Multi-level Coarsening Algorithm

- Perform Edge Coarsening (EC)
 - Visit nodes and break ties in alphabetical order
 - Explicit clique-based graph model is not necessary

Multi-level Coarsening (1/11)

Edge Coarsening

- (a) visit *a*: Note that *a* is contained in n_1 only. So, $neighbor(a) = \{c, e\}$. The weight of $(a, c) = 1/(|n_1| - 1) = 0.5$. The weight of $(a, e) = 1/(|n_1| - 1) = 0.5$. Thus, we break the tie based on alphabetical order. So, *a* merges with *c*. We form $C_1 = \{a, c\}$ and mark *a* and *c*.
- (b) visit b: Note that b is contained in n_2 only. So, $neighbor(b) = \{c, d\}$. Since c is already marked, b merges with d. We form $C_2 = \{b, d\}$ and mark b and d.
- (c) since c and d are marked, we skip them.

Edge Coarsening (cont)

- (d) visit e: the unmarked neighbors of e are g and f. We see that w(e,g) = 1 and w(e, f) = 0.5. So, e merges with g. We form $C_3 = \{e, g\}$ and mark e and g.
- (e) visit f: Node f is contained in n_3 , n_4 , and n_6 . So, $neighbor(f) = \{c, d, e, g, h\}$. But, the only unmarked neighbor is h. So, f merges with h. We form $C_4 = \{f, h\}$ and mark f and h.
- (f) since g and h are marked, we skip them.

Obtaining Clustered-level Netlist

of nodes/hyperedges reduced: 4 nodes, 5 hyperedges

net	gate-level	cluster-level	final	cluster	nodes
$\overline{n_1}$	$\{a, c, e\}$	$\{C_1, C_1, C_3\}$	$\{C_1, C_3\}$	C_1	$\{a,c\}$
n_2	$\{b,c,d\}$	$\{C_2, C_1, C_2\}$	$\{C_1, C_2\}$	C_2	$\{b,d\}$
n_3	$\{c, e, f\}$	$\{C_1, C_3, C_4\}$	$\{C_1, C_3, C_4\}$	C_3	$\{e,g\}$
n_4	$\{d, f\}$	$\{C_2, C_4\}$	$\{C_2, C_4\}$	C_4	$\{f,h\}$
n_5	$\{e,g\}$	$\{C_3, C_3\}$	Ø		
n_6	$\{f,g,h\}$	$\{C_4, C_3, C_4\}$	$\{C_3, C_4\}$		

Practical Problems in VLSI Physical Design

Multi-level Coarsening (4/11)

Hyperedge Coarsening

- Initial setup
 - Sort hyper-edges in increasing size: n_4 , n_5 , n_1 , n_2 , n_3 , n_6
 - Unmark all nodes

Hyperedge Coarsening

- (a) visit $n_4 = \{d, f\}$: since d and f are not marked yet, we form $C_1 = \{d, f\}$ and mark d and f.
- (b) visit $n_5 = \{e, g\}$: since e and g are not marked yet, we form $C_2 = \{e, g\}$ and mark e and g.
- (c) visit $n_1 = \{a, c, e\}$: since e is already marked, we skip n_1 .

Hyperedge Coarsening

- (d) visit $n_2 = \{b, c, d\}$: since d is already marked, we skip n_2 .
- (e) visit $n_3 = \{c, e, f\}$: since e and f are already marked, we skip n_3 .
- (f) visit $n_6 = \{f, g, h\}$: since f and g are already marked, we skip n_6 .

Obtaining Clustered-level Netlist

of nodes/hyperedges reduced: 6 nodes, 4 hyperedges

Modified Hyperedge Coarsening

- Revisit skipped nets during hyperedge coarsening
 - We skipped n_1, n_2, n_3, n_6
 - Coarsen un-coarsened nodes in each net

Modified Hyperedge Coarsening

- (a) visit $n_1 = \{a, c, e\}$: since e is already marked during HEC, we group the remaining unmarked nodes a and c. We form $C_3 = \{a, c\}$ and mark a and c.
- (b) visit $n_2 = \{b, c, d\}$: since d is marked during HEC and c during MHEC as above, we form $C_4 = \{b\}$ and mark b.
- (c) visit $n_3 = \{c, e, f\}$: all nodes are already marked, so we skip n_3 .
- (d) visit $n_6 = \{f, g, h\}$: since f and g are already marked, we form $C_5 = \{h\}$ and mark h.

Practical Problems in VLSI Physical Design

Obtaining Clustered-level Netlist

of nodes/hyperedges reduced: 5 nodes, 4 hyperedges

