Bounded Radius Routing

- Perform bounded PRIM algorithm
 - Under $\varepsilon = 0$, $\varepsilon = 0.5$, and $\varepsilon = \infty$
 - Compare radius and wirelength
 - Radius = 12 for this net

BPRIM Under $\varepsilon = 0$

- Example
 - Edges connecting to nearest neighbors = (c,d) and (c,e)
 - We choose (*c*,*d*) based on lexicographical order
 - *s*-to-*d* path length along T = 12+5 > 12 (= radius bound)
 - First appropriate edge found = (s,d)

BPRIM Under $\varepsilon = 0$ (cont)

Radius bound = 12

•

edges connecting to		s-to-y path length z_{1}	first feasible
nearest neighbors			appr-edge
		$dist_T(s, x) + dist(x, y)$	appropriate
$\min dist(x,y)$	chosen	of chosen edge	edge
(s,a)	(s,a)	0 + 5	-
(a,b)	(a,b)	5 + 4	-
(b,c)	(b,c)	9 + 3	-
(c,d), (c,e)	(c, d)	12 + 5	(s,d)
(c,e),(d,h)	(c, e)	12 + 5	(a, e)
(e,g)	(e,g)	11 + 4	(s,g)
(d,h), (e,h), (e,f), (g,f)	(d,h)	11 + 5	(s,h)
(e,f), (g,f)	(e,f)	11 + 5	(s, f)
ti	es broke	should be ≤ 12 ;	
lexie	cographi	cally otherwise	
	01	appropriate used	
	~~~~		



### BPRIM Under $\varepsilon = 0$ (cont)



Practical Problems in VLSI Physical Design

**Bounded Radius Routing (4/16)** 

### BPRIM Under $\varepsilon = 0$ (cont)



Practical Problems in VLSI Physical Design

**Bounded Radius Routing (5/16)** 

## BPRIM Under $\varepsilon = 0.5$

#### Radius bound = 18

edges connecting to nearest neighbors		<i>s</i> -to- <i>y</i> path length along <i>T</i>	first feasible appr-edge
		$dist_T(s, x) + dist(x, y)$	) appropriate
$\min dist(x, y)$	chosen	of chosen edge	edge
(s,a)	(s,a)	0 + 5	-
(a,b)	(a,b)	5 + 4	-
(b,c)	(b,c)	9 + 3	-
(c,d), (c,e)	(c,d)	12 + 5	-
(c, e), (d, h)	(c, e)	12 + 5	-
(e,g)	(e,g)	17 + 4	(s,g)
(d,h), (e,h), (g,h), (e,f), (g,f)	(d,h)	17 + 5	(s,h)
(e, f), (g, f)	(e,f)	17 + 5	(s,f)
ties lexicog	broken graphical	should be ≤ 18; ly otherwise	should be $\leq 12$
		appropriate used	
Practical Problems in VI	SI Dhysical	Design Bounded I	Dadius Dauting (4

### BPRIM Under $\varepsilon = 0.5$ (cont)



Practical Problems in VLSI Physical Design

**Bounded Radius Routing (7/16)** 

### BPRIM Under $\varepsilon = 0.5$ (cont)



Practical Problems in VLSI Physical Design

**Bounded Radius Routing (8/16)** 

## BPRIM Under $\varepsilon = \infty$



#### BPRIM Under $\varepsilon = \infty$ (cont)



# Comparison

- As the bound increases  $(12 \rightarrow 18 \rightarrow \infty)$ 
  - Radius value increases  $(12 \rightarrow 17 \rightarrow 22)$
  - Wirelength decreases  $(56 \rightarrow 49 \rightarrow 36)$



## Bounded Radius Bounded Cost

- Perform BRBC under  $\varepsilon = 0.5$ 
  - $\varepsilon$  defines both radius and wirelength bound
  - Perform DFS on rooted-MST
  - Node ordering L = {s, a, b, c, e, f, e, g, e, c, d, h, d, c, b, a, s}
  - We start with Q = MST



## MST Augmentation

- Example: visit *a* via (*s*,*a*)
  - Running total of the length of visited edges, S = 5
  - Rectilinear distance between source and *a*, *dist*(*s*,*a*) = 5
  - We see that  $\varepsilon \cdot dist(s,a) = 0.5 \cdot 5 < S$
  - Thus, we reset S and add (s,a) to Q (note (s,a) is already in Q)



## MST Augmentation (cont)

edge	$L_i$	$\epsilon \cdot dist(s, L_i)$	S	reset $S$ ?
(s,a)	a	$0.5 \cdot 5$	5	yes
(a,b)	b	$0.5 \cdot 7$	4	yes
(b,c)	c	$0.5 \cdot 6$	3	yes
(c, e)	e	$0.5 \cdot 7$	5	yes
(e, f)	f	$0.5 \cdot 6$	5	yes
(f, e)	e	$0.5 \cdot 7$	5	yes
(e,g)	g	$0.5 \cdot 9$	4	no
(g, e)	e	$0.5 \cdot 7$	8	yes
(e,c)	c	$0.5 \cdot 6$	5	yes
(c, d)	d	$0.5 \cdot 11$	5	no
(d,h)	h	$0.5 \cdot 12$	10	yes
(h, d)	d	$0.5 \cdot 11$	5	no
(d, c)	c	$0.5 \cdot 6$	10	yes
(c,b)	b	$0.5 \cdot 7$	3	no
(b,a)	a	$0.5 \cdot 5$	7	yes
(a,s)	s	$0.5 \cdot 0$	5	yes

visit nodes based on L



dotted edges are added

Practical Problems in VLSI Physical Design

**Bounded Radius Routing (14/16)** 

## Last Step: SPT Computation

• Compute rooted shortest path tree on augmented Q





## BPRIM vs BRBC

- Under the same  $\varepsilon = 0.5$ 
  - BPRIM: radius = 18, wirelength = 49
  - BRBC: radius = 12, wirelength = 52
  - BRBC: significantly shorter radius at slight wirelength increase



