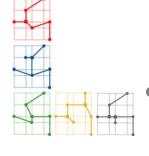
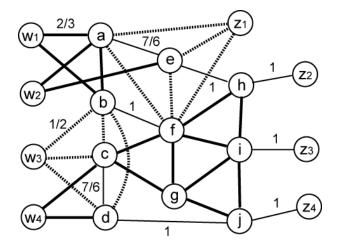

GORDIAN Placement


- Perform GORDIAN placement
 - Uniform area and net weight, area balance factor = 0.5
 - Undirected graph model: each edge in k-clique gets weight 2/k

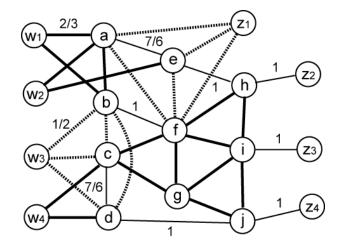
IO Placement

Necessary for GORDIAN to work



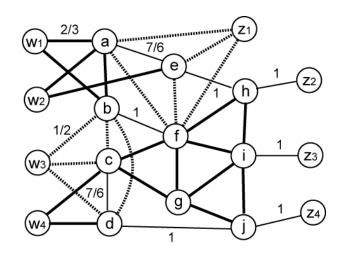
Adjacency Matrix

- Shows connections among movable nodes
 - Among nodes a to j


\int_{0}^{0}	$\frac{2}{3}$	0	0	$\frac{7}{6}$	$\frac{1}{2}$	0	0	0	0)
$\frac{2}{3}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	1	0	0	0	0
0	$\frac{1}{2}$		$\frac{\frac{1}{2}}{\frac{7}{6}}$	0	$\frac{2}{3}$	$\frac{2}{3}$	0	0	0
0	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{0}{\frac{7}{6}}$	0	0	0	0	0	0	1
$\frac{7}{6}$	0	0	0	0	$\frac{1}{2}$	0	1	0	0
$\begin{bmatrix} 0 \\ \frac{7}{6} \\ \frac{1}{2} \\ 0 \end{bmatrix}$	1	$\frac{2}{3}$	0	$\frac{1}{2}$		$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	0
0	0	$\frac{2}{3}$ $\frac{2}{3}$	0	0	$0 \frac{2}{3} \frac{2}{3} \frac{2}{3}$	0	0	$\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$	$\begin{bmatrix} 0 \\ \frac{2}{3} \\ 0 \\ \frac{2}{3} \\ 0 \end{bmatrix}$
0	0	0	0	1	$\frac{2}{3}$	0	0	$\frac{2}{3}$	0
0	0	0	0	0	$\frac{2}{3}$	0 $\frac{2}{3}$ $\frac{2}{3}$	$\frac{2}{3}$		$\frac{2}{3}$
$\int 0$	0	0	1	0	0	$\frac{2}{3}$	0	$\frac{0}{\frac{2}{3}}$	0/

Pin Connection Matrix

- Shows connections between movable nodes and IO
 - Rows = movable nodes, columns = IO (fixed)


$\int \frac{2}{3}$	$\frac{2}{3}$	0	0	$\frac{1}{2}$	0	0	0/
$\begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$	0	$\frac{1}{2}$	0	0	0	0	0
0	0	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{2}{3}$	0	0	0	0
0	0	$\frac{1}{2}$	$\frac{2}{3}$ $\frac{2}{3}$	0	0	0	0
0	$\frac{2}{3}$	0	0	$\frac{1}{2}$	0	0	0
0	0	0	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
$\int 0$	0	0	0	0	0	0	1/

Degree Matrix

- Based on both adjacency and pin connection matrices
 - Sum of entries in the same row (= node degree)

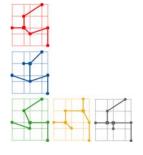
$\sqrt{\frac{25}{6}}$	0	0	0	0	0	0	0	0	0 \
0	$\frac{23}{6}$	0	0	0	0	0	0	0	0
0	0	$\frac{25}{6}$	0	0	0	0	0	0	0
0	0	0	$\frac{23}{6}$	0	0	0	0	0	0
0	0	0	0	$\frac{23}{6}$	0	0	0	0	0
0	0	0	0	0	$\frac{31}{6}$	0	0	0	0
0	0	0	0	0	0	$\frac{8}{3}$	0	0	0
0	0	0	0	0	0	0	$\frac{10}{3}$	0	0
0	0	0	0	0	0	0	0	$\frac{11}{3}$	0
$\int 0$	0	0	0	0	0	0	0	0	$\frac{10}{3}$

Laplacian Matrix

Degree matrix minus adjacency matrix

$$\begin{pmatrix} \frac{25}{6} & -\frac{2}{3} & 0 & 0 & -\frac{7}{6} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{2}{3} & \frac{23}{6} & -\frac{1}{2} & -\frac{1}{2} & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{25}{6} & -\frac{7}{6} & 0 & -\frac{2}{3} & -\frac{2}{3} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{7}{6} & \frac{23}{6} & 0 & 0 & 0 & 0 & 0 & -1 \\ -\frac{7}{6} & 0 & 0 & 0 & \frac{23}{6} & -\frac{1}{2} & 0 & -1 & 0 & 0 \\ -\frac{1}{2} & -1 & -\frac{2}{3} & 0 & -\frac{1}{2} & \frac{31}{6} & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & -\frac{2}{3} & 0 & 0 & -\frac{2}{3} & \frac{8}{3} & 0 & -\frac{2}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & -1 & -\frac{2}{3} & 0 & \frac{10}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & \frac{11}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & -1 & 0 & 0 & -\frac{2}{3} & 0 & -\frac{2}{3} & \frac{10}{3} \end{pmatrix}$$

Fixed Pin Vectors

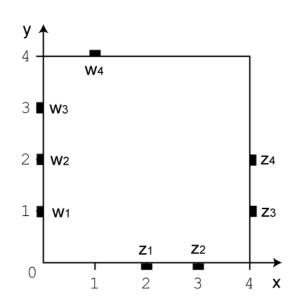

Based on pin connection matrix and IO location

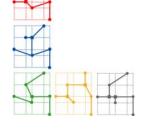
Each entry i in d_x , denoted $d_{x,i}$, is computed as follows:

$$d_{x,i} = -\sum_{j} p_{ij} \cdot x(p_j)$$

where p_{ij} denotes the entry of the pin connection matrix, and $x(p_j)$ is the x-coordinate of the corresponding IO pin j.

Y-direction is defined similarly

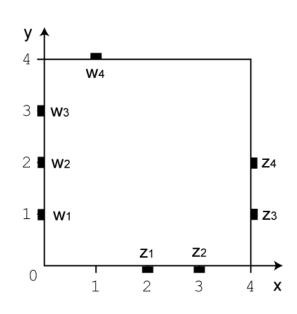



Fixed Pin Vectors (cont)

$$d_{x,1} = -\left(\frac{2}{3} \cdot 0 + \frac{2}{3} \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + \frac{1}{2} \cdot 2 + 0 \cdot 3 + 0 \cdot 4 + 0 \cdot 4\right) = -1$$

By examining the remaining 9 movable cells, we get

$$d_x^T = \begin{pmatrix} -1 & 0 & -\frac{2}{3} & -\frac{2}{3} & -1 & -1 & 0 & -3 & -4 & -4 \end{pmatrix}$$



Fixed Pin Vectors (cont)

$$d_{y,1} = -\left(\frac{2}{3} \cdot 1 + \frac{2}{3} \cdot 2 + 0 \cdot 3 + 0 \cdot 4 + \frac{1}{2} \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 2\right) = -2$$

By examining the remaining 9 movable cells, we get

$$d_y^T = \begin{pmatrix} -2 & -\frac{13}{6} & -\frac{25}{6} & -\frac{25}{6} & -\frac{4}{3} & 0 & 0 & 0 & -1 & -2 \end{pmatrix}$$

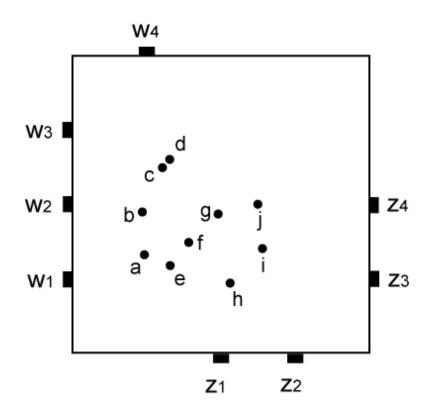
Level 0 QP Formulation

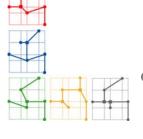
No constraint necessary

Minimize

$$\phi(x) = \frac{1}{2}x^T C x + d_x^T x$$

and

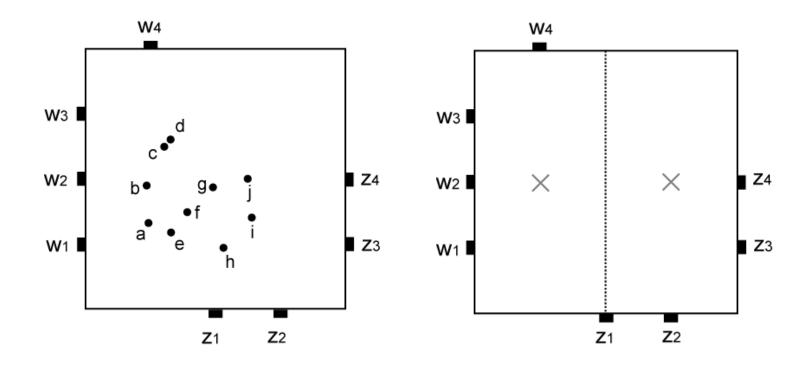

$$\phi(y) = \frac{1}{2}y^T C y + d_y^T y$$


We use MOSEK and obtain the following solution:

$$x^{T} = \begin{pmatrix} 0.95 & 0.92 & 1.21 & 1.32 & 1.32 & 1.61 & 1.98 & 2.13 & 2.59 & 2.51 \end{pmatrix}$$

 $y^{T} = \begin{pmatrix} 1.27 & 1.83 & 2.48 & 2.61 & 1.16 & 1.45 & 1.84 & 0.92 & 1.41 & 2.03 \end{pmatrix}$

Level 0 Placement


■ Cells with real dimension will overlap

Level 1 Partitioning

- Perform level 1 partitioning
 - Obtain center locations for center-of-gravity constraints

Level 1 Constraint

We first sort the nodes based on their x-coordinates:

$$\{b, a, c, e, d, f, g, h, j, i\}$$

We perform partitioning under $\alpha = 0.5$:

$$S_{\rho'} = \{b, a, c, e, d\}, S_{\rho''} = \{f, g, h, j, i\}$$

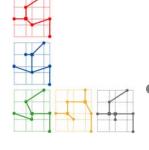
The center location vectors are:

$$u_x^{(1)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \ u_y^{(1)} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

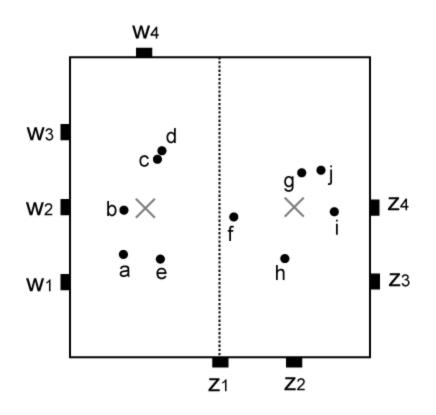
We build the matrix $A^{(1)}$ for the center-of-gravity constraint at level l=1:

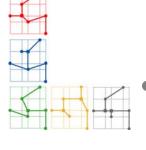
$$A^{(1)} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}$$

Level 1 LQP Formulation


We now solve the following Linearly constrained QP (LQP) to obtain the new placement for the movable nodes:

Minimize
$$\phi(x) = \frac{1}{2}x^T C x + d_x^T x$$
, subject to $A^{(1)} \cdot x = u_x^{(1)}$

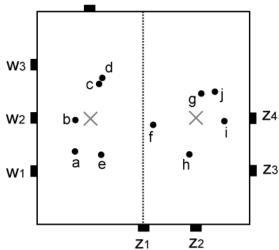

Minimize
$$\phi(y) = \frac{1}{2}y^T C y + d_y^T y$$
, subject to $A^{(1)} \cdot y = u_y^{(1)}$


The solutions are as follows:

$$x^{T} = \begin{pmatrix} 0.70 & 0.71 & 1.17 & 1.21 & 1.22 & 2.17 & 3.10 & 2.84 & 3.56 & 3.33 \end{pmatrix}$$

 $y^{T} = \begin{pmatrix} 1.34 & 1.94 & 2.66 & 2.76 & 1.30 & 1.83 & 2.45 & 1.32 & 1.91 & 2.49 \end{pmatrix}$

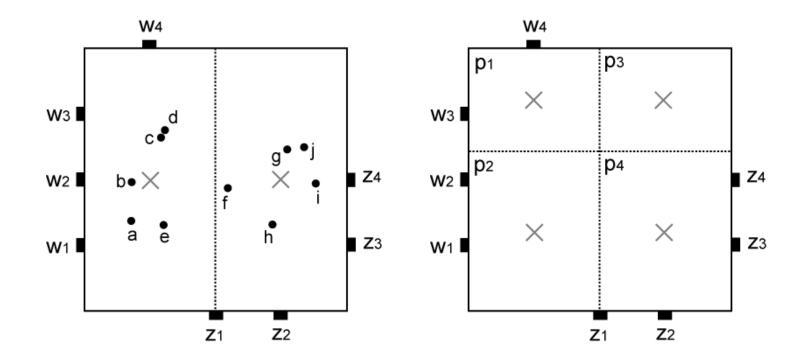
Level 1 Placement


Verification

Verify that the constraints are satisfied in the left partition

The following cells are partitioned to the left: a(0.70, 1.34), b(0.71, 1.94), c(1.17, 2.66), d(1.21, 2.76), and e(1.22, 1.30). Thus, the center of gravity is located at:

$$\frac{0.70 + 0.71 + 1.17 + 1.21 + 1.22}{5} = 1.00$$
$$\frac{1.34 + 1.94 + 2.66 + 2.76 + 1.30}{5} = 2.00$$


This agrees with the center location (1, 2).

W4

Level 2 Partitioning

- Add two more cut-lines
 - This results in $p_1 = \{c,d\}$, $p_2 = \{a,b,e\}$, $p_3 = \{g,j\}$, $p_4 = \{f,h,i\}$

Level 2 Constraint

The center location vectors are:

$$u_x^{(2)} = \begin{pmatrix} 1\\1\\3\\3 \end{pmatrix}, \ u_y^{(2)} = \begin{pmatrix} 3.2\\1.2\\3.2\\1.2 \end{pmatrix}$$

Next, we build the matrix $A^{(2)}$ for the center-of-gravity constraint at level l=2. Recall that $p_1=\{c,d\}, p_2=\{a,b,e\}, p_3=\{g,j\}, p_4=\{f,h,i\}$. Thus,

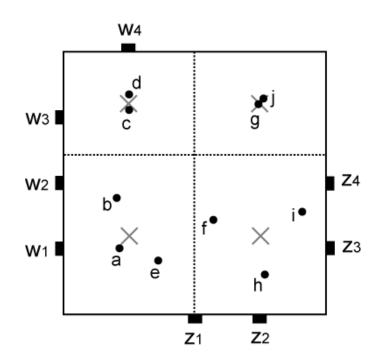
where the rows denote the partitions p_1 through p_4 , and the columns denote the cells a through j.

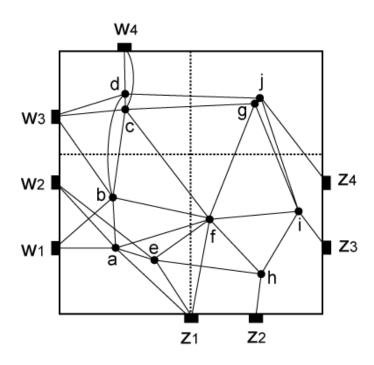
Level 2 LQP Formulation

We now solve the following LQP to obtain the placement of the movable nodes:

Minimize
$$\phi(x) = \frac{1}{2}x^T C x + d_x^T x$$
, subject to $A^{(2)} \cdot x = u_x^{(2)}$

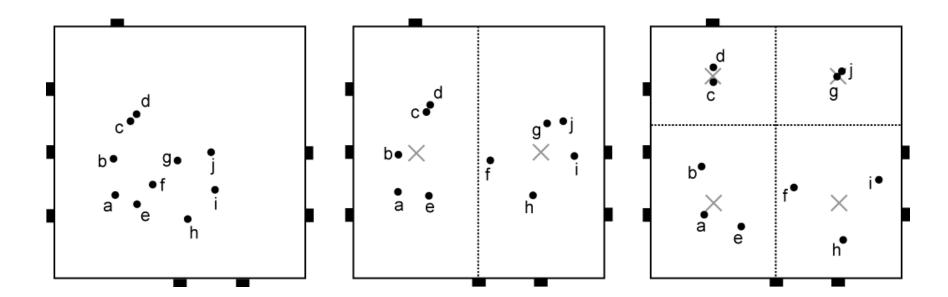
Minimize
$$\phi(y) = \frac{1}{2}y^T C y + d_y^T y$$
, subject to $A^{(2)} \cdot y = u_y^{(2)}$


The solutions are as follows:


$$x^{T} = \begin{pmatrix} 0.83 & 0.78 & 1.00 & 1.00 & 1.39 & 2.28 & 2.89 & 3.06 & 3.66 & 3.11 \end{pmatrix}$$

 $y^{T} = \begin{pmatrix} 1.01 & 1.78 & 3.08 & 3.32 & 0.82 & 1.44 & 3.18 & 0.59 & 1.57 & 3.22 \end{pmatrix}$

Level 2 Placement


Clique-based wiring is shown

Summary

- Center-of-gravity constraint
 - Helps spread the cells evenly while monitoring wirelength
 - Removes overlaps among the cells (with real dimension)

