Elmore Routing Tree (ERT) Algorithm

- Perform ERT algorithm under 65*nm* technology
 - Unit-length resistance $r = 0.4 \ \Omega/\mu m$
 - Unit-length capacitance $c = 0.2 f F/\mu m$
 - Driver output resistance $r_d = 250 \ \Omega$
 - Sink input capacitance r = 50 fF

Adding First Edge

- Simply add the nearest neighbor to the source
 - Add (*s*,*a*)

Adding Second Edge

• Rule: each node in *T* can connect to its nearest neighbor

- Two edges to consider: (*a*,*b*), (*s*,*c*)
- Elmore delay calculations shown on next slides

ERT/SERT Algorithm (3/16)

Elmore Delay Calculation

■ Case 1: edge (*a*,*b*)

$$t(b) = r_d \cdot C_s + r_{(s,a)}(0.5c_{(s,a)} + C_a) + r_{(a,b)}(0.5c_{(a,b)} + z_b)$$

= $r_d \cdot (c_{(s,a)} + z_a + c_{(a,b)} + z_b) + r_{(s,a)}(0.5c_{(s,a)} + z_a + c_{(a,b)} + z_b) + r_{(a,b)}(0.5c_{(a,b)} + z_b)$
= $0.25(600 + 50 + 1200 + 50) + 1.2(300 + 50 + 1200 + 50) + 2.4(600 + 50)$

$$= 3955 ps$$

Elmore Delay Calculation (cont)

- Case 2: edge (s,c)
 - It is easy to see that t(c) > t(a)
 - Elmore delay is t(c) = 2035ps
 - Thus, we add (s,c) to minimize maximum Elmore delay

Adding Third Edge

- Three edges to consider: (a,b), (s,d), (c,d)
 - Elmore delay: t(b) = 4267.5ps, t(d) = 2937.5ps, t(d) = 5917.5ps
 - Add (*s*,*d*)

Adding Fourth Edge

- Four edges to consider: (a,b), (s,b), (c,b), (d,b)
 - In all these cases, delay to *b* is the maximum
 - *t*(*b*) = 4630*ps*, 4720*ps*, 10720*ps*, 8310*ps*, respectively
 - Add (*a*,*b*)

Final ERT Result

- Maximum Elmore delay is t(b) = 4630ps
 - No Steiner node used
 - Star-shaped topology

Steiner Elmore Routing Tree (SERT)

- Perform SERT algorithm under $1.2\mu m$ technology
 - Unit-length resistance $r = 0.073 \ \Omega/\mu m$
 - Unit-length capacitance $c = 0.083 f F/\mu m$
 - Driver output resistance $r_d = 212 \ \Omega$
 - Sink input capacitance r = 7.1 fF

First Iteration

- Simply add the nearest neighbor to the source
 - Add (*s*,*a*)

Second Iteration

- Rule: each node not in *T* can connect to each edge in *T* using a Steiner point or directly to source
 - 6 edges to consider: (*a*,*b*), (*s*,*b*), (*p*,*d*), (*s*,*d*), (*p*,*c*), (*s*,*c*)
 - Node p is a Steiner node

Second Iteration (cont)

Case (e) results in minimum delay: t(c) = 268.6ps
Add (p,c)

ERT/SERT Algorithm (12/16)

Third Iteration

7 edges to consider

Fourth Iteration

• 6 edges to consider

Final SERT Result

- Maximum Elmore delay is t(b) = 606.3ps
 - Two Steiner nodes used

ERT vs SERT

- Not a fair comparison
 - Technology parameters are different (65nm vs $1.8\mu m$)

