# TimberWolf 7.0 Placement

- Perform TimberWolf placement
  - Based on the given standard cell placement
  - Initial HPBB wirelength = 23





Practical Problems in VLSI Physical Design

**TimberWolf Placement (1/16)** 

# First Swap

- Swap node *b* and *e* 
  - We shift node *h*: on the shorter side of the receiving row
  - Node *b* included in nets  $\{n_3, n_9\}$ , and *e* in  $\{n_1, n_7\}$



Practical Problems in VLSI Physical Design

**TimberWolf Placement (2/16)** 

# Computing $\Delta W$

#### • $\Delta W$ = wirelength change from swap

Let  $w(\boldsymbol{x})$  and  $w'(\boldsymbol{x})$  respectively denote the wirelength before and after the swap. Then,

$$\Delta(n_3) = w'(n_3) - w(n_3) = 24 - 19 = 5$$
  

$$\Delta(n_9) = w'(n_9) - w(n_9) = 26 - 19 = 7$$
  

$$\Delta(n_1) = w'(n_1) - w(n_1) = 26 - 19 = 7$$
  

$$\Delta(n_7) = w'(n_7) - w(n_7) = 28 - 28 = 0$$

Thus,

$$\Delta W = \Delta(n_3) + \Delta(n_9) + \Delta(n_1) + \Delta(n_7) = 19$$



**TimberWolf Placement (3/16)** 

# Estimating $\Delta Ws$

- $\Delta Ws =$  wirelength change from shifting
  - *h* is shifted and included in  $n_4 = \{d, h, i\}$  and  $n_7 = \{c, e, f, h, n\}$
  - h is on the right boundary of n<sub>4</sub>: gradient(h)++
  - *h* is not on any boundary of  $n_7$ : no further change on gradient(*h*)





Practical Problems in VLSI Physical Design

**TimberWolf Placement (4/16)** 

Thus, gradient(h) = 1. Since h is shifted to the right by 1

 $shift\_amount(h) = 1$ 

Thus,

$$\Delta W_S = gradient(h) \cdot shift\_amount(h) = 1 \cdot 1 = 1$$

Based on the calculation of  $\Delta W$  and  $\Delta W_S$ , we get

$$\Delta C = \Delta W + \Delta W_S = 19 + 1 = 20$$



#### Accuracy of $\Delta Ws$ Estimation

- How accurate is ΔWs estimation?
  - Node h is included in  $n_4 = \{d, h, i\}$  and  $n_7 = \{c, e, f, h, n\}$
  - Real change is also 1: accurate estimation

$$w'(n_4) - w(n_4) + w'(n_7) - w(n_7) = 20 - 19 + 28 - 28 = 1$$





**TimberWolf Placement (6/16)** 

# Estimation Model B

- Based on piecewise linear graph
  - Shifting *h* causes the wirelength of  $n_4$  to increase by 1 (19 to 20) and no change on  $n_7$  (stay at 28)





# Second Swap

- Swap node *m* and *o* 
  - We shift node *d* and *g*: on the shorter side of the receiving row
  - Node *m* included in nets  $\{n_5, n_9\}$ , and *o* in  $\{n_2, n_{10}\}$





**TimberWolf Placement (8/16)** 

# Computing $\Delta W$

•  $\Delta W$  = wirelength change from swap

$$\Delta(n_5) = w'(n_5) - w(n_5) = 12 - 11 = 1$$
  

$$\Delta(n_9) = w'(n_9) - w(n_9) = 22 - 26 = -4$$
  

$$\Delta(n_2) = w'(n_2) - w(n_2) = 7 - 14 = -7$$
  

$$\Delta(n_{10}) = w'(n_{10}) - w(n_{10}) = 23 - 23 = 0$$

Thus,

$$\Delta W = \Delta(n_5) + \Delta(n_9) + \Delta(n_2) + \Delta(n_{10}) = -10$$



# Estimating $\Delta Ws$

- Cell *d* and *g* are shifted
  - *d* is included in  $n_4 = \{d, h, i\}, n_6 = \{d, k, j\}, \text{ and } n_8 = \{d, l\}$
  - *d* is on the right boundary of  $n_6$  and  $n_8$
  - So, gradient(d) = 2



Practical Problems in VLSI Physical Design

**TimberWolf Placement (10/16)** 

- Cell *d* and *g* are shifted
  - *g* is included in  $n_1 = \{a, e, g\}$ , and  $n_9 = \{b, g, i, m\}$
  - g is on the right boundary of  $n_1$  and  $n_9$
  - So, gradient(g) = 2





Practical Problems in VLSI Physical Design

**TimberWolf Placement (11/16)** 

Both cell d and g are shifted to the right by 2. Thus,

$$\Delta W_S = gradient(d) \cdot shift\_amount(d) + gradient(g) \cdot shift\_amount(g) = 2 \cdot 2 + 2 \cdot 2 = 8$$

Based on the calculation of  $\Delta W$  and  $\Delta W_S$ , we get

$$\Delta C = \Delta W + \Delta W_S = -10 + 8 = -2$$



# Third Swap

- Swap node *k* and *m* 
  - We shift node c: on the shorter side of the receiving row
  - Node k included in nets  $\{n_3, n_6, n_{10}\}$ , and m in  $\{n_5, n_9\}$



Practical Problems in VLSI Physical Design

**TimberWolf Placement (13/16)** 

# Computing $\Delta W$

•  $\Delta W$  = wirelength change from swap

$$\Delta(n_3) = w'(n_3) - w(n_3) = 25 - 24 = 1$$
  

$$\Delta(n_6) = w'(n_6) - w(n_6) = 16 - 23 = -7$$
  

$$\Delta(n_{10}) = w'(n_{10}) - w(n_{10}) = 13 - 23 = -10$$
  

$$\Delta(n_5) = w'(n_5) - w(n_5) = 21 - 12 = 9$$
  

$$\Delta(n_9) = w'(n_9) - w(n_9) = 22 - 22 = 0$$

Thus,

$$\Delta W = \Delta(n_3) + \Delta(n_6) + \Delta(n_{10}) + \Delta(n_5) + \Delta(n_9) = -7$$



# Estimating $\Delta Ws$

- Cell *c* is shifted
  - *c* is included in  $n_3 = \{b, c, k, n\}$  and  $n_7 = \{c, e, f, h, n\}$
  - *c* is on the left boundary of  $n_3$
  - So, gradient(c) = -1





Practical Problems in VLSI Physical Design

**TimberWolf Placement (15/16)** 

Since c is shifted to the left by 1,

 $shift\_amount(c) = -1$ 

Lastly,

 $\Delta W_S = gradient(c) \cdot shift\_amount(c) = -1 \cdot -1 = 1$ 

Based on the calculation of  $\Delta W$  and  $\Delta W_S$ , we get

$$\Delta C = \Delta W + \Delta W_S = -7 + 1 = -6$$

