmedia te  express ion.  In  
o rde r  to go f rom ~x to a o ,  we need  at mos t  n2/2 moves  o f  type  M1 to sort  the  
o p e r a n d s  into the  o rde r ing  1, 2, 3 . . . .  , n; at  mos t  ano the r  n2/2 moves o f  type  M3 
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Fig. 6. I l lustrat ion o f  the moves .  

to convert the expression into the form 12 * 3 �9 �9 �9 �9 �9 n where * is an operator, 
and at most n moves of  type M2 to convert all operators into *. Hence it takes 
at most n2+ n moves to convert a into ao. Similarly, it takes at most nZ+ n moves 
to convert ao to ,,'. Therefore, the total number of  moves needed is at most 
2n2+2n. []  

2.4. Cost Function. Let et be a normalized Polish expression. The expression at 
represents a set S~ of  equivalent slicing floorplans. Roughly speaking, the relative 
positions of  the modules in equivalent floorplans are essentially the same. Intui- 
tively, those floorplans that have smaller area will in general also have shorter 
total wire length because the modules are pulled "closer together" in these 
floorplans. Let f= be a floorplan in S~ with minimum area. Let A(ct) and W(et) 
be the area and the total wire length of  fr respectively. The cost function we 
use is ~ ( a )  = A(a )  + A W(a). We show in this section how to compute efficiently 
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~ c  Feasible 
region Sha 

X 

Fig. 7. Shape curve and feasible region. 

�9 (a)  for a given normalized Polish expression at. Our method of  cost computat ion 
is based on lOt 83] and [St 83]. Since in our simulated annealing algorithm each 
move only leads to a minor modification of the present Polish expression, we 
can take advantage of the cost computation for the preceding move to save 
substantially computat ional  effort for the current cost computation. 

2.4.1. Basic Method.  Shape Curve. Let F be a continuous curve on the plane. 
F is said to be decreasing if for any two points (Xl, Yl), (x2, Y2) on F with xl -< x2, 
we must have Yl - Y2. F is a shape curve if it satisfies the following conditions: 
(1) it is decreasing and lies completely in the first quadrant; (2) 3 k >  0 such that 
all lines of  the form x = a, a > k, intersect F; and (3) 3 k >  0 such that all lines 
of  the form y = b, b > k, intersect F. Note that a shape curve F partitions the first 
quadrant into two connected regions. One of  the connected regions that contains 
the points (a, a) for all large a ' s  is called the feasible region (see Figure 7). 

The shape curves in Figure 8 correspond to different kinds of  shape constraints 
where the shaded areas are the feasible regions. A point in the feasible region 
corresponds to the dimensions of  a basic rectangle that can accommodate  a given 
module. (The x and y coordinates of  the point are the horizontal and vertical 

Y Y 

a 

i ~ O  1 

X x 
(b) 

Y Y 

d 
X X 

(c) (d) 

Fig. 8. Shape curves for different shape constraints. 
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dimensions of  the basic rectangle.) Figure 8(a) and (b) corresponds to the case 
in which the module is rigid. Figure 8(c) and (d) corresponds to the case in 
which the module is flexible. Let H be the hyperbola xy =A~, L~ be the line 
y=s~x,  L 2 be the line y = r i x ,  L3 be the line y=(1/r~)x ,  and L4 be the line 
y = (1/s~)x. In Figure 8(a)-(d)  a, b, c, and d are the intersections between the 
hyperbola H and the lines L1, L2, L3, and L4, respectively. 

Let F and A be two shape curves. We define F + A to be the curve 

{(u, v + w)l(u, v) ~ F and (u, w) ~ A} 

and define F * A to be the curve 

{(u + v, w)l(u, w) ~ F and (v, w) ~ A}. 

In other words, F + A is obtained by adding the two curves F and A along the 
y-direction. F * A is obtained by adding the two curves F and A along the 
x-direction. It is easy to see that F + A  and F * A are also shape curves. Moreover, 
they are piecewise linear if F and A are both piecewise linear. For piecewise 
linear shape curves, there is an efficient algorithm to compute F + A  and F * A. 
Since a piecewise linear shape curve is completely characterized by an ordered 
list of all the "comers"  of the curve, hence to add two piecewise linear shape 
curves (along either directions), we only need to add up the curves at the 
"corners." 

Area Computation. Let T~ be the slicing tree corresponding to at. For each node 
v in T,~, the subtree rooted at v defines a slicing structure Ro. The shape constraints 
for the modules in R~ define the shape constraints for Ro. Let Fo be the shape 
curve representing the shape constraints for Rv. For every three nodes u, v, w in 
T~ with v being the father of u and w, F~ is either Fu * Fw or Fu + Fw depending 
on whether v is * or +. Hence, all the Fv's can be computed by adding up the 
shape curves of the basic rectangles (the leaves). We assume the shape curves 
for the basic rectangles are all piecewise linear. In this case we can efficiently 
compute all the Fo's. (Note that we can have piecewise linear approximation of 
the shape curves for the basic rectangles with arbitrary precision.) Once we have 
computed all the F, 's,  we can compute the area measure A(ot) from Fr where r 
is the root of T~. (Fr is the shape curve for the slicing structure or.) Let (al ,  bl) 
be the point of intersection between Fr and the line y = p x .  Let (at§ b~+l) 
be the point of intersection between Fr and the line y = q x .  Let (a2, bE), 
(a3, b3 ) , . . . ,  (at, bt) be all the "comers"  of  the curve that lies between the lines 
y =px  and y = qx (i.e., p <- bj/aj <- q). Let P = {(ax, bl), (a2, bE) , . . . ,  (al+l, bt+l)}. 
The next theorem shows that we can compute A(et) by only examining the points 
in P. 

THEOREM 3. A(~t) = a~bi where (ai, b~) is a point in P such that aibi is minimum. 

PROOF. Let (a, b) be the dimensions of a minimum area floorplan. It is clear 
that the point (a, b) must be on Ft. Since if that is not the case, the intersection 
between F r and the line joining (0, 0) and (a, b) would give the dimensions of a 
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floorplan with smaller area. To show that (a, b) is one of  the (a~, bi)'s, we observe 
that, along a given line segment I in the first quadrant, the function f ( x ,  y) = xy 
attains its minimum value at one of the two endpoints o f / .  [] 

Wire Length Computation. Since T~ is a slicing tree representation of f~, each 
node v in T~ corresponds to a rectangle K~ in f~. Let (xv, y~) be the dimensions 
of  Kv. After we have computed (xr, Yr) for Kr where r is the root of  T,,, we can 
recursively compute the dimensions of  all the basic rectangles as follows: suppose 
that we have already determined (x~, yo) for some internal node v. Let u be the 
left son of  v and w be the right son of  v. Consider the case in which the operator 
at v is +. That is, we have K~ is formed by putting Kw directly on top of Ku. 
We have xu = ~w =x~; y~ =y~-Yw ; and yw = y '  where y '  is the y-coordinate of  
the point of  intersection between the line x =x~ and the curve F~. ( I f  there is 
more than one intersection, choose the one with the smallest y coordinate.) 
Similarly, for the case in which the operator  as v is *, we have yu = y~ = y  v; 
x, = x~ - x~ ; and x~ = x '  where x '  is the x coordinate of  the point of  intersection 
between the line y = y~ and the curve Fw. 

Let (c~, c~) b e  the coordinates of  the center of  Ko. (We assume that the 
southwest corner of  f~ is placed at the origin.) Let (l~, I y) be the coordinates of  

= 1~ + ~x~ and y - -  the point of  the southwest corner of  K~. Clearly, we have co x , 1 cv __~lv . 1  y 
Consequently, to compute the centers of  the basic rectangles, it suffices to compute 

x x x y (l~, lye) for all v. Note that (/~, l,Y.) = (0, 0). We can recursively compute all (l~, lo) s 
as follows. Suppose we have already determined (lox, I y) for some v. Let u be the 
left son of  v and w be the right son of  v. We have (l~, I y) = (l~, lY). I f  the operator 
at v is +, we have l ~ = l ~  and I y=l~+y~.  I f  the operator at v is *, we have 
I x = IoX + x~ and I y = I y. 

x y Note that the centers of  the basic rectangles are just the (c~, c~) s for all leaf 
nodes v. It follows that the dq's (the distances between the basic rectangles) and 
consequently W(at) can be easily computed from the (cox, cY)'s. 

2.4.2. Incremental Computation of  Cost Function. For a given normalized Polish 
expression, the shape curves associating with the nodes of  its slicing tree are 
needed in both the area and the wire length computation. Let a t '=  a~ t~  �9 �9 �9 o~n-x 
be the Polish expression obtained from ate---OLiOS2" * " OLEn_ 1 after a move. For 
1 - < i - < 2 n - 1 ,  let T~ and T[ be the trees rooted at t~i and a~, and let Fi and F[ 
be the shape curves for ai and a l, respectively. In our simulated annealing 
algorithm, each move leads to only a minor modification of  the Polish expression 
currently being examined. Thus, in general, F~ = FI for many i's. Therefore, in 
computing the cost for at', we need only update those shape curves that are 
changed. Such an observation will substantially improve the efficiency of  our 
algorithm because we need to compute the costs for a large number  of  solutions. 
We show in Theorem 4 that the two sets of  shape curves {F1, F2 . . . . .  FEn_l} and 
{F~, F~ , . . . ,  F~n_l} differ only at a set of  vertices that lie along one or two paths 
in each of  T,~ and T~,. 

For a type M1 or type M3 move, we swap two elements o~ and 0% We refer 
to the elements a~ and aj as the base elements in at, and the elements a~ and ct~ 
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as the base e lements  in or'. For a type M2 move, we complement  a chain 
OtkO~k+lak+2 " " " at. We refer to the elements ak,  a k . ~ ,  �9 �9 �9 at as the base e lements  

in ~, and the elements a~, a~+~ , . . . ,  a~ as the base e lements  in or'. The following 
lemma follows from the definition of base elements. 

LEMMA 3. 

(1) ai is a base e lement  i f  and  only i f  a'i is a base element .  
(2) I f  ai is not  a base e lement ,  then ai = a I. 

Let us m a r k  all the base elements together with all their ancestors in both ot 
and ~t'. Let M be the set of  marked elements in ot and M'  be the set of  marked 
elements in a ' .  The elements which are not in M or M'  are said to be unmarked .  

We have the following lemmas: 

LEMMA 4. ai is u n m a r k e d  i f  and  only i f  a'~ is unmarked .  

PROOF. Note that T~ corresponds to 13~= a j % + l ' " a ~  and T'~ corresponds 
to 1 3 ~ = a ~ a ~ + l . "  a~ where j and k are the unique indices such that 
t r ( a j ) t r ( a j + l ) . . ,  tr(a,)  and t r ( a ~ ) t r ( a ~ + l ) . - ,  cr(a~) are balloting sequences, 
Suppose a~ is unmarked. This means that 13~ does not contain any base ele- 

! ments. It follows from Lemma 3 that am = a , .  for all j - < m -  <i .  Hence 
tr(aj)cr(aj+l)  . . .  o'(a'i) is a balloting sequence. Therefore, we must have k = j  
and 13~ -- 13~. Again, it follows from Lemma 3 that [31 does not contain any base 
elements. Therefore a l is unmarked. Similarly, we can show the converse by 
interchanging the roles of  et and et' in the above arguments. [] 

LEMMA 5. I f  a~ is u n m a r k e d  (or  equivalent ly  a I is u n m a r k e d ) ,  then F~ = F'~. 

PROOF. It follows from Lemma 4 that T~ = T'~. Thus we have Fi -- F'~. [] 

LEMMA 6. M corresponds to one or two pa ths  in T~;  M '  corresponds to one or 
two pa ths  in T,~,. 

PROOF. For a type M1 or type M3 move, there are only two base elements in 
et. M corresponds to the two paths from the two base elements in ot to the root. 
For a type M2 move, let ak,  ak+l, a k + 2 , . . .  , a I be the base elements in at. In this 
case, t~ is the right son of ai+l for all k-< i < - l - 1 .  M corresponds to the path 
from a k to the root. Similarly, we can show that M'  corresponds to one or two 
paths in T~,. [] 

It follows from Lemma 5 that we need only recompute those shape curves that 
correspond to unmarked elements after each move. The next theorem clearly 
follows from the above lemmas. 
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Fig. 9. The path(s) in T,~ and T,,, after a type M3 move. 

THEOREM 4. Let at' be the Polish expression obtained from at after a move. The 
shape curves Fi's and the shape curves F~'s differ only at a set of vertices that lie 
along one or two paths in each of T~ and T~,. 

Figure 9 illustrates the statement in Theorem 4. In the given example, the 
Polish expression is of  the form �9 �9 �9 17+ 16 �9 �9 �9 * 6 �9 �9 �9 9 + *  8 �9 �9 . .  Consider the 
type M3 move of  swapping * and 6. Figure 9 ( a ) a n d  (b) shows the path(s) 
corresponding to this move in T~ and T~,, respectively. 

Finally, we should point out how the d0's can also be computed incrementally. 
Clearly, after each move, it is only necessary to recompute those terms cod ~ where 
the positions of  one or both of  the centers of  the basic rectangle i and j have 
changed. Unfortunately, in general, even for a minor modification of  a Polish 
expression, the positions of  the centers of  many of the basic rectangles will be 
changed (although most of  the changes are small). In view of this, we can reduce 
the computat ion time by using a less accurate wire length estimation. Suppose 
that there is a grid of  size p (i.e., the distance between every two adjacent lines 
in the grid is p) imposed on top of the floorplan. We define the modified center 
of  a basic rectangle as the grid point that is closest to the center of  the basic 
rectangle. (In the case when there are more than one such grid points, we use 
the one with the smallest x and y coordinates.) For every pair of  basic rectangles 
i and j, we define d~ as the distance between their modified centers. Let W'(at) -- 
~m<i,j~ n cod ~. We can use A(at) + h W'(at) as our cost function. (Note that W' (a )  = 
W(a)  if p is 0.) Clearly, the number  of  modified centers which remain unchanged 
after a move decreases as p increases. Consequently, the computat ion time for 
updating the d,~'s is inversely proportional to p. 
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2.5. Annealing Schedule. We use a fixed ratio temperature schedule Tk = r T k - 1 ,  

k = 1, 2 , . . . .  Our experiments indicate that setting r = 0.85 produces very satisfac- 
t o r y  results. 

To determine the value of To, we perform a sequence of random moves and 
compute the quantity Aavg, the average value of  the magnitude of change in cost 
per move. We should have e-aavg/r0= P ~ I  so that there will be a reasonable 
probabili ty of  acceptance at high temperatures.  This suggests that T = - A a v J l n ( P )  
is a good choice for To. 

Our algorithm can start with any initial normalized Polish expression. In our 
experiments, we start with the Polish expression 12 * 3 * 4 * �9 �9 �9 * n * which corre- 
sponds to placing the n modules horizontally next to each other. This Polish 
expression is usually far from the optimal solution. 

At each temperature,  we try enough moves until either there are N downhill 
moves or the total number  of  moves exceeds 2 N  where N = 7n where 3/ is a 
user-specified constant. We terminate the annealing process if the number  of  
accepted moves is less than 5% of all moves made at a certain temperature or 
the temperature is low enough. 

2.6. Experimental Results. We have implemented our algorithm in PASCAL on 
a PYRAMID computer. The experimental results are summarized in Tables 1-3. 
The modules in all our tests problems are flexible modules with free orientations 
allowed and ri = 1/si. The running time for the test problems range from 1 CPU 
minute for the 15-modules problem to 13 CPU minutes for the 40-modules 
problem. 

The problems in Table 1 are randomly generated. The areas of  the modules 
(Ai) are chosen uniformly between 1 and 20. For P4 and P5, all modules have 
the same aspect ratio (s~). It is 2 for P4 and 3 for P5. For the other problems, 
each s~ is chosen uniformly between 1 and 3. The maximum aspect ratio allowed 
for the final chip is 2. The interconnection matrices are also randomly generated 
such that the weights (c~j) are between 0 and 1. Various values of  A are used in 
these test problems. Total area in the table is the sum of the areas of  the given 
modules and hence is a lower bound on the area of  the final chip. Comparing 

Table 1 

Random Initial Final 
feasible solution S.A. solution S.A. solution 

Total 
Problem n h w area A W A W A W 

P1 15 1 137.08 491.64 106.02 514.59 59.41 137.86 34.97 
P2 20 1 198.88 745.35 258.84 885.71 202.30 202.17 80.49 
P3 20 0 197.15 808.72 423.90 819.64 276.50 198.98 197.40 
P4 25 0 244.68 1165.70 398.21 1334.90 296.60 245.43 209.70 
P5 25 1 238.15 1026.60 576.71 876.04 344.30 244.63 151.90 
P6 30 0.5 333.92 1549.60 1023.20 2458.20 865.70 340.15 294.90 
P7 30 0 314.45 1476.90 1095.70 2130.10 936.20 319.40 429.20 
P8 40 1 407.44 1934.20 1002.30 3965.40 999.30 422.95 265.80 
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the results for problems with the same number of modules (i.e., P2 and P3, P4 
and P5, and P6 and P7), we discover that the final area (A) of P2 and P3 are 
both very close to optimal while the final total wire length (W) of P3 is substan- 
tially higher than that of  P2. Since we generate their interconnection matrices 
using the same probability distribution, we might expect the values of W to be 
about the same. The large difference in the final values of W is due to the fact 
that the value of h is 0 for P3, and hence the algorithm makes no attempt to 
minimize W. We also observe that we can obtain reasonable tradeoffs between 
area and wire length without substantially increasing the area. Similar observation 
can be made for the other two pairs of problems. For some of  the test problems 
with nonzero A, we obtain solutions in which the value of A + h W is about the 
same while the value of A is smaller and the value of  W is larger. This is to be 
expected because of the tradeoffs between A and W in the cost function. Also, 
for problems with zero A, even though the final wire lengths are large, they are 
much smaller than those in random solutions. Since modules that are closely 
packed will in general lead to a reduction of total wire length too. For some of 
the test problems, suboptimality in area is due to the presence of very rigid 
modules (small si), and the tradeoffs between area and wire length. Figure 10 
shows the final floorplan for problem P8 which contains 40 modules. 

Table 2 is a summary of results for a random problem with 20 modules. The 
sum of the areas of the modules in this problem is 195.37. We used various value 
of  h to demonstrate the tradeoffs between area and wire length. As we increase 
a from 0 to 3, we observe that A increases from 196.42 to 220.30 while W 

34 

35 18 

32 

2z 36 

26 31 

20 

28 

3421 + 1 3 + 6 2 5 "  I1 2 * 8 * +  10" 1 9 3 7 + . 2 3  1 2 + ' 2 8 2 0 + *  1 7 4 "  16 '  
2 6 " 3 1  * + * 9 5  *22 1 4 . 3 2 + ' 2 7 2 9 " 3 5 " + 3 0 3 1 5 + ' 7 " 3 8 + 3 9 "  18 
3 3 * + *  1 4 1 1 " 2 4 3 6 " + * +  

Fig. I0. Final floorplan for problem P8. 
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Table 2 

S.A. solution 

A~ A W A A +  W A + 2 W  A + 3 W  

0 196.42 152.10 196.42t 348,52 500.62 652.72 
1 206.60 103.70 206.60 310.30t 414.00 517.70 
2 215.33 95.78 215.33 311.11 406.89t 502.67 
3 220.30 93.96 220.30 314.26 408.22 502.18t 

Table 3 

Module Chip Total 
ratio ratio area A 

1 1 229.17 291.23 
2 1 - -  231.65 
2 2 - -  230.52 
3 3 - -  230.19 

decreases from 152.1 to 93.96. We observe that those entries marked by a dagger 
(t) are the values of the cost function. They should be smaller than other values 
in the same column. This is indeed the case. 

Table 3 shows the results for another 20-modules problem. For this problem, 
all modules have the same aspect ratio s which is referred to as module ratio in 
the table. The column chip ratio is the maximum aspect ratio allowed for the 
final chip. The value of h is set to 0. This problem demonstrates the effect of 
module ratio and chip ratio on the final area of the chip. We observe that by 
relaxing either the module ratio or the chip ratio we can reduce the final area. 
We also observe that a module ratio of 2 gives enough flexibility for achieving 
close to optimal final area. 

3. Part 2: Rectangular and L-Shaped Modules. In this section we present an 
algorithm to produce floorplans for rectangular and L-shaped modules. (Figure 
11 shows examples of L-shaped module.) This algorithm is very similar in spirit 
to the algorithm described in the last section. We also use the same search method 
of simulated annealing, similar floorplan representation (Polish expressions with 
new operators), and similar ways to modify a floorplan locally. Not only can our 
algorithm handle L-shaped modules, in the case where all the modules are 

Fig. 11. Examples of L-shaped modules. 
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rectangular, our algorithm will, in general, be able to produce nonslicing rec- 
tangular floorplans. 

For each module, there is a given set of possible shapes, dimensions, and 
orientation for the module. Each possible choice of shape, dimensions, and 
orientation for a module is called an instance of the module. (Clearly, a nonrotat- 
able rigid module has only one instance.) We assume in the last section that all 
modules are rectangular. Also, we consider only slicing floorplans there. In that 
case, the technique of adding up shape curves allows us to consider simultaneously 
all possible instances of the modules efficiently. The situation in this section is 
slightly more complicated because there are L-shaped modules and therefore it 
is necessary to consider more general type of floorplans. The idea of adding up 
shape curves is no longer applicable. Instead, we examine the instances of a 
module one at a time and rely on probabilistic techniques to make selections 
from the different instances. 

Let f l  denote the set of rectangular and L-shaped geometric figures of all 
possible sizes and dimensions. For each module i, let G~, G~ _ f l ,  denote the set 
of all possible instances for the module. We define four binary operators and 
one unary operator that operate on the geometric figures in II. Every algebraic 
expression within our algebraic system formed by geometric figures chosen from 
the G~'s corresponds to a floorplan. These algebraic expressions can be represented 
by Polish expressions. The method of simulated annealing is then used to search 
for an optimal floorplan among these Polish expressions. 

3.1. Geometric Figures. We first introduce a way of representing the geometric 
figures in fl .  Let A be a geometric figure in [1. The orientation index of A is 
defined to be 0 if A is rectangular, and is either 1, 2, 3, or 4 as shown in Figure 
12 if A is L-shaped, It is clear that the dimensions of A are completely specified 
by the length of its four outermost boundary edges. Let xl and x2, X l -  x2, be 
the lengths of the two outermost horizontal edges. Let Yl and Y2, Yl : >  Y2, be the 
lengths of the two outermost vertical edges. Let s be the orientation index of A. 
Then A can be represented by the 5-tuples (x~, x2, Yl,Y2, s) (see Figure 13). 
Consequently, the set of all rectangular geometric figures can be represented by 
f l l  = {(x~, x2, y~, Y2, 0)lx~ = x2, Yl = y2}, and the set of all L-shaped geometric 
figures can be represented by 

112 = {(xl, x2, YI, Y2, s)[xl -> x2, y~ -> Y2, (xl - x2)(yl -Y2) > 0, and s ~ { 1, 2, 3, 4}}. 

The condition (xl -x2)(y~ -Y2) > 0 excludes the possibility of the geometric figure 
being rectangular. Hence there is a 1-1 correspondence between [1 and the set 
tl~ u 1)2. 

0 1 2 3 4 
Fig. 12. Orientation indices of geometric figures in 1). 
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x2 xl 2 

xl x2 1 
s =2 $ =4 s =3 

(2,1,3,1,3) 

Fig. 13. Representation of geometric figures by 5-tuples (x~, x2, y~, Y2, s). 

3.2. The Operators. As was pointed out in Section 2.2, slicing floorplans can 
be obtained by recursively combining rectangles to form larger rectangles by 
means of two binary operators * and +. For two rectangles A and B, A + B and 
A * B are the rectangles obtained by placing B on top of A, and B to the right 
of A, respectively. Since we are now dealing with both rectangular and L-shaped 
geometric figures, a natural extension is to define operators that combine rec- 
tangular and L-shaped geometric figures to form larger rectangular and L-shaped 
geometric figures. We define a unary operator 7,  and four binary operators "1, 
�9 2, +1, and +2 that operate on the geometric figures in ~ .  

Figure 14 shows the definition of the unary operator 7 which is a function 
from fl  to 1~. For A ~ ~ ,  ~A is defined to be the smallest bounding rectangle 
of A. We shall refer ~A as the completion of A. More precisely, we have 
~(xl ,  x2, y~, Y2, S) = (X1, Xl, Yl, Yl, 0). The unary operator -7 provides the possi- 
bility of placing an L-shaped geometric figure in a rectangular region. The four 
binary operators, which are functions from l~ x f l  to 1~, represent different ways 
of putting two geometric figures in f l  together as compactly as possible, to form 
a larger geometric figure in ~ .  Let A, B ~ IL Then A "1 B and A *2 B are geometric 
figures obtained by putting A and B next to each other horizontally with B placed 
to the right of A, and A +1 B and A +2 B are geometric figures obtained 
by putting A and B next to each other vertically with B placed on top of A. 
The operators are defined in such a way that the rules for combining the geometric 
figures are completely determined by the orientation indices of the two geometric 

Fig. 14. Unary operator. 
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figures involved. The exact dimensions and orientation index of the new geometric 
figure are determined by the dimensions of the two geometric figures involved 
such that packing is as compact as possible. Hence, each binary operator can be 
completely described by its actions on the 25 possible combinations of the 
orientation indices of the two operands (five possible orientation indices for A 
and five possible orientation indices for B). Thus, for the four binary operators, 
there are altogether 100 possibilities. Figure 15 shows 20 of the 100 possible ways 
of combining two geometric figures based solely on their orientation indices. (In 
Figure 15 each circle at a T-intersection point corresponds to three possible 
outcomes for the resulting geometric figure. Figure 16 illustrates this notation.) 
For a complete description of the binary operators, see [Wo 87]. We now give 
three examples to illustrate these binary operations. 

EXAMPLE 1. We consider here the case of A "1 B when the orientation indices 
of A and B are 3 and 1, respectively (see Figure 17(a)). Let A = (al ,  a2, bl ,  b2, 3) E 

and B = (el, c2, dl, d2, 1 )~f l .  We have A "1 B = (xl, x2, Yl, Y2, s) where the 
values of xl,  x2, Yt, Y2, and s are determined by the following procedure: 

Xl <'- al + cl; 
x2~a2+cl;  
Yl ~" max(b1, d0;  
y2 ~ b2; 
s ~ 3 .  

For example, we have (2, 1, 2, i, 3) "1 (2, 1.5, 2.5, 2, 1) = (4, 3, 2.5, 1, 3). (See 
Figure 17(b) for a pictorial illustration of this computation.) 

EXAMPLE 2. We consider here the case of A +2 B when the orientation indices 
of  A and B are 1 and 0, respectively (see Figure 18(a)). Let A = (al,  a2, bl, b2, 1) 
II  and B = (cl, cl, dl,  dl,  0) e II.  We have A +2 B = (x~, x2, Yl, 3'2, s) where the 
values of  xl ,  x2, Yl, Y2, and s are determined by the following procedure: 

xl # max(a1, a2+ cl); 
Yl # max(b1, b2+ dl); 
if (Yl > bl) then 

begin 
X2<--01; 
y 2 ~ b l ;  
s ~ 2 ;  

end 
else 

begin 
x2~ a2; 
22 ~'- b2+ dl; 
s~- l ;  

end; 
if (xl = x2) or (y~ = Y2) then 

(xl, x2, Yl, Y2, s) ~ (xl,  xl ,  Yl, Yl, 0); 
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4-2 ~--~ ---- 

(a) 

A• "61 ~ -- 

m •  4"2 ~ -- 

(b) 

281 

(c) (a) 

+2 ~ = 

(e) 

Fig. 15. Binary operators (20 out of 100 cases). 
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Fig. 16. Circle notation representing three possible outcomes of combining two figures. 

A 

(a) 

B 

1.5 4 

1 ~ 2.5 2 "1 2.5 2 = B 

1 2 3 

(2, 1,2, 1,3)* 1 (2, 1.5,2.5,2, 1)=(4,3,2.5, 1,3) 

(b) 

Fig. 17. An example of a binary operation. 

(a) 

2 

A 

3 

3 

'= 4 ~  5 i  

6 

(6, 2, 4, 2, 1) +2 (3, 3, 3, 3, 0) = (6, 3, 5, 4, 2 ) 

Ca) 

Fig. 18. An example of a binary operation. 
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(a) 

= A 

5 

"2 4 = 

2 3 2 

(6, 6, 2, 2, 0) "2 (3, 3, 4, 4, 0) = (5, 2, 6, 4, 4) 

Co) 

Fig. 19. An example of a binary operation. 

The last if-then statement is for the case in which the resulting geometric 
figure is a rectangle because of  the dimensions of A and B. (See Figure 18(b) 
for a pictorial illustration of the computation (6, 2, 4, 1) +2 (3, 3, 3, 3, 0) = 
(6, 3, 5, 4, 2).) 

EXAMPLE 3. We consider here the case of  A *2 B when the orientation indices 
of A and B are both 0 (see Figure 19(a)). Let A = (31, al ,  b~, bl, 0) E 1~ and 
B = (cl, cl, dl,  dl,  0) ~ I~. We have A *2 B = (Xl, x2, YI, Y2, s) where the values 
of x1, x2, yl ,  Y2, and s are determined by the following procedure: 

xl~al+cl; 
Yl <'- max(b1, d0;  
if (Yl > dl) then 

begin 
X 2 ~  a 1 ; 

Y2 <- d l  ; 
s ~ 4 ;  

end 
else 

begin 
X 2 <--- C 1 ; 

y2 ~-" h i ;  

s~-3; 
end; 

if (xl = x2) or (Yl = Y2) then 
(X1, X2, Yl, Y2, s) ~ (xl,  x~, y~, Yl, 0); 

As in the last example, the last if-then statement is for the case in which A *2 B 
is a rectangle. (See Figure 19(b) for a pictorial illustration of the computation 
(6 ,6 ,2 ,2 ,0 )  * 2 ( 3 , 3 , 4 , 4 , 0 ) = ( 5 , 2 , 6 , 4 , 4 ) . )  



284 D.F. Wong and C. L. Liu 

It should also be noted that the operators constitute a complete set in the sense 
that we can generate all minimally compacted combinations of  geometric figures. 
More precisely, we have the following theorem. 

THEOREM 5. Let f :  1~ x ~ -~ f l  be any function that combines two geometric figures 
to yield a larger geometric figure. For any A, B e 1~, there exists C c t l  such that 
C is small enough to beplaced insidef(A, B), and C is of  the form A ' .  B' or B ' .  A', 
where A' is either A or 7A ,  B' is either B or -1B, and �9 e {'1, *2, +1, +2}- 

PROOF. We assume that the orientation index o f f ( A ,  B) is 1. The proof  for the 
other cases are similar, f ( A ,  B) is an L-shaped region containing two nonoverlap- 
ping geometric figures A and B. The first step of  our proof  is to complete both 
A and B as much as possible. If-qA remains inside f (A,  B) and does not intersect 
B, we let A' be -hA, otherwise we let A' be A. Similarly, if -~B remains inside 
f ( A ,  B) and does not intersect A', we let B' be ~B,  otherwise we let B' be B. 
There are several cases to be considered. 

Case I. Both A' and B' are rectangles. Suppose there is a vertical line separating 
A' and B'. Without loss of generality we may assume that A' is to the left of B'. 
C is the first geometric figure shown in Figure 20(a). If  no such vertical line 
exists, there must be a horizontal line separating A' and B'. Again, we may assume 

B, ] 

(a) 

Co) 

(c) 

(d) 

(e) 
Fig. 20. Possible choices for C (proof of Theorem 5). 
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that A' is below B'. C is the second geometric figure shown in Figure 20(a). 
(Note that because the orientation index o f f (A,  B) is 1, we need not consider 
the other two combining rules where the circle symbol appears either on the left 
side or at the bottom. This also applies to the other cases.) 

Case 2. One of A' and B' is a rectangle, and the other is L-shaped. We may 
assume that A' is L-shaped. If-qA' intersects B', C can be chosen from the figures 
shown in Figure 20(b). Otherwise, we have -aA' intersects the outside off(A,  B) 
and C can be chosen from the figures shown in Figure 20(c). 

Case 3. Both A' and B' are L-shaped. Suppose -aA' intersects B' and -aB' 
intersects A'. We may assume that A' is either to the left of B' or below B'. C 
can be chosen from the figures shown in Figure 20(d). If the completions of A' 
and B' are not mutual intersecting, we may assume that -qA' intersects B', 7B '  
intersects the outside of f (A,  B), and -qB' does not intersect A'. In this case, C 
can be chosen from the figures shown in Figure 20(e). 

Note that the southwest corner of C is well defined except when C is given 
by the last geometric figure in Figure 20(b). In that case we use the southwest 
corner of-1C instead. Now if we place the southwest corner of C at the southwest 
comer off (A,  B), C stays completely inside f (A ,  B). The theorem follows from 
the fact that all the geometric figures in Figure 20 can be generated by our 
operators. [] 

Figure 21 shows three examples of f (A ,  B) together with the corresponding 
smaller geometric figures generated by our operators. 

f (A ,B ) A -~--~ 

(a) 

f (A,B) A *IB 

Co) 

f(A~) A *:,B 

(c) 
Fig. 21. Compact geometric figures generated by our operators. 
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Fig. 22. Geometric figure corresponding to (~A +1 B) "1 (-l(C *2 D) +2 E). 

3.3. Floorplan Representation. Consider the algebraic system 

( ~ ,  *1, *2, "31-1, "~2, --1). 

It is clear that an algebraic expression in (1~, "1, *2, +1, +2, -7) represents a way 
to combine a set of  geometric figures in ~ to yield a resultant geometric 
figure in II.  Consider as an example the algebraic expression 
(~A +1 B) "1 ( ~ ( C  *2 D) +2 E)  with A, B, C, D, E c ~ .  (The order of  precedence 
of the binary operations is specified by parentheses and we use the convention 
that unary operation has priority over binary operations.) Figure 22 shows the 
geometric figure corresponding to the expression. 

Similar to the case discussed in Section 2, an algebraic expression ~, can be 
represented by a tree T. The internal nodes of T correspond to the operators 
in ~, and the leaf nodes correspond to the geometric figures in ~,. Let v be an 
internal node of  T~ If  v is a binary operator, then v has two subtrees. These 
subtrees correspond to the two geometric figures that v combines. If  v is the 
unary operator --1, then v has one subtree which corresponds to the geometric 
figures that v operates on. Figure 23 shows the tree representation of 
(TA +1 B) "1 ( ~ ( C  *2 D) +2 E). If  we traverse the tree T in postorder, we obtain 
a Polish expression representation of ~,. For example, the Polish expression 
obtained from (~A ~-1 B) *1 (-"](C *2 D) +2 E)  is A ~ B  +1 CD *2 ~ E  4-2 "1. 

*1 

+l +z 

/\ /\ 
B ~ E 

I I 
A *~ 

/ \  
C D 

Fig. 23. Tree representation for (TA +1 B) *l (-~(C *2 D) +2 E). 
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Let E be the set of  all algebraic expressions with operands 5 ml ,  m z , . . . ,  m, ,  
where m~ ~ G~, 1 --- i --- n. The set E represents different way of compactly combining 
the given set of  modules. Clearly, each algebraic expression at in E represents a 
floorplan for the set of  given modules. (More precisely, --lot, the completion of 
at, represents a floorplan.) Furthermore, the regions in the floorplan are either 
rectangular or L-shaped. Let El, be the set of  Polish expressions corresponding 
to the algebraic expressions in E. Since there is a 1-1 correspondence between 
El, and E, we may assume that the set of  floorplans under consideration are given 
by El,. We shall search for an optimal floorplan among all the Polish expressions 
in El,. 

3.4. The Algorithm. Let at be a Polish expression and f~ be the floorplan 
represented by at. Let A(at) be the area of f~ .  In other words, if (Xl, x2, Yl, Y2, s) c 

is the geometric figure corresponding to at, A(at )=  x~yl. (In the case where 
there are two numbers p and q specifying the allowed range of  aspect ratio of  
the final chip, A ( a )  is defined as the area of  the smallest rectangle, with aspect 
ratio between p and q, containing (x~, x2, Yl, y2, s).) Let W(at) be the total wire 
length of  f~. The cost function is ~ ( a t ) =  A(at )+hW(at ) ,  where )t is a given 
constant that controls the relative importe, nce of  area and wire length. 

Our floorplan design algorithm employs the method of simulated annealing to 
search for a Polish expression at in Ev such that qt(at) is minimized. Let at ~ Ep 
be a Polish expression. It  is clear that at is of  the form O L 1 ~ 1 0 / 2 / 3 2  " " " O / 2 n _ l / 3 2 n _  1 

where n of  the a~'s are geometric figures for the n modules (operands),  the other 
n a~'s are binary operators,  and each /3 is either the unary operator  -7 or the 
empty string. We define four types of  moves that can be used to modify at. Two 
Polish expressions at and at' in Ep are said to be neighbors if one can be obtained 
from the other via one of  these moves. The four types of  moves are defined as 
follows: 

M1. Modify a~ for some i. 
M2. Modify/3~ for some i. 
M3. Swap two operands. 
M4. Swap two adjacent operand and binary operator  in a~a~. �9 �9 a2,-x. 

We now give a more detailed description of the moves. For M1 moves, there are 
two cases corresponding to whether a~ is an operand or a binary operator. I f  a~ 
is an operand,  we have a~ = A ~ Gk for some k. We set a~ ~- A' where A' ~ Gk and 
A ~ A'. This corresponds to selecting another instance for a module. (Note that 
if IGk[ = 1, no modification is possible.) On the other hand, if a~ is a binary 
operator,  we select a different binary operator  for a~. For M2 moves, we change 
/3~ to the other element in {e, -7}. Note that in a Polish expression at, each operand 
represents a geometric figure for a module, and the subtree rooted at each operator 
represents a geometric figure for a "supermodule ."  We refer to these geometric 
figures as the geometric figures represented by the a~'s and the/3i 's in at. Clearly, 

5 We shall refer to the elements in II that appear in an algebraic expression as the operands of the 
expression. 
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M2 has no effect at all when oq is a rectangle. Therefore, we only modify those 
fli where a~ is of L-shape. For M3 moves, we swap two 0Perands a~ and aj. This 
corresponds to swapping two modules. Finally, M4 moves correspond to swapping 
ai and ai+l for some i when one of  them is an operand and the other is a binary 
operator. Note that M1, M2, or M3 moves always result in another Polish 
expression in Ep, but M4 moves may produce an expression which is not a Polish 
expression. We only use those M4 moves that produce a valid Polish expression. 
As in Section 2, the four types of moves are sufficient to ensure that  it is possible 
to transform any Polish expression into any other via a sequence of moves. Again, 
there is a sequence of  O(n 2) neighboring Polish expressions between any two 
Polish expressions. 

We use a temperature schedule of  the form Tk = rTk-i where r is usually 
between 0.8 and 0.9. In the current implementation, the stopping criteria are: (1) 
the number of accepted moves in that temperature is very small; or (2) the average 
cost remains unchanged for three consecutive temperatures. 

We should point out that throughout the entire annealing process, we need to 
compute the cost of an algebraic expression many times. Since each move is only 
a minor modification of  a Polish expression, we should avoid recomputations as 
much as possible. Recall that in a Polish expression at, each operand represents 
a geometric figure for a module, and the subtree rooted at each operator represents 
a geometric figure for a "supermodule."  Computation of the cost of at amounts 
to determining all these geometric figures. Fortunately, after every move, many 
of  these geometric figures remain unchanged. The following theorem characterizes 
the set of  geometric figures that need to be recomputed. The proof  of  the theorem 
is very similar to that of Theorem 4 in Section 2. 

THEOREM 6. Let at' be the expression obtained from at after a move. Let T,~ and 
Tw be the trees corresponding to at and at', respectively. The geometric figures that 
need to be recomputed correspond to subtrees rooted at operators that lie on one or 
two paths in each of  T~ and T~,,. 

Finally, we note that for the case in which the given modules are rectangular, 
our algorithm is capable of  producing a nonslicing floorplan. As an example, we 
note that the algebraic expression ((B +2 A) +2 C) "1 (D +1 E)  corresponds to 
the nonslicing floorplan shown in Figure 24. 

E 
A 

C 
D 

B 

Fig. 24. A norislicing floorplan. 
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Table 4 

Problem n 6 AL/ As 

Q1 20 0.81 0.85 
Q2 20 0.84 0.89 
Q3 25 0.85 0.88 
Q4 40 0.83 0.86 
Q5 25 0.66 0.75 

3.5. Experimental Results. We have implemented our floorplan design algorithm 
in PASCAL on a PYRAMID computer. We compared our results on several test 
problems with those obtained by the floorplan design algorithm in Part 1. The 
algorithm in Part 1 was designed to handle only rectangular modules and only 
produces slicing floorplans. In order to use that algorithm, we replaced each 
L-shaped module by its smallest bounding rectangle when the algorithm is tested. 
The results are summarized in Table 4 where n is the number of modules and 
measures the amount of dead space introduced by replacing all L-shaped modules 
by their bounding restangles. More precisely, if A is the total area of  all the 
modules and A' is the total area of the bounding rectangles of all the modules, 
6 = A/A'. As is the area of the floorplan produced by the algorithm in Part 1 
and AL is the area of the floorplan produced by the algorithm described in this 
section. In our test problems the values of As/AL and 8 are quite close. This 
indicates that our algorithm can take full advantage of the L-shaped modules to 
reduce total chip area. Figure 25 shows the final floorplan for problem Q4 which 
contains 40 modules. The execution time for this problem was about 10 CPU 
minutes. 

Finally, Table 5 shows comparison between the two algorithms in the case 
where all given modules are rectangular. We performed the experiments on four 
problems which were obtained by changing the shape flexibilities of the modules 
of  a 20-modules problem. All modules have the same maximum allowed aspect 
ratio which is referred to as module ratio in the table. We required the final chip 
to be a square. The columns Ds and DL denote the percentage of dead spaces 
in the floorplans obtained by the algorithm in Part 1 and the algorithm in Part 
2, respectively. Note that, for the four tested problems, both Ds and DL increase 
as the module ratio increases. This is to be expected because we can pack modules 
closer together if the modules are more flexible. Also, for module ratio = 1.0, 
1.25, and 1.5, Ds > DL. This indicates that the algorithm in Part 2 obtained smaller 
chips by generating nonslicing floorplans. For module ratio = 2.0, Ds was smaller 
than DL. There are two reasons for this result: (1) slicing floorplans are very 
good solutions when modules are very flexible (e.g., module ratio = 2), and (2) 
the current implementation of the algorithm in Part 2 can only consider a finite 
set of shape alternatives for each module and hence did not consider all possible 
shapes alternatives when the algorithm was tested. In order to obtain a better 
result for the case module ratio -- 2, we should use a larger (finite) set of shape 
alternatives. 
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Fig. 25. Final floorplan for problem Q4. 

4. Concluding Remarks. We have presented in this paper two algorithms for 
the floorplan design problem. The algorithms are very similar in spirit. They both 
use Polish expressions to represent floorplans, employ the same search method 
of simulated annealing, and use similar ways to modify a floorplan locally. The 
first algorithm is designed for the case where all the modules are rectangular. All 
floorplans produced by this algorithm are slicing floorplans. The second algorithm 
is designed for the case where the modules are either rectangular or L-shaped. 
This algorithm is capable of producing a nonslicing floorplan when all the modules 
are rectangular. Our algorithms consider simultaneously the interconnection 
information as well as the area and shape information. Experimental results 
indicate that our algorithms perform well for many test problems. 

Table 5 

Module 
ratio Ds (%) DL (%) 

1.0 25.0 18.0 
1.25 21.5 11.7 
1.5 12.6 8.0 
2.0 1.1 4.7 
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