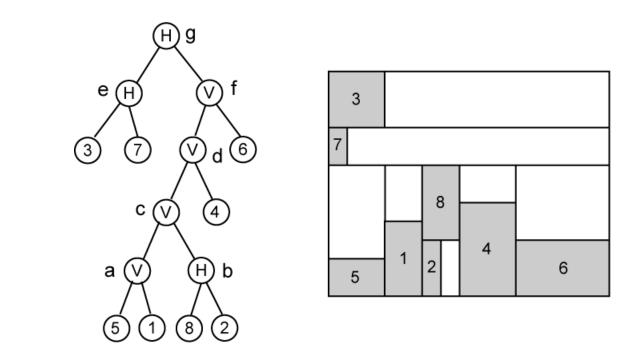
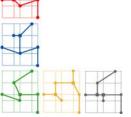
Stockmeyer Algorithm

- Determine optimal orientation of the blocks
 - Internal nodes in the slicing tree: top-H-bottom, left-V-right
 - lower-left corner of the block \rightarrow lower-left corner of its room
 - Block dimension: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)





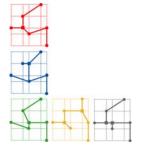
Bottom-up Tree Traversal

visit node *a*: Since the cut orientation is vertical;

$$L = \{(2,3), (3,2)\}$$
$$R = \{(2,4), (4,2)\}$$

- i join $l_1 = (2,3)$ and $r_1 = (2,4)$: we get $(2 + 2, \max\{3,4\}) = (4,4)$. Since the maximum is from R, we join l_1 and r_2 next.
- ii join $l_1 = (2,3)$ and $r_2 = (4,2)$: we get $(2 + 4, \max\{3,2\}) = (6,3)$. Since the maximum is from L, we join l_2 and r_2 next.
- iii join $l_2 = (3, 2)$ and $r_2 = (4, 2)$: we get $(3 + 4, \max\{2, 2\}) = (7, 2)$.

Thus, the resulting dimensions are $\{(4, 4), (6, 3), (7, 2)\}$.



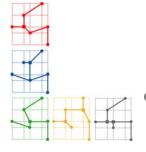
Bottom-up Tree Traversal (cont)

visit node b: Since the cut orientation is horizontal;

$$\begin{split} L &= \{(4,2),(2,4)\} \\ R &= \{(3,1),(1,3)\} \end{split}$$

- i join $l_1 = (4,2)$ and $r_1 = (3,1)$: we get $(\max\{4,3\},2+1) =$ (4,3). Since the maximum is from L, we join l_2 and r_1 next.
- ii join $l_2 = (2,4)$ and $r_1 = (3,1)$: we get $(\max\{2,3\}, 4+1) =$ (3,5). Since the maximum is from R, we join l_2 and r_2 next. iii join $l_2 = (2,4)$ and $r_2 = (1,3)$: we get $(\max\{2,1\}, 4+3) =$
- (2,7).

Thus, the resulting dimensions are $\{(4,3), (3,5), (2,7)\}$.



Top Node

visit node g: Since the cut orientation is horizontal;

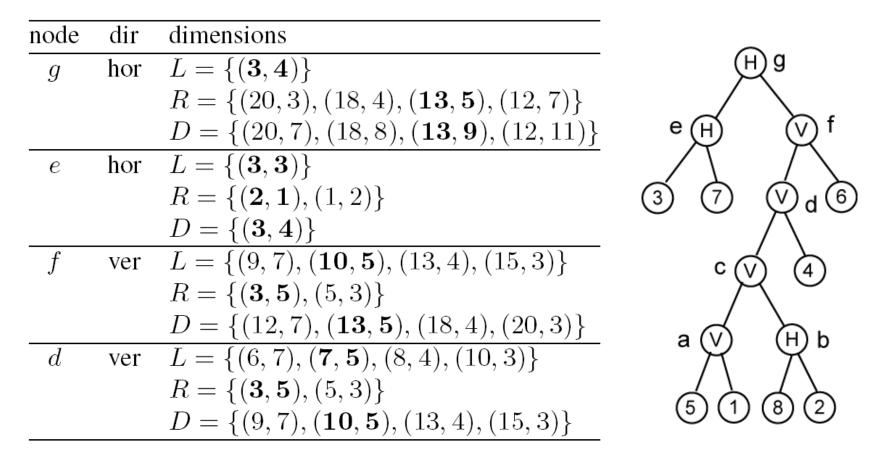
$$L = \{(3, 4)\}$$

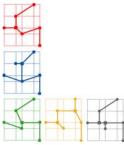
R = {(20, 3), (18, 4), (13, 5), (12, 7)}

- i join $l_1 = (3, 4)$ and $r_1 = (20, 3)$: we get $(\max\{3, 20\}, 4 + 3) = (20, 7)$. Since the maximum is from R, we join l_1 and r_2 next.
- ii join $l_1 = (3, 4)$ and $r_2 = (18, 4)$: we get $(\max\{3, 18\}, 4 + 4) = (18, 8)$. Since the maximum is from R, we join l_1 and r_3 next.
- iii join $l_1 = (3, 4)$ and $r_3 = (13, 5)$: we get $(\max\{3, 13\}, 4 + 5) = (13, 9)$. Since the maximum is from R, we join l_1 and r_4 next.
- iv join $l_1 = (3, 4)$ and $r_4 = (12, 7)$: we get $(\max\{3, 12\}, 4 + 7) = (12, 11)$.

Thus, the resulting dimensions are $\{(20, 7), (18, 8), (13, 9), (12, 11)\}$. The minimum area floorplan is $13 \times 9 = 117$.

Top-down Tree Traversal

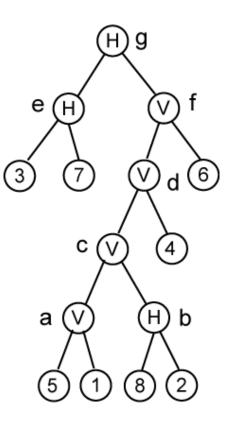


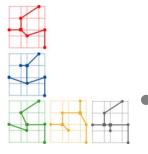


Stockmeyer Algorithm (5/7)

Top-down Tree Traversal (cont)

node	dir	dimensions
С	ver	$L = \{ (4, 4), (6, 3), (7, 2) \}$
		$R = \{(2,7), (3, 5), (4,3)\}$
		$D = \{(6,7), (7,5), (8,4), (10,3)\}$
b	hor	$L = \{(4, 2), (2, 4)\}$
		$R = \{ (3, 1), (1, 3) \}$
		$D = \{(4,3), (3,5), (2,7)\}$
a	ver	$L = \{ (2, 3), (3, 2) \}$
		$R = \{ (2, 4), (4, 2) \}$
		$D = \{(4, 4), (6, 3), (7, 2)\}$

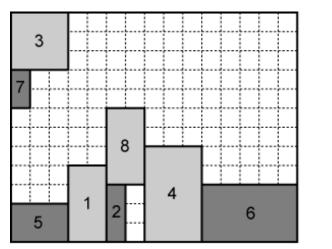


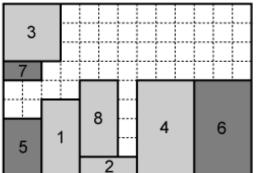


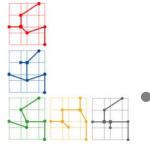
Stockmeyer Algorithm (6/7)

Final Floorplan

- 4 blocks are rotated
 - Area reduced from 15 × 12 to 13 × 9







Stockmeyer Algorithm (7/7)