ECE 3060 VLSI and Advanced Digital Design

Lecture 10

Two Level Logic Minimization

Motivation

- We will study modern techniques for manipulating and minimizing boolean functions
- Issue: Tractibility of minimization problem for large number of variables
 - Exact methods
 - Heuristic methods
- Issue: Representation of boolean expressions in a form conducive to boolean operations
 - Implicant tables
 - Binary decision diagrams
- Issue: Manipulation of realistic multilevel networks
 - Graph representations
 - multilevel minimization
 - Technology mapping

Definitions

- Binary space $B = \{0, 1\}$
- Operations OR(+), AND(.), NOT
- Single output: $f:B^n \to B$
- Incompletely specified single output function:

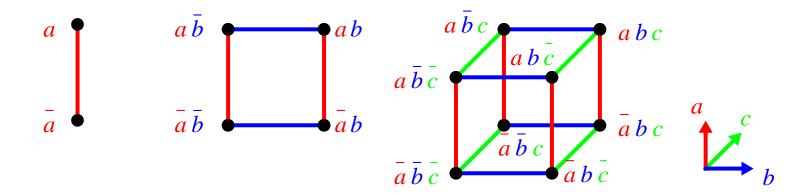
$$f:B^n \to \{0, 1, *\}$$

- Multiple output: $f:B^n \to B^m$
- Incompletely specified multiple output function:

$$f:B^n \to \{0, 1, *\}^m$$

Cube Representation

• B^n can be represented by a binary n-cube, i.e. an n-dimensional binary hypercube



- As usual, literals may be replaced with binary values,
 - **i.e.** $a\bar{b}c = 010$
- Adjacent minterms (vertices) differ in only one variable similar to K-map

Definitions

- Boolean *variable*: $a \in B$
- Boolean *literal*: a or \bar{a}
- Product or cube: product of literals
- Implicant: product term implying a value of a function (usually TRUE)
 - binary hypercube in the boolean space
- Minterm: product using all input variables implying a value of a function (usually TRUE)
 - vertex in the boolean space

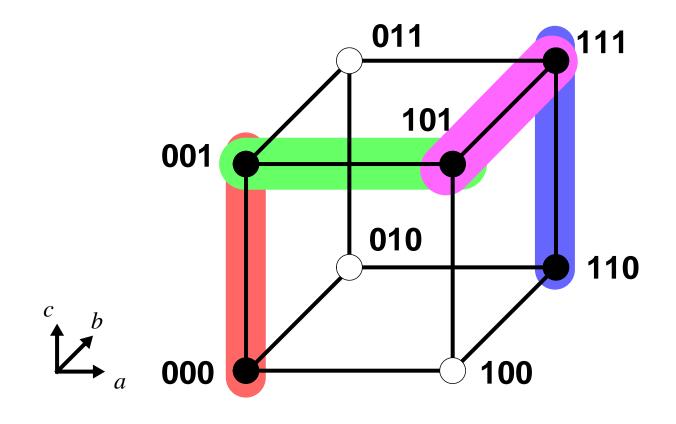
Tabular Representations

- Truth table
 - list of all minterms of a function
- Implicant table or cover
 - list of all implicants of a function sufficient to define the function
- Comment:
 - Implicant tables are smaller in size
- Example Cover

$$x = ab + \bar{a}c$$

$$y = ab + bc + ac$$

Cube Representation



•
$$F = \bar{a}\bar{b}\bar{c} + \bar{a}\bar{b}c + a\bar{b}c + abc + ab\bar{c}$$

•
$$F = \bar{a}\bar{b} + \bar{b}c + ac + ab$$

ECE 3060

Prime Definitions

- Prime implicant
 - implicant not contained by any other implicant
- Prime cover
 - cover of prime implicants
- Essential Prime Implicant (EPI):
 - there is at least one minterm covered by EPI and not covered by any other prime implicant

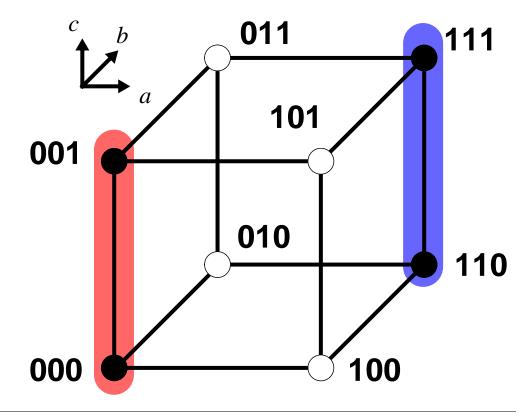
Two level logic optimization

Assumptions:

- primary goal is to reduce the number of implicants
- all implicants have the same cost
- secondary goal is to reduce the number of literals

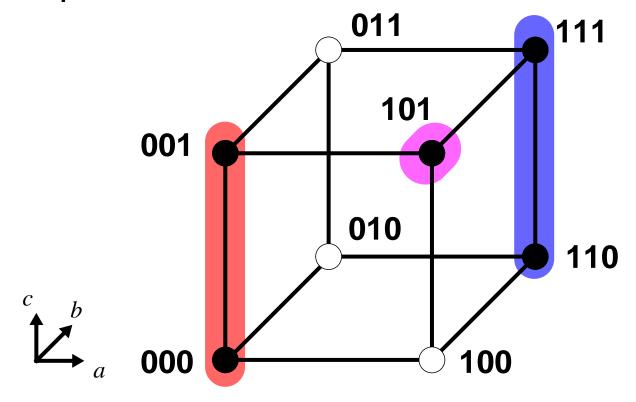
Minimum cover

- cover of the function with the minimum number of implicants
- global optimum
- f =



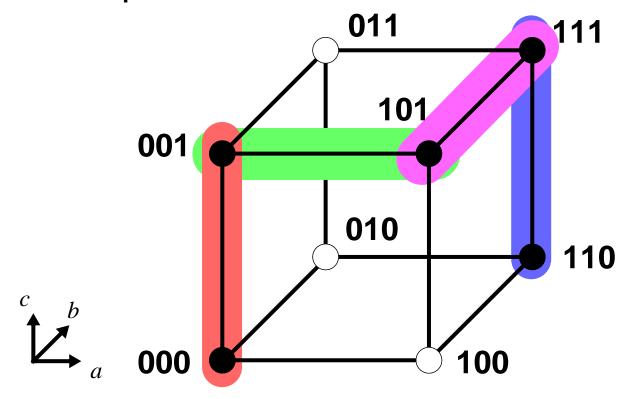
Minimal or Irredundant Cover

- Cover of the function that is not a proper superset of another cover
 - no implicant can be dropped
 - local optimum



Minimal Cover with respect to single-implicant containment

- no implicant is contained by any other implicant
- weak local optimum



Logic Minimization

- Exact methods:
 - compute minimum cover
 - often intractable for large functions
 - based on Quine-McCluskey method
- Heuristic methods:
 - Compute minimal cover (possibly minimum)
- There are a large variety of methods and programs
 - academic: MINI, PRESTO, ESPRESSO (UCBerkeley)
 - industry: Synopsys, Cadence, Mentor Graphics, Zuken

Exact Logic Minimization

Quine's theorem:

- There is a minimum cover that is prime
- Consequently, the search for minimum cover can be restricted to prime implicants

Quine-McCluskey method:

- 1. compute prime implicants
- 2. determine minimum cover via branching

Petrick's method

- 1. compute prime implicants
- 2. determine minimum cover via covering clause

Computing Prime Implicants

- The Hamming weight of a minterm is the number of ones in that minterm.
- Start with list of minterms sorted by Hamming weight.
 - 1. Combine all possible implicants (minterms) using $\alpha y + \alpha y = \alpha$. Note that this algebraic reduction specifies two implicants with Hamming weights that differ by one.
 - 2. Group resulting implicants by Hamming weight.
 - 3. Repeat 1. and 2. on the resulting implicants until no further factoring is possible (i.e. all implicants are prime)
- Example:

```
f = \overline{abcd} + \overline{abcd}+ abcd + abcd + abcd
```

Prime Implicant Table

- Rows: minterms
- Columns: prime implicants
- Exponential size: for a function $f:B^n \to B$
 - 2^n minterms
 - up to $3^n/n$ prime implicants

Example

- Function: $f = \bar{a}\bar{b}\bar{c} + \bar{a}\bar{b}c + a\bar{b}c + abc + ab\bar{c}$
 - Primes:

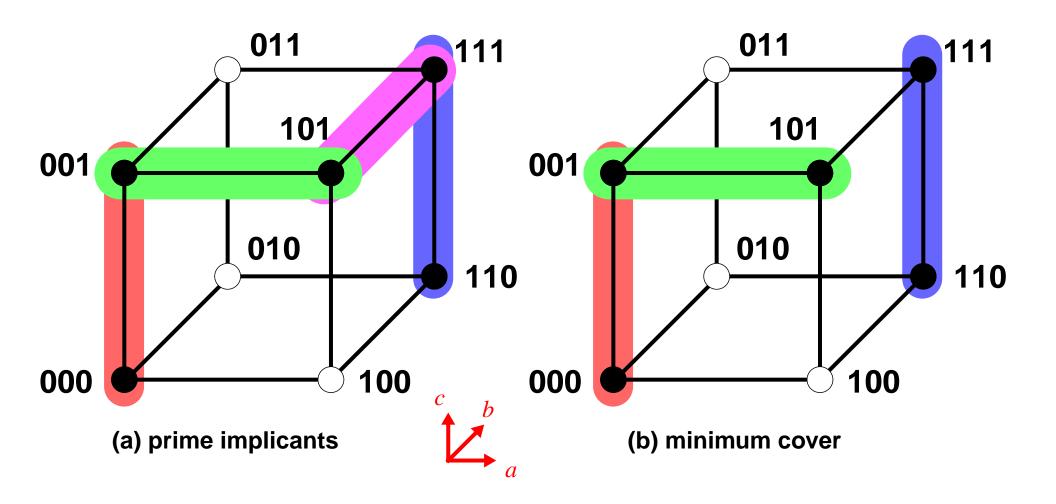
Label	PIs		
α	00*		
β	*01		
γ	1*1		
δ	11*		

Implicant Table:

Minterms	Primes			
	α	β	γ	δ
$\bar{a}\bar{b}\bar{c}$	1	0	0	0
$\bar{a}\bar{b}c$	1	1	0	0
$a\bar{b}c$	0	1	1	0
abc	0	0	1	1
$ab\bar{c}$	0	0	0	1

 Choose cover by selecting a set of implicants which cover all minterms.

Cube Representation



Petrick's Method

- Determine minimum cover via covering clause:
 - 1. Write covering clauses in *pos* form
 - 2. Multiply out *pos* form into *sop* form (and simpify).
 - 3. Select cube of minimum size
- Covering clause describes necessary and sufficient conditions to cover function
- Note: multiplying out clauses is exponential.
- Example:
 - pos clauses: $(\alpha)(\alpha + \beta)(\beta + \gamma)(\gamma + \delta)(\delta)$ (Each term covers a minterm)
 - sop clauses: $\alpha\beta\delta + \alpha\gamma\delta$
 - Covers: $\{\alpha, \beta, \delta\}$ or $\{\alpha, \gamma, \delta\}$

Exact Two-level Logic Minimization

- Matrix representation
- Covering problem
- Reduction strategies
- Branch and bound covering algorithm

Matrix representation

- View implicant table of some function f as Boolean matrix: A
 - $(a_{ij} = 1) \Rightarrow$ the ith minterm is covered by the jth prime implicant
- The (Boolean) selection vector x selects which prime implicants will be in the cover.
- To cover f, find an x which satisfies

$$y_i \ge 1 \,\forall i \qquad Ax = y$$

- i.e. select enough columns to cover all rows
- To find a minimum cover, minimize cardinality of x, i.e. the number of nonzero entries of x.

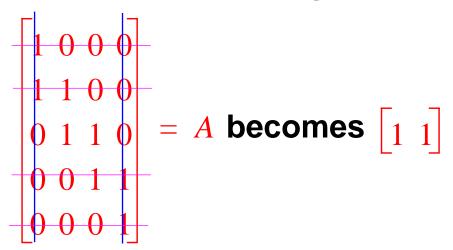
Example

• The magnitude of y_i indicates the number of prime implicants which cover the ith minterm.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Branch and Bound Algorithm

- Exact algorithm, but not polynomial time.
- First step:
- Remove Essential Prime Implicants (EPIs) which are columns incident to one (or more) row(s) with a single 1 in them.
- Modify A by removing the column and incident rows
- Example: rows 1 and 5 from previous matrix



Reduction Strategies

- Column (implicant) dominance:
 - a column i dominates column j iff, for all rows k, $a_{ki} \ge a_{kj}$

- In this example, which columns dominate?
- any *dominated* column *j* may be removed, because the implicant corresponding to column *j* is not prime

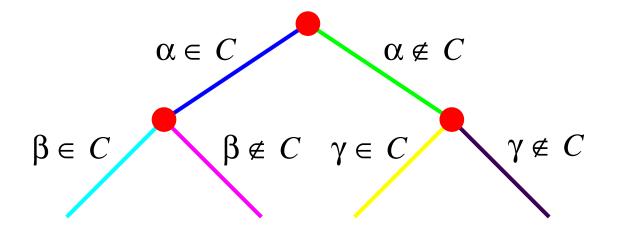
Reduction Strategies

- Row (minterm) dominance
 - a row k dominates row l iff, for all columns i $a_{ki} \ge a_{li}$

- Which rows dominate?
- a row k, which *dominates* another row l, may be removed because whichever implicant is eventually chosen to cover l will also cover k

Branching Algorithm

- Remove essential primes from consideration.
- Perform a depth-first search of remaining covers.
- Bounding algorithm used to prune search tree.



Branch and Bound Algorithm

```
EXACT_COVER(A, x, b) { /* b is current best estimate */
     Reduce matrix A and update corresponding x;
     Calculate current_estimate for this branch; /* we don't cover this */
     if (current\_estimate >= |b|) return (b);
     if (A has no rows) return (x);
      Select a branching column c;
      x_c = 1; /* this changes element c in x */
      \tilde{A} = A after deleting column c and rows incident to c;
      \tilde{x} = \text{EXACT\_COVER}(\tilde{A}, x, b);
     if (|\tilde{x}| < |b|) b = \tilde{x};
      x_{c} = 0;
     \tilde{A} = A after deleting column c;
     \tilde{x} = \text{EXACT\_COVER}(\tilde{A}, x, b):
     if (|\tilde{x}| < |b|) b = \tilde{x};
     return (b);
```

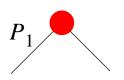
Example

• Consider
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
, $x = \begin{bmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

There are no essential primes, and no row or column dominance.

- Denote the implicants P_j and the minterms as μ_i
- Choose P_1 (i.e. c = 1)

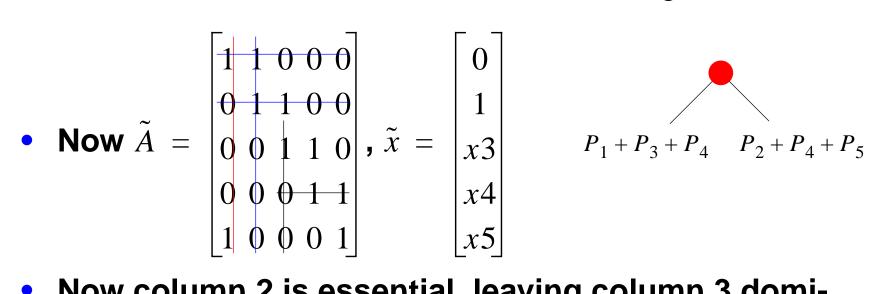
• Now
$$\tilde{A} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
, $\tilde{x} = \begin{bmatrix} 1 \\ x2 \\ x3 \\ x4 \\ x5 \end{bmatrix}$



• Columns 2 and 5 are dominated; after removing columns 2 and 5, row 3 is dominating so I_3 and I_4 covering μ_2 and μ_3 are now essential so we get

$$\tilde{A} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \ \tilde{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \text{ and since } |\tilde{x}| < |b|, \ b = x$$

Now we consider the solution without P₁



Now column 2 is essential, leaving column 3 dominated, and row 4 is dominating, leaving columns 4 and 5 as essentials.

Reading

- Read the draft chapters of Professor Mooney's book
- If you are curious, here are some advanced texts:
 - Synthesis and Optimization of Digital Circuits, Giovanni De Micheli, McGraw-Hill, 1994.
 - Logic Synthesis and Verification Algorithms, Gary Hachtel and Fabio Somenzi, Kluwer Academic Publishers, 1994.
- Obviously, if you are interested in VLSI beyond what this course presents, you may take ECE 4130.
- Also, if you are interested in synthesis beyond what this course presents, you may want to take ECE 6132 Computer-Aided VLSI System Design, a new graduate course which undergrads can take with the permission of Professor Mooney.