Steiner Min/Max Tree Routing

- Route the nets onto 5×5 grid
 - Edge capacity is 3
 - Route nets in the given order
 - Two phases: SMMT-phase (use $c_i = 2.0$) and SP-phase

$$\begin{split} n_1 &= \{(1,0), (0,3), (3,2), (3,4)\} \\ n_2 &= \{(0,2), (3,0), (4,3)\} \\ n_3 &= \{(1,1), (2,2), (4,0), (4,4)\} \\ n_4 &= \{(0,0), (2,1), (1,3), (4,1), (2,4)\} \\ n_5 &= \{(2,0), (0,4), (4,2), (3,3)\} \end{split}$$

- Route first net
 - Net n_1 : HPBB = 7, edge weights = 0 (no edge usage yet)
 - MST is not unique
 - SMMT: max-weight = 0, wirelength = $9 < 2.0 (= c_i) \times 7$

- Route second net
 - Net n_2 : HPBB = 7, edge weights reflect routing of n_1
 - SMMT: max-weight = 0, wirelength = $10 < 2.0 \times 7$

- Route third net
 - Net n_3 : HPBB = 7, edge weights reflect routing of n_1 and n_2
 - SMMT: max-weight = 1, wirelength = $15 > 2.0 \times 7$!!
 - So we reject this SMMT (routing failed)

- Route fourth net
 - Net n_4 : HPBB = 8, edge weights reflect routing of n_1 and n_2
 - SMMT: max-weight = 1, wirelength = $15 < 2.0 \times 8$

- Route fifth net
 - Net n_5 : HPBB = 8, edge weights reflect routing of n_1, n_2, n_4
 - SMMT: max-weight = 1, wirelength = $12 < 2.0 \times 8$

Summary of SMMT-Phase

- Reroute first net
 - SMMT (n_1) : wirelength = 9
 - Source node *s*: (3,2) (= arrow), geometric center among terminals
 - Sinks are added to *s* in this order: (3,4), (0,3), (1,0)
 - SP (n_1) : wirelength = 8

- Reroute second net
 - SMMT(n_2): wirelength = 10
 - Routing graph reflects rerouting of n_1 , i.e., SP (n_1)
 - Source node s = (3,0), sinks are added (4,3), (0,2)
 - SP (n_2) : wirelength = 7

- Reroute third net
 - SMMT (n_3) : does not exist due to routing failure
 - Routing graph reflects rerouting of n_1 and n_2
 - Source node s = (2,2), sinks are added (1,1), (4,0), (4,4)
 - SP (n_3) : wirelength = 9

Practical Problems in VLSI Physical Design

Steiner Min/Max Tree (10/15)

- Reroute fourth net
 - SMMT(n_4): wirelength = 15
 - Routing graph reflects rerouting of n_1, n_2, n_3
 - Source node s = (2,1), sinks are added (4,1), (0,0), (1,3), (2,4)
 - SP (n_4) : wirelength = 9

- Reroute fifth net
 - SMMT(n_5): wirelength = 12
 - Routing graph reflects rerouting of n_1, n_2, n_3, n_4
 - Source node s = (2,0), sinks are added (4,2), (3,3), (0,4)
 - SP (n_5) : wirelength = 9

Summary of SP-Phase

SMMT vs SP

- SMMT promotes
 - Even usage of the edges (= less congestion)
 - Not a fair comparison since n_3 is missing in SMMT
 - Still SMMT tends to minimize congestion

SMMT vs SP (cont)

- SP promotes
 - Shorter wirelength, higher weight (= more congestion)
 - Congestion vs wirelength tradeoff exists

	SMMT phase		SP phase	
net	max e-wgt	wirelength	max e-wgt	wirelength
$\overline{n_1}$	2	9	2	8
n_2	2	10	2	7
n_3	routing failed		3	9
n_4	2	15	3	9
n_5	2	12	3	9

