
Algorithmica (1989) 4:263-291 Algorithmica
�9 1989 Springer-Verlag New York Inc.

Floorplan Design of VLSI Circuits I

D. F. Wong 2 and C. L. Liu 3

Abstract. In this paper we present two algorithms for the floorplan design problem. The algorithms
are quite similar in spirit. They both use Polish expressions to represent floorplans and employ the
search method of simulated annealing. The first algorithm is for the case where all modules are
rectangular, and the second one is for the case where the modules are either rectangular or L-shaped.
Our algorithms consider simultaneously the interconnection information as well as the area and shape
information for the modules. Experimental results indicate that our algorithms perform well for many
test problems.

Key Words. VLSI circuit layout, Floorplan design, Simulated annealing.

1. Introduction. Floorplan design [He 82], [Ma 82], [Ot 82], [LD 85], [PC 85],
[WW 86] is the first stage of VLSI circuit layout. It is the problem of placing a
given set of circuit modules in the plane to minimize a weighted sum of the
following two quantities: (1) the area of the bounding rectangle containing all
the modules; and (2) an estimation of the total interconnection wire length (or
any suitable proximity measure). A given module can be classified as either rigid
or flexible. A module is said to be rigid if its shape and dimensions are fixed.
Predesigned library macrocells are examples of rigid modules. In this paper we
consider both rectangular and L-shaped rigid modules. (A programmable logic
array is an example of an L-shaped module.) A module is said to be flexible if
its shape and dimensions are not fixed. Such flexibility represents the designer's
freedom to manipulate the modules' internal structure at the floorplanning stage
of design. We assume all flexible modules are rectangular. For each flexible
module, we are given its area and limits of its allowed aspect ratio, where aspect
ratio equals height divided by width. Floorplan design is a generalization of the
classical placement problem [PV 79], [La 80], [SD 85] in which all modules are
rectangular rigid modules. Traditional placement algorithms are no longer
effective for this more general problem. For each flexible module, a floorplan
design algorithm should be able to take advantage of the freedom of selecting a
representative among many alternatives. For each L-shaped module, a floorplan
design algorithm should consider the specific shape of the module rather than

This work was partially supported by the Semiconductor Research Corporation under Contract
86-12-109, by the National Science Foundation under Grant MIP 8703273, and by a grant from the
General Electric Company.
2 Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
3 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA.

Received June 28, 1987; revised November 4, 1987. Communicated by C. K. Wong.

264 D.F. Wong and C. L. Liu

just replacing the module by a bounding rectangle (which in general introduces
unnecessary dead spaces).

Afloorplan for n given modules (named 1, 2 , . . . , n) consists of an enveloping
rectangle R subdivided by horizontal and vertical line segments into n or more
nonoverlapping rectilinear regions; n of these regions are labeled 1, 2 , . . . , n.
Region i must be large enough to accommodate module i. (Unlabeled regions,
if any, correspond to dead spaces that sometimes are needed to achieve a more
compact packing of the modules.) We require that the aspect ratio of R be
between two given numbers p and q. We are also given an n • n interconnection
matrix C = (cg) with c~j---0, 1 - i, j - n , which provides information on the
wiring density between each pair of modules. The center of a region is the center
of mass of the region. The distance between two regions is the Manhattan distance
between their centers. For every pair of modules i and j, let d o be the distance
between regions i and j. We use W=Y.I_<~o< n cud~ j as an estimate of the total
interconnection wire length. Let A be the area of R. A and W will be referred
to as area and total wire length of the floorplan, respectively. We use A + h W to
measure the quality of a floorplan, where A is a user-specified constant that
controls the relative importance of A and W. The objective of the floorplan design
problem is to find a floorplan such that A + A W is minimized. Our approach is
quite flexible with respect to different quality measures. In particular, W can be
replaced by any other proximity measure.

In this paper we present two algorithms for the floorplan design problem. The
algorithms are quite similar in spirit. They both use Polish expressions to represent
tloorplans and employ a search method called simulated annealing [Ki 83]. The
first algorithm is designed for the case where all modules are rectangular. The
second algorithm is designed for the case where the modules are either rectangular
or L-shaped. Many of the existing algorithms derive the final solution in two
stages: they first determine the relative positions of the modules using primarily
interconnection information, then they use the area and shape information to
minimize the area of the bounding rectangle; whereas our algorithms consider
simultaneously the interconnection information as well as the area and shape
information. Also, existing algorithms that employ the method of simulated
annealing either use a representation that leads to an unnecessarily large number
of states and thus ultimately a slower rate of convergence [SS 85], or apply the
search method only at a particular stage of a heuristic floorplan design algorithm
lOG 84]. Finally, most existing algorithms can only handle rectangular modules.

This paper consists of two parts. Part 1 is for the case where all modules are
rectangular. Part 2 is for the case where the modules are either rectangular or
L-shaped.

2. Part 1: Rectangular Modules. In this section we assume the given modules
are all rectangular. 4 A rectangular floorplan is a floorplan where all the regions
are rectangles. The rectangular regions in a rectangular floorplan are referred to

4 A preliminary version of this section was presented in [WL 86].

Floorplan Design of VLSI Circuits 265

as basic rectangles. We shall only consider rectangular floorplans. Let (A1, rl, sl),
(A2, r2, s2) , . . . , (An, rn, sn) be a list of n triplets of numbers corresponding to
the n given modules. The triplet of numbers (Ai, ri, si), with ri <- si, specifies the
area and the limits of the allowed aspect ratio for module i. Each module can
also have a f ixed or free orientation. If the orientation is free, rotation of the
module (by 90 ~) is allowed. Otherwise, rotation of the module is not allowed.
Let O1 be the set of modules with fixed orientation, and 02 be the set of modules
with free orientation. Let w~ be the width and hi be the height of module i, we
must have:

(1) wihi = Ai.
(2) ri <- hi/wi <- si if i c O1.
(3) ri <-hi/w~ <-s~ or 1/s~ <-hi/w~ <- l/r~ if i~ 02.

Note that module i is a rigid module if and only if ri = si. Let xi be the width
and y~ be the height of region i. Clearly, we must have x~ --- wi and Yi -> hi.

2.1. Slicing Floorplans. To cut a rectangle we mean to divide the rectangle into
two rectangles by either a vertical or a horizontal line. A slicing floorplan is a
rectangular floorplan with n basic rectangles that can be obtained by recursively
cutting a rectangle into smaller rectangles (see Figure l(a)). A slicing floorplan
can be represented by an oriented rooted binary tree, called a slicing tree (see
Figure l(b)). Each internal node of the tree is labeled either * or +, corresponding
to either a vertical or a horizontal cut, respectively. Each leaf corresponds to a
basic rectangle and is labeled by a number between 1 and n.

A slicing tree is a hierarchical description of the types of the cuts (vertical or
horizontal) in a slicing floorplan. However, no dimensional information on the
position of each cut is specified. In general, there are many floorplans represented
by the same slicing tree. These floorplans differ in the geometric dimensions for
the basic rectangles as well as in the adjacency relationship among the basic
rectangles. We now define an equivalence relation ~ on the set of all slicing
floorplans. Let A and B be two slicing floorplans. We define A - B iit they have
the same slicing tree representation. The equivalence r e l a t i on - partitions the set

J \
4 / \ / \

6 2
1 6 + +

315 7 / \ / \ i 1

I * 2 7 4

/ \
3 5

(a) (b)

Fig. 1. Slicing floorplan and its slicing tree representation.

266 D.F. Wong and C. L. Liu

3 1

1 4

2

/ \ / \
/ \ / \ 4

+ 4 1 + / \ / \
2 3 2 3

Fig. 2. Two different slicing trees for the same slicing floorplan.

of slicing floorplans into equivalence classes. Each equivalence class of slicing
floorplans with n basic rectangles is called a slicing structure.

Note also that for a given slicing floorplan, there may be more than one
slicing-tree representation (see Figure 2). The different slicing trees that represent
the same floorplan correspond to different orders in which consecutive vertical
cuts and consecutive horizontal cuts are made. A skewed slicing tree is a slicing
tree in which no node and its right son have the same label in {*, +} (see Figure
3). A slicing tree obtained by making consecutive vertical cuts in the order of
from right to left, and making consecutive horizontal cuts in the order of from
top to bot tom is a skewed slicing tree. All other slicing trees representing the
same floorplan are not skewed. Hence we can use skewed slicing trees to represent
slicing floorplans. We have the following lemma, the proof of which is rather
obvious and is thus omitted.

LEMMA 1. There is a 1-1 correspondence between all skewed slicing trees with n
leaves and all slicing structures with n basic rectangles.

2.2. Solution Space. A slicing structure represents a set of equivalent slicing
floorplans. We shall see in Section 2.4 that we can efficiently select the "best"
floorplan among all these equivalent floorplans. Thus, instead of using the set of
all slicing floorplans as the solution space, we can use the set of all slicing
structures as the solution space. This substantially reduces the size of the solution
space. We use a representation of slicing structures called normalized Polish
expressions that is particularly suitable for the method of simulated annealing.
Consequently, we use the set of normalized Polish expressions as the solution
space. ~ "--~

/ \ / \ / \
1 �9 * 3 1 +

/ \ / \ / \
2 3 1 2 2 3

(a) (b)

Fig. 3. (a) A nonskewed slicing tree; (b) skewed slicing trees.

Floorplan Design of VLSI Circuits 267

A binary sequence bib2" �9 �9 bm is said to be a balloting sequence iff for any k,
1 - k - < m, the number of 0's is less than the number of the l 's in bib2 �9 �9 �9 bk. Let
tr be a function o-: {1,2 , n , * , + } ~ { 0 , 1} defined by t r (i)= 1, l<- i<-n , and
or(*) = or(+) = 0. A sequence a~a2" ' �9 a2,-1 of elements from {1, 2 , . . . , n, *, +}
is said to have the balloting property if C r (o ~ l) o ' (o t 2) �9 " �9 c r (a 2 n _ l) is a balloting
sequence.

If we traverse a slicing tree in postorder [Ah 74], we obtain a Polish expression.
Note that a Polish expression is a sequence of elements from {1, 2 , . . . , n, *, +}
with the balloting property. A Polish expression is said to be normalized if there
is no consecutive *'s or +'s in the sequence. (For example, 1 2 + 4 3 *+ is a
normalized Polish expression, while 1 2 + 4 3 * * is not.) It is easy to see that the
Polish expression obtained from a skewed slicing tree is normalized. Con-
sequently, we have the following lemma and theorem. (Theorem 1 follows from
Lemmas t and 2.)

LEMMA 2. There is a 1-1 correspondence between the set o f normalized Polished
expressions o f length 2n - 1 and the set o f skewed slicing trees with n leaves.

THEOREM 1. There is a 1-1 correspondence between the set o f normalized Polish
expressions o f length 2n - 1 and the set o f slicing structures with n basic rectangles.

A slicing tree can be viewed either as a top down or a bottom up description
of a slicing floorplan. From a top down point of view, a slicing tree specifies how
a given rectangle is cut into smaller rectangles by horizontal and vertical cuts.
From a bottom up point of view, a slicing floorplan can also be described by
how smaller slicing floorplans are combined recursively to yield larger slicing
floorplans. Indeed, we can interpret the symbols * and + as two binary operators
between slicing floorplans. If A and B are slicing floorplans, we can interpret
A + B and A * B as the resulting slicing floorplans obtained by placing B on top
of A, and B to the right of A, respectively, as shown in Figure 4. (From now on,
we shall refer to the elements in {1, 2 , . . . , n} as operands, and the elements in
{*, +} as operators.)

2.3. Neighborhood Structure. A sequence dlda" �9 �9 dk of k operators is called a
chain of length k. (Note that d~ ~ d~+l in a normalized Polish expression, for all
1 -< i - < k - 1.) We use l (c) to denote the length of a chain c. A chain of length 0
is defined to be the empty sequence. It is clear that for every k > 0, there are only
two possible types of chains of length k in a normalized Polish expression:

Fig. 4. Binary operators for slicing floorplans.

268 D.F. Wong and C. L. Liu

1 2 3 * + 5 4 + *

nl ~2 ~3 c3 ~4 ~5 cs

c 0 = c ~ = c 2 = c 4 = the empty sequence.

Fig. 5. Chains in a Polish expression.

* + * + * �9 �9 �9 and + * + * + . �9 �9 We define the complement of a cha in to be the
chain ob t a ined by in te rchanging the ope ra to r s * and + (e.g., the c o m p l e m e n t o f

* + * + * is + * + * +) . Let or= t~lOl 2 �9 �9 �9 t~2n_ 1 be a no rma l i z e d Pol ish express ion .

Note tha t ~ can also be wri t ten as COqTlClq'I'2C 2 " ~ " Cn_l"ITnCn, where ~'1, ~ r 2 , . . . , cr~
is a p e r m u t a t i o n o f 1, 2 , . . . , n, the c~'s are chains (poss ib ly o f zero length) , and
Y.~ l(c~) = n - 1 (see F igure 5). Two o p e r a n d s in iv are sa id to be adjacent ill they
are consecut ive e lements in ~rl. �9 �9 ~n- An o p e r a n d and an o p e r a t o r are said to
be adjacent iff they are consecut ive e lements in a~o~2 �9 �9 ' a2n-1 . We define three
types o f moves , M1, M2, and M3, that can be used to m o d i f y a given no rma l i z e d
Polish express ion . The def ini t ions o f M1, M2, and M3 are as fol lows:

M1. Swap two ad j acen t operands .
M2. C o m p l e m e n t a cha in o f nonze ro length.
M3. Swap two ad jacen t o p e r a n d and opera to r .

See F igure 6 for a p ic to r ia l i l lus t ra t ion o f these three types o f moves.
I t is c lear tha t M1 and M2 always p r o d u c e a no rma l i zed Pol ish express ion .

This is not the case for M3. In fact, M3 might p r o d u c e a sequence tha t conta ins
ident ica l consecut ive ope ra to r s or a sequence tha t v iola tes the ba l lo t ing proper ty .
We shal l on ly accept those M3 moves tha t resul t in no rma l i zed Pol ish express ions .
(Whe the r a given M3 move will resul t in a no rma l i zed Pol ish express ion can be
tes ted efficiently in cons tan t t ime.)

These three types o f move are used to define the n e i g h b o r h o o d s t ructure o f
our so lu t ion space. Two no rma l i zed Pol ish express ions are sa id to be neighbors
i f one can be ob t a ined f rom the o ther via one o f these three moves. F o r a given
no rma l i zed Pol ish express ion or, we first r a n d o m l y select a type o f move, and
then r a n d o m l y select a ne ighbor accord ing to the type o f move selected. The
three types o f moves are sufficient to ensure tha t it is poss ib le to t r ans fo rm any

no rma l i zed Pol ish express io l i into any o the r via a sequence o f moves as the
fo l lowing theo rem shows.

THEOREM 2. Let a and or' be two normalized Polish expressions. There exists a
sequence of at most 2n2+ 2 n neighboring normalized Polish expressions between a
and a'.

PROOF. We observe tha t given any no rma l i zed Pol ish express ion or, a is reach-
able f rom Oto = 12 * 3 * �9 �9 �9 * n via a sequence o f moves , and vice versa. Therefore ,
for any pa i r o f no rma l i zed Pol ish express ions ot and a ' , there exists a sequence
o f moves tha t will t r ans fo rm ~t' into ot wi th ~to as an in te rmedia te express ion. In
o rde r to go f rom ~x to a o , we need at mos t n2/2 moves o f type M1 to sort the
o p e r a n d s into the o rde r ing 1, 2, 3 , n; at mos t ano the r n2/2 moves o f type M3

F l o o r p l a n D e s i g n o f VLSI Circuits 269

1 2 . 3 + 4 . 5 + :

I Ml

1 2 " 4 + 3 . 5 + :

I M3

1 2 . 4 + 3 5 . + :

I M3

1 2 . 4 3 + 5 . + :

] M3

1 2 " 4 3 5 + * + :

1 2 + 4 3 5 + * + :

1 M2

2
- - 3 5

1 2 + 4 3 5 " + * :
1

4

Fig. 6. I l lustrat ion o f the moves .

to convert the expression into the form 12 * 3 �9 �9 �9 �9 �9 n where * is an operator,
and at most n moves of type M2 to convert all operators into *. Hence it takes
at most n2+ n moves to convert a into ao. Similarly, it takes at most nZ+ n moves
to convert ao to ,,'. Therefore, the total number of moves needed is at most
2n2+2n. []

2.4. Cost Function. Let et be a normalized Polish expression. The expression at
represents a set S~ of equivalent slicing floorplans. Roughly speaking, the relative
positions of the modules in equivalent floorplans are essentially the same. Intui-
tively, those floorplans that have smaller area will in general also have shorter
total wire length because the modules are pulled "closer together" in these
floorplans. Let f= be a floorplan in S~ with minimum area. Let A(ct) and W(et)
be the area and the total wire length of fr respectively. The cost function we
use is ~ (a) = A(a) + A W(a). We show in this section how to compute efficiently

270 D.F. Wong and C. L. Liu

~ c Feasible
region Sha

X

Fig. 7. Shape curve and feasible region.

�9 (a) for a given normalized Polish expression at. Our method of cost computat ion
is based on lOt 83] and [St 83]. Since in our simulated annealing algorithm each
move only leads to a minor modification of the present Polish expression, we
can take advantage of the cost computation for the preceding move to save
substantially computat ional effort for the current cost computation.

2.4.1. Basic Method. Shape Curve. Let F be a continuous curve on the plane.
F is said to be decreasing if for any two points (Xl, Yl), (x2, Y2) on F with xl -< x2,
we must have Yl - Y2. F is a shape curve if it satisfies the following conditions:
(1) it is decreasing and lies completely in the first quadrant; (2) 3 k > 0 such that
all lines of the form x = a, a > k, intersect F; and (3) 3 k > 0 such that all lines
of the form y = b, b > k, intersect F. Note that a shape curve F partitions the first
quadrant into two connected regions. One of the connected regions that contains
the points (a, a) for all large a ' s is called the feasible region (see Figure 7).

The shape curves in Figure 8 correspond to different kinds of shape constraints
where the shaded areas are the feasible regions. A point in the feasible region
corresponds to the dimensions of a basic rectangle that can accommodate a given
module. (The x and y coordinates of the point are the horizontal and vertical

Y Y

a

i ~ O 1

X x
(b)

Y Y

d
X X

(c) (d)

Fig. 8. Shape curves for different shape constraints.

Ca)

b i e O]

Fioorplan Design of VLSI Circuits 271

dimensions of the basic rectangle.) Figure 8(a) and (b) corresponds to the case
in which the module is rigid. Figure 8(c) and (d) corresponds to the case in
which the module is flexible. Let H be the hyperbola xy =A~, L~ be the line
y=s~x, L 2 be the line y = r i x , L3 be the line y=(1/r~)x , and L4 be the line
y = (1/s~)x. In Figure 8(a)-(d) a, b, c, and d are the intersections between the
hyperbola H and the lines L1, L2, L3, and L4, respectively.

Let F and A be two shape curves. We define F + A to be the curve

{(u, v + w)l(u, v) ~ F and (u, w) ~ A}

and define F * A to be the curve

{(u + v, w)l(u, w) ~ F and (v, w) ~ A}.

In other words, F + A is obtained by adding the two curves F and A along the
y-direction. F * A is obtained by adding the two curves F and A along the
x-direction. It is easy to see that F + A and F * A are also shape curves. Moreover,
they are piecewise linear if F and A are both piecewise linear. For piecewise
linear shape curves, there is an efficient algorithm to compute F + A and F * A.
Since a piecewise linear shape curve is completely characterized by an ordered
list of all the "comers" of the curve, hence to add two piecewise linear shape
curves (along either directions), we only need to add up the curves at the
"corners."

Area Computation. Let T~ be the slicing tree corresponding to at. For each node
v in T,~, the subtree rooted at v defines a slicing structure Ro. The shape constraints
for the modules in R~ define the shape constraints for Ro. Let Fo be the shape
curve representing the shape constraints for Rv. For every three nodes u, v, w in
T~ with v being the father of u and w, F~ is either Fu * Fw or Fu + Fw depending
on whether v is * or +. Hence, all the Fv's can be computed by adding up the
shape curves of the basic rectangles (the leaves). We assume the shape curves
for the basic rectangles are all piecewise linear. In this case we can efficiently
compute all the Fo's. (Note that we can have piecewise linear approximation of
the shape curves for the basic rectangles with arbitrary precision.) Once we have
computed all the F, 's, we can compute the area measure A(ot) from Fr where r
is the root of T~. (Fr is the shape curve for the slicing structure or.) Let (al , bl)
be the point of intersection between Fr and the line y = p x . Let (at§ b~+l)
be the point of intersection between Fr and the line y = q x . Let (a2, bE),
(a3, b3) , . . . , (at, bt) be all the "comers" of the curve that lies between the lines
y =px and y = qx (i.e., p <- bj/aj <- q). Let P = {(ax, bl), (a2, bE) , . . . , (al+l, bt+l)}.
The next theorem shows that we can compute A(et) by only examining the points
in P.

THEOREM 3. A(~t) = a~bi where (ai, b~) is a point in P such that aibi is minimum.

PROOF. Let (a, b) be the dimensions of a minimum area floorplan. It is clear
that the point (a, b) must be on Ft. Since if that is not the case, the intersection
between F r and the line joining (0, 0) and (a, b) would give the dimensions of a

272 D.F. Wong and C. L. Liu

floorplan with smaller area. To show that (a, b) is one of the (a~, bi)'s, we observe
that, along a given line segment I in the first quadrant, the function f (x , y) = xy
attains its minimum value at one of the two endpoints o f / . []

Wire Length Computation. Since T~ is a slicing tree representation of f~, each
node v in T~ corresponds to a rectangle K~ in f~. Let (xv, y~) be the dimensions
of Kv. After we have computed (xr, Yr) for Kr where r is the root of T,,, we can
recursively compute the dimensions of all the basic rectangles as follows: suppose
that we have already determined (x~, yo) for some internal node v. Let u be the
left son of v and w be the right son of v. Consider the case in which the operator
at v is +. That is, we have K~ is formed by putting Kw directly on top of Ku.
We have xu = ~w =x~; y~ =y~-Yw ; and yw = y ' where y ' is the y-coordinate of
the point of intersection between the line x =x~ and the curve F~. (I f there is
more than one intersection, choose the one with the smallest y coordinate.)
Similarly, for the case in which the operator as v is *, we have yu = y~ = y v;
x, = x~ - x~ ; and x~ = x ' where x ' is the x coordinate of the point of intersection
between the line y = y~ and the curve Fw.

Let (c~, c~) b e the coordinates of the center of Ko. (We assume that the
southwest corner of f~ is placed at the origin.) Let (l~, I y) be the coordinates of

= 1~ + ~x~ and y - - the point of the southwest corner of K~. Clearly, we have co x , 1 cv __~lv . 1 y
Consequently, to compute the centers of the basic rectangles, it suffices to compute

x x x y (l~, lye) for all v. Note that (/~, l,Y.) = (0, 0). We can recursively compute all (l~, lo) s
as follows. Suppose we have already determined (lox, I y) for some v. Let u be the
left son of v and w be the right son of v. We have (l~, I y) = (l~, lY). I f the operator
at v is +, we have l ~ = l ~ and I y=l~+y~. I f the operator at v is *, we have
I x = IoX + x~ and I y = I y.

x y Note that the centers of the basic rectangles are just the (c~, c~) s for all leaf
nodes v. It follows that the dq's (the distances between the basic rectangles) and
consequently W(at) can be easily computed from the (cox, cY)'s.

2.4.2. Incremental Computation of Cost Function. For a given normalized Polish
expression, the shape curves associating with the nodes of its slicing tree are
needed in both the area and the wire length computation. Let a t '= a~ t~ �9 �9 �9 o~n-x
be the Polish expression obtained from ate---OLiOS2" * " OLEn_ 1 after a move. For
1 - < i - < 2 n - 1 , let T~ and T[be the trees rooted at t~i and a~, and let Fi and F[
be the shape curves for ai and a l, respectively. In our simulated annealing
algorithm, each move leads to only a minor modification of the Polish expression
currently being examined. Thus, in general, F~ = FI for many i's. Therefore, in
computing the cost for at', we need only update those shape curves that are
changed. Such an observation will substantially improve the efficiency of our
algorithm because we need to compute the costs for a large number of solutions.
We show in Theorem 4 that the two sets of shape curves {F1, F2 FEn_l} and
{F~, F~ , . . . , F~n_l} differ only at a set of vertices that lie along one or two paths
in each of T,~ and T~,.

For a type M1 or type M3 move, we swap two elements o~ and 0% We refer
to the elements a~ and aj as the base elements in at, and the elements a~ and ct~

Floorplan Design of VLSI Circuits 273

as the base e lements in or'. For a type M2 move, we complement a chain
OtkO~k+lak+2 " " " at. We refer to the elements ak, a k . ~ , �9 �9 �9 at as the base e lements

in ~, and the elements a~, a~+~ , . . . , a~ as the base e lements in or'. The following
lemma follows from the definition of base elements.

LEMMA 3.

(1) ai is a base e lement i f and only i f a'i is a base element .
(2) I f ai is not a base e lement , then ai = a I.

Let us m a r k all the base elements together with all their ancestors in both ot
and ~t'. Let M be the set of marked elements in ot and M' be the set of marked
elements in a ' . The elements which are not in M or M' are said to be unmarked .

We have the following lemmas:

LEMMA 4. ai is u n m a r k e d i f and only i f a'~ is unmarked .

PROOF. Note that T~ corresponds to 13~= a j % + l ' " a ~ and T'~ corresponds
to 1 3 ~ = a ~ a ~ + l . " a~ where j and k are the unique indices such that
t r (a j) t r (a j + l) . . , tr(a,) and t r (a ~) t r (a ~ + l) . - , cr(a~) are balloting sequences,
Suppose a~ is unmarked. This means that 13~ does not contain any base ele-

! ments. It follows from Lemma 3 that am = a , . for all j - < m - <i . Hence
tr(aj)cr(aj+l) . . . o'(a'i) is a balloting sequence. Therefore, we must have k = j
and 13~ -- 13~. Again, it follows from Lemma 3 that [31 does not contain any base
elements. Therefore a l is unmarked. Similarly, we can show the converse by
interchanging the roles of et and et' in the above arguments. []

LEMMA 5. I f a~ is u n m a r k e d (or equivalent ly a I is u n m a r k e d) , then F~ = F'~.

PROOF. It follows from Lemma 4 that T~ = T'~. Thus we have Fi -- F'~. []

LEMMA 6. M corresponds to one or two pa ths in T~; M ' corresponds to one or
two pa ths in T,~,.

PROOF. For a type M1 or type M3 move, there are only two base elements in
et. M corresponds to the two paths from the two base elements in ot to the root.
For a type M2 move, let ak, ak+l, a k + 2 , . . . , a I be the base elements in at. In this
case, t~ is the right son of ai+l for all k-< i < - l - 1 . M corresponds to the path
from a k to the root. Similarly, we can show that M' corresponds to one or two
paths in T~,. []

It follows from Lemma 5 that we need only recompute those shape curves that
correspond to unmarked elements after each move. The next theorem clearly
follows from the above lemmas.

274 D.F. Wong and C. L. Liu

/) 7 + + 7.~+'~,
/ k

/\ 11/{4 K / \ 8
* + 15 5

A I \ | ,1\o
1 1 3 2 3 I

(a)

, J * ~ +

6 / + ,
* / N l \

1 ~* + * * 8

/\ 1~4 1l\41~\5 7~+ '
A i\ ,ix.

1 1 3 2 3

(b)

Fig. 9. The path(s) in T,~ and T,,, after a type M3 move.

THEOREM 4. Let at' be the Polish expression obtained from at after a move. The
shape curves Fi's and the shape curves F~'s differ only at a set of vertices that lie
along one or two paths in each of T~ and T~,.

Figure 9 illustrates the statement in Theorem 4. In the given example, the
Polish expression is of the form �9 �9 �9 17+ 16 �9 �9 �9 * 6 �9 �9 �9 9 + * 8 �9 �9 . . Consider the
type M3 move of swapping * and 6. Figure 9 (a) a n d (b) shows the path(s)
corresponding to this move in T~ and T~,, respectively.

Finally, we should point out how the d0's can also be computed incrementally.
Clearly, after each move, it is only necessary to recompute those terms cod ~ where
the positions of one or both of the centers of the basic rectangle i and j have
changed. Unfortunately, in general, even for a minor modification of a Polish
expression, the positions of the centers of many of the basic rectangles will be
changed (although most of the changes are small). In view of this, we can reduce
the computat ion time by using a less accurate wire length estimation. Suppose
that there is a grid of size p (i.e., the distance between every two adjacent lines
in the grid is p) imposed on top of the floorplan. We define the modified center
of a basic rectangle as the grid point that is closest to the center of the basic
rectangle. (In the case when there are more than one such grid points, we use
the one with the smallest x and y coordinates.) For every pair of basic rectangles
i and j, we define d~ as the distance between their modified centers. Let W'(at) --
~m<i,j~ n cod ~. We can use A(at) + h W'(at) as our cost function. (Note that W' (a) =
W(a) if p is 0.) Clearly, the number of modified centers which remain unchanged
after a move decreases as p increases. Consequently, the computat ion time for
updating the d,~'s is inversely proportional to p.

Floorplan Design of VLSI Circuits 275

2.5. Annealing Schedule. We use a fixed ratio temperature schedule Tk = r T k - 1 ,

k = 1, 2 , Our experiments indicate that setting r = 0.85 produces very satisfac-
t o r y results.

To determine the value of To, we perform a sequence of random moves and
compute the quantity Aavg, the average value of the magnitude of change in cost
per move. We should have e-aavg/r0= P ~ I so that there will be a reasonable
probabili ty of acceptance at high temperatures. This suggests that T = - A a v J l n (P)
is a good choice for To.

Our algorithm can start with any initial normalized Polish expression. In our
experiments, we start with the Polish expression 12 * 3 * 4 * �9 �9 �9 * n * which corre-
sponds to placing the n modules horizontally next to each other. This Polish
expression is usually far from the optimal solution.

At each temperature, we try enough moves until either there are N downhill
moves or the total number of moves exceeds 2 N where N = 7n where 3/ is a
user-specified constant. We terminate the annealing process if the number of
accepted moves is less than 5% of all moves made at a certain temperature or
the temperature is low enough.

2.6. Experimental Results. We have implemented our algorithm in PASCAL on
a PYRAMID computer. The experimental results are summarized in Tables 1-3.
The modules in all our tests problems are flexible modules with free orientations
allowed and ri = 1/si. The running time for the test problems range from 1 CPU
minute for the 15-modules problem to 13 CPU minutes for the 40-modules
problem.

The problems in Table 1 are randomly generated. The areas of the modules
(Ai) are chosen uniformly between 1 and 20. For P4 and P5, all modules have
the same aspect ratio (s~). It is 2 for P4 and 3 for P5. For the other problems,
each s~ is chosen uniformly between 1 and 3. The maximum aspect ratio allowed
for the final chip is 2. The interconnection matrices are also randomly generated
such that the weights (c~j) are between 0 and 1. Various values of A are used in
these test problems. Total area in the table is the sum of the areas of the given
modules and hence is a lower bound on the area of the final chip. Comparing

Table 1

Random Initial Final
feasible solution S.A. solution S.A. solution

Total
Problem n h w area A W A W A W

P1 15 1 137.08 491.64 106.02 514.59 59.41 137.86 34.97
P2 20 1 198.88 745.35 258.84 885.71 202.30 202.17 80.49
P3 20 0 197.15 808.72 423.90 819.64 276.50 198.98 197.40
P4 25 0 244.68 1165.70 398.21 1334.90 296.60 245.43 209.70
P5 25 1 238.15 1026.60 576.71 876.04 344.30 244.63 151.90
P6 30 0.5 333.92 1549.60 1023.20 2458.20 865.70 340.15 294.90
P7 30 0 314.45 1476.90 1095.70 2130.10 936.20 319.40 429.20
P8 40 1 407.44 1934.20 1002.30 3965.40 999.30 422.95 265.80

276 D.F . Wong and C. L. Liu

the results for problems with the same number of modules (i.e., P2 and P3, P4
and P5, and P6 and P7), we discover that the final area (A) of P2 and P3 are
both very close to optimal while the final total wire length (W) of P3 is substan-
tially higher than that of P2. Since we generate their interconnection matrices
using the same probability distribution, we might expect the values of W to be
about the same. The large difference in the final values of W is due to the fact
that the value of h is 0 for P3, and hence the algorithm makes no attempt to
minimize W. We also observe that we can obtain reasonable tradeoffs between
area and wire length without substantially increasing the area. Similar observation
can be made for the other two pairs of problems. For some of the test problems
with nonzero A, we obtain solutions in which the value of A + h W is about the
same while the value of A is smaller and the value of W is larger. This is to be
expected because of the tradeoffs between A and W in the cost function. Also,
for problems with zero A, even though the final wire lengths are large, they are
much smaller than those in random solutions. Since modules that are closely
packed will in general lead to a reduction of total wire length too. For some of
the test problems, suboptimality in area is due to the presence of very rigid
modules (small si), and the tradeoffs between area and wire length. Figure 10
shows the final floorplan for problem P8 which contains 40 modules.

Table 2 is a summary of results for a random problem with 20 modules. The
sum of the areas of the modules in this problem is 195.37. We used various value
of h to demonstrate the tradeoffs between area and wire length. As we increase
a from 0 to 3, we observe that A increases from 196.42 to 220.30 while W

34

35 18

32

2z 36

26 31

20

28

3421 + 1 3 + 6 2 5 " I1 2 * 8 * + 10" 1 9 3 7 + . 2 3 1 2 + ' 2 8 2 0 + * 1 7 4 " 16 '
2 6 " 3 1 * + * 9 5 *22 1 4 . 3 2 + ' 2 7 2 9 " 3 5 " + 3 0 3 1 5 + ' 7 " 3 8 + 3 9 " 18
3 3 * + * 1 4 1 1 " 2 4 3 6 " + * +

Fig. I0. Final floorplan for problem P8.

Floorplan Design of VLSI Circuits 277

Table 2

S.A. solution

A~ A W A A + W A + 2 W A + 3 W

0 196.42 152.10 196.42t 348,52 500.62 652.72
1 206.60 103.70 206.60 310.30t 414.00 517.70
2 215.33 95.78 215.33 311.11 406.89t 502.67
3 220.30 93.96 220.30 314.26 408.22 502.18t

Table 3

Module Chip Total
ratio ratio area A

1 1 229.17 291.23
2 1 - - 231.65
2 2 - - 230.52
3 3 - - 230.19

decreases from 152.1 to 93.96. We observe that those entries marked by a dagger
(t) are the values of the cost function. They should be smaller than other values
in the same column. This is indeed the case.

Table 3 shows the results for another 20-modules problem. For this problem,
all modules have the same aspect ratio s which is referred to as module ratio in
the table. The column chip ratio is the maximum aspect ratio allowed for the
final chip. The value of h is set to 0. This problem demonstrates the effect of
module ratio and chip ratio on the final area of the chip. We observe that by
relaxing either the module ratio or the chip ratio we can reduce the final area.
We also observe that a module ratio of 2 gives enough flexibility for achieving
close to optimal final area.

3. Part 2: Rectangular and L-Shaped Modules. In this section we present an
algorithm to produce floorplans for rectangular and L-shaped modules. (Figure
11 shows examples of L-shaped module.) This algorithm is very similar in spirit
to the algorithm described in the last section. We also use the same search method
of simulated annealing, similar floorplan representation (Polish expressions with
new operators), and similar ways to modify a floorplan locally. Not only can our
algorithm handle L-shaped modules, in the case where all the modules are

Fig. 11. Examples of L-shaped modules.

278 D.F. Wong and C. L. Liu

rectangular, our algorithm will, in general, be able to produce nonslicing rec-
tangular floorplans.

For each module, there is a given set of possible shapes, dimensions, and
orientation for the module. Each possible choice of shape, dimensions, and
orientation for a module is called an instance of the module. (Clearly, a nonrotat-
able rigid module has only one instance.) We assume in the last section that all
modules are rectangular. Also, we consider only slicing floorplans there. In that
case, the technique of adding up shape curves allows us to consider simultaneously
all possible instances of the modules efficiently. The situation in this section is
slightly more complicated because there are L-shaped modules and therefore it
is necessary to consider more general type of floorplans. The idea of adding up
shape curves is no longer applicable. Instead, we examine the instances of a
module one at a time and rely on probabilistic techniques to make selections
from the different instances.

Let f l denote the set of rectangular and L-shaped geometric figures of all
possible sizes and dimensions. For each module i, let G~, G~ _ f l , denote the set
of all possible instances for the module. We define four binary operators and
one unary operator that operate on the geometric figures in II. Every algebraic
expression within our algebraic system formed by geometric figures chosen from
the G~'s corresponds to a floorplan. These algebraic expressions can be represented
by Polish expressions. The method of simulated annealing is then used to search
for an optimal floorplan among these Polish expressions.

3.1. Geometric Figures. We first introduce a way of representing the geometric
figures in fl . Let A be a geometric figure in [1. The orientation index of A is
defined to be 0 if A is rectangular, and is either 1, 2, 3, or 4 as shown in Figure
12 if A is L-shaped, It is clear that the dimensions of A are completely specified
by the length of its four outermost boundary edges. Let xl and x2, X l - x2, be
the lengths of the two outermost horizontal edges. Let Yl and Y2, Yl : > Y2, be the
lengths of the two outermost vertical edges. Let s be the orientation index of A.
Then A can be represented by the 5-tuples (x~, x2, Yl,Y2, s) (see Figure 13).
Consequently, the set of all rectangular geometric figures can be represented by
f l l = {(x~, x2, y~, Y2, 0)lx~ = x2, Yl = y2}, and the set of all L-shaped geometric
figures can be represented by

112 = {(xl, x2, YI, Y2, s)[xl -> x2, y~ -> Y2, (xl - x2)(yl -Y2) > 0, and s ~ { 1, 2, 3, 4}}.

The condition (xl -x2)(y~ -Y2) > 0 excludes the possibility of the geometric figure
being rectangular. Hence there is a 1-1 correspondence between [1 and the set
tl~ u 1)2.

0 1 2 3 4
Fig. 12. Orientation indices of geometric figures in 1).

Floorplan Design of VLSI Circuits 279

x2 xl 2

xl x2 1
s =2 $ =4 s =3

(2,1,3,1,3)

Fig. 13. Representation of geometric figures by 5-tuples (x~, x2, y~, Y2, s).

3.2. The Operators. As was pointed out in Section 2.2, slicing floorplans can
be obtained by recursively combining rectangles to form larger rectangles by
means of two binary operators * and +. For two rectangles A and B, A + B and
A * B are the rectangles obtained by placing B on top of A, and B to the right
of A, respectively. Since we are now dealing with both rectangular and L-shaped
geometric figures, a natural extension is to define operators that combine rec-
tangular and L-shaped geometric figures to form larger rectangular and L-shaped
geometric figures. We define a unary operator 7, and four binary operators "1,
�9 2, +1, and +2 that operate on the geometric figures in ~ .

Figure 14 shows the definition of the unary operator 7 which is a function
from fl to 1~. For A ~ ~ , ~A is defined to be the smallest bounding rectangle
of A. We shall refer ~A as the completion of A. More precisely, we have
~(xl , x2, y~, Y2, S) = (X1, Xl, Yl, Yl, 0). The unary operator -7 provides the possi-
bility of placing an L-shaped geometric figure in a rectangular region. The four
binary operators, which are functions from l~ x f l to 1~, represent different ways
of putting two geometric figures in f l together as compactly as possible, to form
a larger geometric figure in ~ . Let A, B ~ IL Then A "1 B and A *2 B are geometric
figures obtained by putting A and B next to each other horizontally with B placed
to the right of A, and A +1 B and A +2 B are geometric figures obtained
by putting A and B next to each other vertically with B placed on top of A.
The operators are defined in such a way that the rules for combining the geometric
figures are completely determined by the orientation indices of the two geometric

Fig. 14. Unary operator.

280 D.F. Wong and C. L. Liu

figures involved. The exact dimensions and orientation index of the new geometric
figure are determined by the dimensions of the two geometric figures involved
such that packing is as compact as possible. Hence, each binary operator can be
completely described by its actions on the 25 possible combinations of the
orientation indices of the two operands (five possible orientation indices for A
and five possible orientation indices for B). Thus, for the four binary operators,
there are altogether 100 possibilities. Figure 15 shows 20 of the 100 possible ways
of combining two geometric figures based solely on their orientation indices. (In
Figure 15 each circle at a T-intersection point corresponds to three possible
outcomes for the resulting geometric figure. Figure 16 illustrates this notation.)
For a complete description of the binary operators, see [Wo 87]. We now give
three examples to illustrate these binary operations.

EXAMPLE 1. We consider here the case of A "1 B when the orientation indices
of A and B are 3 and 1, respectively (see Figure 17(a)). Let A = (al , a2, bl , b2, 3) E

and B = (el, c2, dl, d2, 1)~f l . We have A "1 B = (xl, x2, Yl, Y2, s) where the
values of xl, x2, Yt, Y2, and s are determined by the following procedure:

Xl <'- al + cl;
x2~a2+cl;
Yl ~" max(b1, d0;
y2 ~ b2;
s ~ 3 .

For example, we have (2, 1, 2, i, 3) "1 (2, 1.5, 2.5, 2, 1) = (4, 3, 2.5, 1, 3). (See
Figure 17(b) for a pictorial illustration of this computation.)

EXAMPLE 2. We consider here the case of A +2 B when the orientation indices
of A and B are 1 and 0, respectively (see Figure 18(a)). Let A = (al, a2, bl, b2, 1)
II and B = (cl, cl, dl, dl, 0) e II. We have A +2 B = (x~, x2, Yl, 3'2, s) where the
values of xl , x2, Yl, Y2, and s are determined by the following procedure:

xl # max(a1, a2+ cl);
Yl # max(b1, b2+ dl);
if (Yl > bl) then

begin
X2<--01;
y 2 ~ b l ;
s ~ 2 ;

end
else

begin
x2~ a2;
22 ~'- b2+ dl;
s~- l ;

end;
if (xl = x2) or (y~ = Y2) then

(xl, x2, Yl, Y2, s) ~ (xl, xl , Yl, Yl, 0);

Floorplan Design of VLSI Circuits

4-2 ~--~ ----

(a)

A• "61 ~ --

m • 4"2 ~ --

(b)

281

(c) (a)

+2 ~ =

(e)

Fig. 15. Binary operators (20 out of 100 cases).

282 D.F. Wong and C. L. Liu

Fig. 16. Circle notation representing three possible outcomes of combining two figures.

A

(a)

B

1.5 4

1 ~ 2.5 2 "1 2.5 2 = B

1 2 3

(2, 1,2, 1,3)* 1 (2, 1.5,2.5,2, 1)=(4,3,2.5, 1,3)

(b)

Fig. 17. An example of a binary operation.

(a)

2

A

3

3

'= 4 ~ 5 i

6

(6, 2, 4, 2, 1) +2 (3, 3, 3, 3, 0) = (6, 3, 5, 4, 2)

Ca)

Fig. 18. An example of a binary operation.

Floorplan Design of VLSI Circuits 283

(a)

= A

5

"2 4 =

2 3 2

(6, 6, 2, 2, 0) "2 (3, 3, 4, 4, 0) = (5, 2, 6, 4, 4)

Co)

Fig. 19. An example of a binary operation.

The last if-then statement is for the case in which the resulting geometric
figure is a rectangle because of the dimensions of A and B. (See Figure 18(b)
for a pictorial illustration of the computation (6, 2, 4, 1) +2 (3, 3, 3, 3, 0) =
(6, 3, 5, 4, 2).)

EXAMPLE 3. We consider here the case of A *2 B when the orientation indices
of A and B are both 0 (see Figure 19(a)). Let A = (31, al , b~, bl, 0) E 1~ and
B = (cl, cl, dl, dl, 0) ~ I~. We have A *2 B = (Xl, x2, YI, Y2, s) where the values
of x1, x2, yl , Y2, and s are determined by the following procedure:

xl~al+cl;
Yl <'- max(b1, d0;
if (Yl > dl) then

begin
X 2 ~ a 1 ;

Y2 <- d l ;
s ~ 4 ;

end
else

begin
X 2 <--- C 1 ;

y2 ~-" h i ;

s~-3;
end;

if (xl = x2) or (Yl = Y2) then
(X1, X2, Yl, Y2, s) ~ (xl, x~, y~, Yl, 0);

As in the last example, the last if-then statement is for the case in which A *2 B
is a rectangle. (See Figure 19(b) for a pictorial illustration of the computation
(6 ,6 ,2 ,2 ,0) * 2 (3 , 3 , 4 , 4 , 0) = (5 , 2 , 6 , 4 , 4) .)

284 D.F. Wong and C. L. Liu

It should also be noted that the operators constitute a complete set in the sense
that we can generate all minimally compacted combinations of geometric figures.
More precisely, we have the following theorem.

THEOREM 5. Let f : 1~ x ~ -~ f l be any function that combines two geometric figures
to yield a larger geometric figure. For any A, B e 1~, there exists C c t l such that
C is small enough to beplaced insidef(A, B), and C is of the form A ' . B' or B ' . A',
where A' is either A or 7A , B' is either B or -1B, and �9 e {'1, *2, +1, +2}-

PROOF. We assume that the orientation index o f f (A , B) is 1. The proof for the
other cases are similar, f (A , B) is an L-shaped region containing two nonoverlap-
ping geometric figures A and B. The first step of our proof is to complete both
A and B as much as possible. If-qA remains inside f (A, B) and does not intersect
B, we let A' be -hA, otherwise we let A' be A. Similarly, if -~B remains inside
f (A , B) and does not intersect A', we let B' be ~B, otherwise we let B' be B.
There are several cases to be considered.

Case I. Both A' and B' are rectangles. Suppose there is a vertical line separating
A' and B'. Without loss of generality we may assume that A' is to the left of B'.
C is the first geometric figure shown in Figure 20(a). If no such vertical line
exists, there must be a horizontal line separating A' and B'. Again, we may assume

B,]

(a)

Co)

(c)

(d)

(e)
Fig. 20. Possible choices for C (proof of Theorem 5).

Floorplan Design of VLSI Circuits 285

that A' is below B'. C is the second geometric figure shown in Figure 20(a).
(Note that because the orientation index o f f (A, B) is 1, we need not consider
the other two combining rules where the circle symbol appears either on the left
side or at the bottom. This also applies to the other cases.)

Case 2. One of A' and B' is a rectangle, and the other is L-shaped. We may
assume that A' is L-shaped. If-qA' intersects B', C can be chosen from the figures
shown in Figure 20(b). Otherwise, we have -aA' intersects the outside off(A, B)
and C can be chosen from the figures shown in Figure 20(c).

Case 3. Both A' and B' are L-shaped. Suppose -aA' intersects B' and -aB'
intersects A'. We may assume that A' is either to the left of B' or below B'. C
can be chosen from the figures shown in Figure 20(d). If the completions of A'
and B' are not mutual intersecting, we may assume that -qA' intersects B', 7B '
intersects the outside of f (A, B), and -qB' does not intersect A'. In this case, C
can be chosen from the figures shown in Figure 20(e).

Note that the southwest corner of C is well defined except when C is given
by the last geometric figure in Figure 20(b). In that case we use the southwest
corner of-1C instead. Now if we place the southwest corner of C at the southwest
comer off (A, B), C stays completely inside f (A , B). The theorem follows from
the fact that all the geometric figures in Figure 20 can be generated by our
operators. []

Figure 21 shows three examples of f (A , B) together with the corresponding
smaller geometric figures generated by our operators.

f (A ,B) A -~--~

(a)

f (A,B) A *IB

Co)

f(A~) A *:,B

(c)
Fig. 21. Compact geometric figures generated by our operators.

286 D.F. Wong and C. L. Liu

Fig. 22. Geometric figure corresponding to (~A +1 B) "1 (-l(C *2 D) +2 E).

3.3. Floorplan Representation. Consider the algebraic system

(~ , *1, *2, "31-1, "~2, --1).

It is clear that an algebraic expression in (1~, "1, *2, +1, +2, -7) represents a way
to combine a set of geometric figures in ~ to yield a resultant geometric
figure in II. Consider as an example the algebraic expression
(~A +1 B) "1 (~ (C *2 D) +2 E) with A, B, C, D, E c ~ . (The order of precedence
of the binary operations is specified by parentheses and we use the convention
that unary operation has priority over binary operations.) Figure 22 shows the
geometric figure corresponding to the expression.

Similar to the case discussed in Section 2, an algebraic expression ~, can be
represented by a tree T. The internal nodes of T correspond to the operators
in ~, and the leaf nodes correspond to the geometric figures in ~,. Let v be an
internal node of T~ If v is a binary operator, then v has two subtrees. These
subtrees correspond to the two geometric figures that v combines. If v is the
unary operator --1, then v has one subtree which corresponds to the geometric
figures that v operates on. Figure 23 shows the tree representation of
(TA +1 B) "1 (~ (C *2 D) +2 E). If we traverse the tree T in postorder, we obtain
a Polish expression representation of ~,. For example, the Polish expression
obtained from (~A ~-1 B) *1 (-"](C *2 D) +2 E) is A ~ B +1 CD *2 ~ E 4-2 "1.

*1

+l +z

/\ /\
B ~ E

I I
A *~

/ \
C D

Fig. 23. Tree representation for (TA +1 B) *l (-~(C *2 D) +2 E).

Fioorplan Design of VLSI Circuits 287

Let E be the set of all algebraic expressions with operands 5 ml , m z , . . . , m, ,
where m~ ~ G~, 1 --- i --- n. The set E represents different way of compactly combining
the given set of modules. Clearly, each algebraic expression at in E represents a
floorplan for the set of given modules. (More precisely, --lot, the completion of
at, represents a floorplan.) Furthermore, the regions in the floorplan are either
rectangular or L-shaped. Let El, be the set of Polish expressions corresponding
to the algebraic expressions in E. Since there is a 1-1 correspondence between
El, and E, we may assume that the set of floorplans under consideration are given
by El,. We shall search for an optimal floorplan among all the Polish expressions
in El,.

3.4. The Algorithm. Let at be a Polish expression and f~ be the floorplan
represented by at. Let A(at) be the area of f~ . In other words, if (Xl, x2, Yl, Y2, s) c

is the geometric figure corresponding to at, A(at)= x~yl. (In the case where
there are two numbers p and q specifying the allowed range of aspect ratio of
the final chip, A (a) is defined as the area of the smallest rectangle, with aspect
ratio between p and q, containing (x~, x2, Yl, y2, s).) Let W(at) be the total wire
length of f~. The cost function is ~ (a t) = A(at)+hW(at) , where)t is a given
constant that controls the relative importe, nce of area and wire length.

Our floorplan design algorithm employs the method of simulated annealing to
search for a Polish expression at in Ev such that qt(at) is minimized. Let at ~ Ep
be a Polish expression. It is clear that at is of the form O L 1 ~ 1 0 / 2 / 3 2 " " " O / 2 n _ l / 3 2 n _ 1

where n of the a~'s are geometric figures for the n modules (operands), the other
n a~'s are binary operators, and each /3 is either the unary operator -7 or the
empty string. We define four types of moves that can be used to modify at. Two
Polish expressions at and at' in Ep are said to be neighbors if one can be obtained
from the other via one of these moves. The four types of moves are defined as
follows:

M1. Modify a~ for some i.
M2. Modify/3~ for some i.
M3. Swap two operands.
M4. Swap two adjacent operand and binary operator in a~a~. �9 �9 a2,-x.

We now give a more detailed description of the moves. For M1 moves, there are
two cases corresponding to whether a~ is an operand or a binary operator. I f a~
is an operand, we have a~ = A ~ Gk for some k. We set a~ ~- A' where A' ~ Gk and
A ~ A'. This corresponds to selecting another instance for a module. (Note that
if IGk[= 1, no modification is possible.) On the other hand, if a~ is a binary
operator, we select a different binary operator for a~. For M2 moves, we change
/3~ to the other element in {e, -7}. Note that in a Polish expression at, each operand
represents a geometric figure for a module, and the subtree rooted at each operator
represents a geometric figure for a "supermodule ." We refer to these geometric
figures as the geometric figures represented by the a~'s and the/3i 's in at. Clearly,

5 We shall refer to the elements in II that appear in an algebraic expression as the operands of the
expression.

288 D.F. Wong and C. L. Liu

M2 has no effect at all when oq is a rectangle. Therefore, we only modify those
fli where a~ is of L-shape. For M3 moves, we swap two 0Perands a~ and aj. This
corresponds to swapping two modules. Finally, M4 moves correspond to swapping
ai and ai+l for some i when one of them is an operand and the other is a binary
operator. Note that M1, M2, or M3 moves always result in another Polish
expression in Ep, but M4 moves may produce an expression which is not a Polish
expression. We only use those M4 moves that produce a valid Polish expression.
As in Section 2, the four types of moves are sufficient to ensure that it is possible
to transform any Polish expression into any other via a sequence of moves. Again,
there is a sequence of O(n 2) neighboring Polish expressions between any two
Polish expressions.

We use a temperature schedule of the form Tk = rTk-i where r is usually
between 0.8 and 0.9. In the current implementation, the stopping criteria are: (1)
the number of accepted moves in that temperature is very small; or (2) the average
cost remains unchanged for three consecutive temperatures.

We should point out that throughout the entire annealing process, we need to
compute the cost of an algebraic expression many times. Since each move is only
a minor modification of a Polish expression, we should avoid recomputations as
much as possible. Recall that in a Polish expression at, each operand represents
a geometric figure for a module, and the subtree rooted at each operator represents
a geometric figure for a "supermodule." Computation of the cost of at amounts
to determining all these geometric figures. Fortunately, after every move, many
of these geometric figures remain unchanged. The following theorem characterizes
the set of geometric figures that need to be recomputed. The proof of the theorem
is very similar to that of Theorem 4 in Section 2.

THEOREM 6. Let at' be the expression obtained from at after a move. Let T,~ and
Tw be the trees corresponding to at and at', respectively. The geometric figures that
need to be recomputed correspond to subtrees rooted at operators that lie on one or
two paths in each of T~ and T~,,.

Finally, we note that for the case in which the given modules are rectangular,
our algorithm is capable of producing a nonslicing floorplan. As an example, we
note that the algebraic expression ((B +2 A) +2 C) "1 (D +1 E) corresponds to
the nonslicing floorplan shown in Figure 24.

E
A

C
D

B

Fig. 24. A norislicing floorplan.

Floorplan Design of VLSI Circuits 289

Table 4

Problem n 6 AL/ As

Q1 20 0.81 0.85
Q2 20 0.84 0.89
Q3 25 0.85 0.88
Q4 40 0.83 0.86
Q5 25 0.66 0.75

3.5. Experimental Results. We have implemented our floorplan design algorithm
in PASCAL on a PYRAMID computer. We compared our results on several test
problems with those obtained by the floorplan design algorithm in Part 1. The
algorithm in Part 1 was designed to handle only rectangular modules and only
produces slicing floorplans. In order to use that algorithm, we replaced each
L-shaped module by its smallest bounding rectangle when the algorithm is tested.
The results are summarized in Table 4 where n is the number of modules and
measures the amount of dead space introduced by replacing all L-shaped modules
by their bounding restangles. More precisely, if A is the total area of all the
modules and A' is the total area of the bounding rectangles of all the modules,
6 = A/A'. As is the area of the floorplan produced by the algorithm in Part 1
and AL is the area of the floorplan produced by the algorithm described in this
section. In our test problems the values of As/AL and 8 are quite close. This
indicates that our algorithm can take full advantage of the L-shaped modules to
reduce total chip area. Figure 25 shows the final floorplan for problem Q4 which
contains 40 modules. The execution time for this problem was about 10 CPU
minutes.

Finally, Table 5 shows comparison between the two algorithms in the case
where all given modules are rectangular. We performed the experiments on four
problems which were obtained by changing the shape flexibilities of the modules
of a 20-modules problem. All modules have the same maximum allowed aspect
ratio which is referred to as module ratio in the table. We required the final chip
to be a square. The columns Ds and DL denote the percentage of dead spaces
in the floorplans obtained by the algorithm in Part 1 and the algorithm in Part
2, respectively. Note that, for the four tested problems, both Ds and DL increase
as the module ratio increases. This is to be expected because we can pack modules
closer together if the modules are more flexible. Also, for module ratio = 1.0,
1.25, and 1.5, Ds > DL. This indicates that the algorithm in Part 2 obtained smaller
chips by generating nonslicing floorplans. For module ratio = 2.0, Ds was smaller
than DL. There are two reasons for this result: (1) slicing floorplans are very
good solutions when modules are very flexible (e.g., module ratio = 2), and (2)
the current implementation of the algorithm in Part 2 can only consider a finite
set of shape alternatives for each module and hence did not consider all possible
shapes alternatives when the algorithm was tested. In order to obtain a better
result for the case module ratio -- 2, we should use a larger (finite) set of shape
alternatives.

290 D.F . Wong and C. L. Liu

_ _] 16

14 T9 20

25

29

12

4 I I 126 137
13

31 140

6

32]18 [3 5 [2 2] 7

Fig. 25. Final floorplan for problem Q4.

4. Concluding Remarks. We have presented in this paper two algorithms for
the floorplan design problem. The algorithms are very similar in spirit. They both
use Polish expressions to represent floorplans, employ the same search method
of simulated annealing, and use similar ways to modify a floorplan locally. The
first algorithm is designed for the case where all the modules are rectangular. All
floorplans produced by this algorithm are slicing floorplans. The second algorithm
is designed for the case where the modules are either rectangular or L-shaped.
This algorithm is capable of producing a nonslicing floorplan when all the modules
are rectangular. Our algorithms consider simultaneously the interconnection
information as well as the area and shape information. Experimental results
indicate that our algorithms perform well for many test problems.

Table 5

Module
ratio Ds (%) DL (%)

1.0 25.0 18.0
1.25 21.5 11.7
1.5 12.6 8.0
2.0 1.1 4.7

Floorplan Design of VLSI Circuits 291

References

[Ah 74]

[He 82]

[r,i 83]

[La 80]

[LD 85]

[Ma 82]

[OG 84]

lOt 82]

[ot 83]

[PC 85]

[PV 79]

[SD 85]

[SS 85]

[St 83]

[WL 86]

[Wo 871

[WW 86]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley, Reading, MA, 1974.
W. R. Heller, G. Sorkin, and K. Maling, The Planar Package for System DeSigners, Proc.
19th A C M / IEEE Design Automation Conf. (1982), pp. 253-260.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing,
Science, 220 (1983), 671-680.
U. Lauther, A Min-Cut Placement Algorithm for General Cell Assemblies Based on a
Graph Representation, Journal of Digital Systems, IV (1) (1980), 21-34.
D. P. LaPotin and S. W. Director, Mason: A Global Floor-Planning Tool, Proc. Intl.
Conf. on Computer-Aided Design (1985), pp. 143-145.
K. Maling, S. H. Mueller, and W. R. Heller, On Finding Most Optimal Rectangular
Package Plans, Proc. 19th ACM / IEEE Design Automation Conf. (1982), pp. 663-670.
R. H. J. M. Otten and L. P. P. P. van Ginneken, Floorplan Design using Simulated
Annealing, Proc. IntL Conf. on Computer-Aided Design (1984), pp. 96-98.
R. H. J. M. Otten, Automatic Floorplan Design, Proc. 19th A C M / I E E E Design Automation
Conf. (1982), pp. 261-267.
R. H. J. M. Otten, Efficient Floorplan Optimization, Proc. lntL Conf. on Computer Design
(1983), pp. 499-502.
B. Preas and C. S. Chow, Placement and Routing Algorithms for Topological Integrated
Circuit Layout, Proc. Intl. Symp. on Circuits and Systems (1985), pp. 17-20.
B. Preas and W. M. VanCleemput, Placement Algorithms for Arbitrary Shaped Blocks,
Proc. 16th A C M / IEEE Design Automation Conf. (1979), pp. 474-480.
L. Sha and R. W. Dutton, An Analytical Algorithm for Placement of Arbitrary Sized
Rectangular Blocks, Proc. 22nd A C M / I E E E Design Automation Conf. (1985), pp. 602-
608.
C. Sechen and A. Sangiovanni-Vincentelli, The Timberwolf Placement and Routing
Package, IEEE Journal of Solid-State Circuits, 20 (2) (1985), 510-522.
L. Stockmeyer, Optimal Orientations of Cells in Slicing Floorplan Designs, Information
and Control, 59 (1983), 91-101.
D. F. Wong and C. L. Liu, A New Algorithm for Floorplan Design, Proc. 23rdACM/IEEE
Design Automation Conf. (1986), pp. 101-107.
D. F. Wong, Algorithmic Aspects of VLSI Circuit Layout, Ph.D. Thesis, University of
Illinois at Urbana-Champaign, January, 1987.
L. S. Woo, C. K. Wong, and D. T. Tang, Pioneer: A Macro-Based Floor-Planning Design
System, VLSI Systems Design (1986), pp. 32-43~

