Normalized Polish Expression

- Draw slicing floorplan based on:
 - Initial PE: $P_1 = 25V1H374VH6V8VH$
 - Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)

M1 Move

- Swap module 3 and 7 in $P_1 = 25V1H374VH6V8VH$
 - We get: $P_2 = 25V1H_{\overline{73}}^{24}4VH6V8VH$
 - Area changed from 11×15 to 13×14

Change on Floorplan

M2 Move

- Complement last chain in $P_2 = 25V1H734VH6V8VH$
 - We get: $P_3 = 25V1H734VH6V8HV$
 - Area changed from 13×14 to 15×11

Change on Floorplan

M3 Move

- Swaps 6 and V in $P_3 = 25V1H734VH6V8HV$
 - We get: $P_4 = 25V1H734VH<u>V6</u>8HV$
 - Area changed from 15×11 to 15×7

Change on Floorplan

Initial Temperature Calculation

- What is average change on cost function?
- Initial temperature with acceptance probability 0.9?

The area changed from 11×15 to 13×14 to 15×11 to 15×7 . Thus, the average area change is

$$\Delta_{ave} = \frac{|165 - 182| + |182 - 165| + |165 - 105|}{3} = 31.33$$

Thus,

$$T_0 = \frac{-\Delta_{ave}}{ln(0.9)} = 297.39$$

