Iterative Deletion Routing Algorithm

- Perform routing based on the following placement
 - Two nets: $n_1 = \{b, c, g, h, i, k\}, n_2 = \{a, d, e, f, j\}$
 - Cell/feed-through width = 2, height = 3
 - Shift cells to the right, each cell contains self-feed-through

Feed-through Insertion

- Add one edge with min-weight at a time
 - Continue until we form a spanning forest
 - Our spanning forest needs 4+5 edges (why?)
 - Use K = 0.5

$$w(e(i,j)) = |x_i - x_j| + K \cdot \sum_{e \cap R_k \neq \emptyset} width(R_k)$$

- Break ties in alphabetical order
- Place feed-throughs right below top gate

Feed-through Insertion (cont)

- First step: build net connection graph
 - Union of individual complete graphs

Feed-through Insertion (cont)

Edge weight computation

$$w(e(i,j)) = |x_i - x_j| + K \cdot \sum_{e \cap R_k \neq \emptyset} width(R_k)$$

•
$$w(a,d) = 2 + 0.5 \cdot 0 = 2$$

•
$$w(c,i) = 13 + 0.5 \cdot (21 + 21) = 34$$

Feed-through Insertion (cont)

Sorted edge list (increasing order)

edge	$ x_i - x_j $	R_i	w(e)
(a,d)	2	-	2 + 0.5(0) = 2
(g,i)	2	-	2 + 0.5(0) = 2
(d, e)	5	-	5 + 0.5(0) = 5
(a,e)	7	-	7 + 0.5(0) = 7
(h,i)	7	-	7 + 0.5(0) = 7
(h,k)	8	-	8 + 0.5(0) = 8
(c,k)	2	R_2, R_3	2 + 0.5(21 + 21) = 23
(b,i)	4	R_2, R_3	4 + 0.5(21 + 21) = 25
(c,g)	15	R_2	15 + 0.5(21) = 25.5
(a, j)	7	R_2, R_3	7 + 0.5(21 + 21) = 28
(b,k)	11	R_2, R_3	11 + 0.5(21 + 21) = 32
(c, i)	13	R_2, R_3	13 + 0.5(21 + 21) = 34

Iterative Addition

- Adding first 7 edges
 - Based on increasing order of edge weight (should not form cycle)
 - Edge weight changes if feed-through is added
 - No feed-through is used for the first 7 edges, so no update

edge	$ x_i - x_j $	R_i	w(e)	action		
(a,d)	2	-	2 + 0.5(0) = 2	added	a b	
(g,i)	2	-	2 + 0.5(0) = 2	added		,
(d, e)	5	-	5 + 0.5(0) = 5	added	de	f
(a, e)	7	-	7 + 0.5(0) = 7	cycle	• •	•
(h,i)	7	-	7 + 0.5(0) = 7	added	•	
(h,k)	8	-	8 + 0.5(0) = 8	added		
(b, c)	9	-	9 + 0.5(0) = 9	added		_
(e, f)	9	-	9 + 0.5(0) = 9	added	i j	k
(g,h)	9	-	9 + 0.5(0) = 9	cycle		

Iterative Deletion Routing (6/18)

- Adding 8th edge
 - Choose (*e*,*j*): does not create a cycle
 - Need a feed-through (= x) in third row $(= R_3)$
 - Some edges will have new weights (details in next slide)

- Edge weight update after adding 8th edge
 - All edges intersecting with R_3
 - All edges connecting to cell *h* (because *h* is shifted)

	before			after	
edge	w(e)	$ x_i - x_j $	R_i	w(e)	action
(b,h)	13.5	5	R_2	5 + 0.5(21) = 15.5	updated
(d,f)	14	14	-	14 + 0.5(0) = 14	
(i,k)	15	15	-	15 + 0.5(0) = 15	
(d, j)	15.5	5	R_3	5 + 0.5(23) = 16.5	updated
			\smile		
(c,g)	25.5	15	R_2	15 + 0.5(21) = 25.5	
(a, j)	28	7	R_{2}, R_{3}	7 + 0.5(21 + 23) = 29	updated
(b,k)	32	11	R_2 R_3	11 + 0.5(21 + 23) = 33	updated
(c,i)	34	13	R_{2}, R_{3}	13 + 0.5(21 + 23) = 35	updated

Practical Problems in VLSI Physical Design Iterative Deletion Routing (8/18)

- Adding 9th (= last) edge
 - Skip (d,f) (= creates a cycle), so add (c,h)
 - Need a feed-through (= y) in R_2

- Final Result
 - Two feed-throughs are inserted: already have routing solutions
 - Why do we need iterative deletion then?
 - Improve congestion

Iterative Deletion

- Step 1: obtain simplified net connection graph
 - Form cliques among pins in the same channel
 - Remove edges that connect non-adjacent pins (= dotted lines)

- Step 2: compute channel density (= congestion)
 - Number of edges passing, beginning, or ending at each column
 - Density of channel 1/2/3 is 4/6/2 (= max value)

- Step 3: delete edges in G'
 - Continue until we obtain spanning forest of G'
 - Should not isolate any node
 - Delete edges with max-weight first
 - $w(e) = d(e) / d(C_e)$
 - Break ties: delete edges
 - With longer x-span first
 - With higher edge density, d(e)
 - From bottom-most channel

simplified net connection graph G'

- Deleting first edge
 - Choose (x,f): does not isolate any node
 - Density of channel 2 reduces to 5:
 - weights of all edges in channel 2 to change

edge	x-span	d(e)	C_i	w(e)	
(x, f)	11	6	C_2	6/6 = 1	a b c
(g,h)	11	6	C_2	6/6 = 1	
(e, f)	11	6	C_2	6/6 = 1	d o v f
(e,f)	11	4	C_1	4/4 = 1	
••••					g x h
(c,y)	0	4	C_1	4/4 = 1	
(x, j)	0	2	C_3	2/2 = 1	i j k
(h,y)	4	4	C_2	4/6 = 0.67	simplified net connection graph G'
(a,d)	2	2	C_1	2/4 = 0.5	9 9

Practical Problems in VLSI Physical Design Iterative Deletion Routing (14/18)

- Edge weight update after deleting first edge
 - all edges in channel 2 to change

Practical Problems in VLSI Physical Design Iterative Deletion Routing (15/18)

Practical Problems in VLSI Physical Design Iterative Dele

Iterative Deletion Routing (16/18)

• Final result

Practical Problems in VLSI Physical Design Iterative Deletion Routing (17/18)

Iterative Addition vs Deletion

- Density of channel (= congestion) improved
 - Reduced from 3 to 2 in channel 1

