ECE 3060 VLSI and Advanced Digital Design

Lecture 11

Binary Decision Diagrams

Outline

- Binary Decision Diagrams (BDDs)
- Ordered (OBDDs) and Reduced Ordered (ROBDDs)
- Tautology check
- Containment check

History

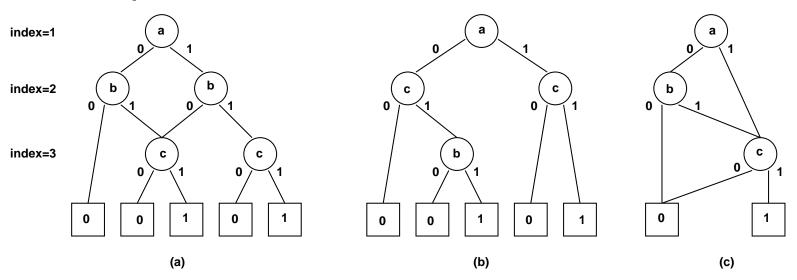
Efficient representation of logic functions

- Proposed by Lee and Akers
- Popularized by Bryant (canonical form)
- Used for Boolean manipulation
- Applicable to other domains
 - Set and relation representation
 - Formal verification
 - Simulation, finite-system analysis, ...

Definitions

- Directed Acyclic Graph (DAG)
 - vertex set V
 - edge set E (each edge has a head and tail => a direction)
 - no cycles exist in G(V,E)
- Binary Decision Diagram (BDD)
 - tree or rooted DAG where each vertex denotes a binary decision

• **Example:**
$$F = (a+b)c$$



Lecture 11–4

Definition of OBDD

• Ordered Binary Decision Diagram (OBDD)

- the tree (or rooted DAG) can be levelized, so that each level corresponds to a variable
- Implementation: each non-leaf vertex v has
 - a pointer index(v) to a variable
 - two children low(v) and high(v)
- Each leaf vertex v has a value (0 or 1)
- Ordering:
 - index(v) < index(low(v))</pre>
 - index(v) < index(high(v))</pre>

Properties of an OBDD

• Each OBDD with root v defines a function f^{v} :

- if v is a leaf with value(v) = 1, then $f^v = 1$
- if v is a leaf with value(v) = 0, then $f^v = 0$
- if v is not a leaf and index(v) = i, then $f^v = \overline{x_i} \cdot f^{low(v)} + x_i \cdot f^{high(v)}$
- OBDDs are not unique therefore a function may have many OBDDs
- The size of an OBDD depends on the variable order

Cofactor and Boolean expansion

- Function $f(x_1, x_2, ..., x_i, ..., x_n)$)
- Definition: cofactor of *f* with respect to x_i :

$$f_{x_i} = f(x_1, x_2, ..., 1, ..., x_n)$$

• Definition: cofactor of f with respect to $\overline{x_i}$:

$$f_{\overline{x_i}} = f(x_1, x_2, ..., 0, ..., x_n)$$

• Theorem: Let $f : B^n \to B$. Then

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = \overline{x_i} \cdot f_{\overline{x_i}} + x_i \cdot f_{x_i}$$

Example

- Function f = ab + bc + ac
- Cofactors:

$$f_a = b + c$$
 and $f_{\overline{a}} = bc$

• Expansion:

$$f = \bar{a} \cdot f_{\bar{a}} + a \cdot f_{a} = \bar{a}bc + a(b+c)$$

ROBDDs

- Reduced Ordered Binary Decision Diagrams have no redundant subtrees:
 - no vertex with low(v) = high(v)
 - no pair {*u*,*v*} with isomorphic subgraphs rooted in *u* and *v*
- Reduction can be achieved in time polynomial with respect to the number of vertices
- However the number of vertices may be exponential in the number of input variables
- ROBDDs can be such by construction
- An ROBDD is a canonical form
- Example: OBDD (c) on slide 4

Features

Canonical form allows us to

- verify logic equivalence in constant time
- check for tautology and perform logic operations in time proportional to the graph size
- Drawback:
 - ROBDD graph size depends heavily on variable order
- **ROBDD** size bounds
- Multiplier:
 - exponential size
- Adders:
 - exponential to linear size
- Sparse logic:
 - good heuristics exist to keep size small

Tabular representation of ROBDDs

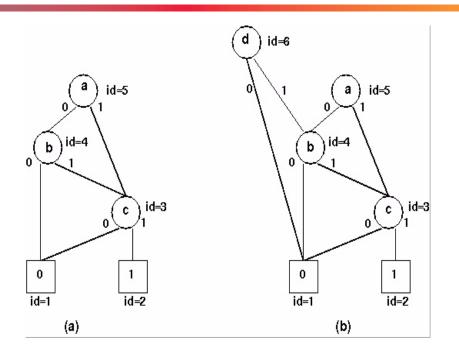
Represent multi-rooted graphs

- multiple-output functions
- multiple-level logic forms

• Unique table

- one row per vertex
- identifier
- key: (variable, left child, right child)

Example: Unique Table



Identifier	Key		
	Variable	Left Child	Right Child
6	d	1	4
5	a	4	3
4	b	1	2
3	С	1	2

Lecture 11–12

Tautology Checking

- Check if a function is always TRUE
- Recursive method:
 - expand about a variable appearing both complemented (in an implicant) and uncomplemented (in another implicant)
 - if all cofactors are TRUE then the function is a tautology
 - if any cofactor is not a tautology (i.e., not TRUE), then the function is not a tautology
- A function is a tautology iff all of it's cofactors are tautologies
- A function is a tautology iff all of the leaves of it's BDD are TRUE
- This can be accomplished by traversing the BDD

Containment Checking

- Theorem: A cover *F* contains an implicant α iff F_{α} is a tautology.
- Consequence: containment can be verified by computing the cofactor and checking if it is a tautology.
- In general, how do we compute a cofactor?

Cofactor Computation

- An arbitrary cofactor of F can be computed from a BDD of F.
- Suppose we have an ROBDD for *F* and we wish to compute F_{α} , where $\alpha = \prod_{i \in \alpha} x_i$.
- First we note that $F_{x_i x_j} = (F_{x_i})_{x_j}$ so we compute the cofactor with respect to a product of literals by considering the literals one at a time.
- Consider the cofactor wrt x_i : For each node at index *i*, trim the BDD by removing the edge associated with $\overline{x_i}$, and move the edge associated with x_i to the parent.

Example

- **Consider** $F = abc + abc + \bar{abc} + \bar{b}c$
- Construct an ROBDD for F
- Is a contained in *F*?
- Is *b* contained in *F*?
- Is \bar{c} contained in *F*?

Other Uses of BDDs

- Further uses of BDDs
- Can efficiently calculate complement

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = \overline{x_i} \cdot \overline{f_{\overline{x_i}}} + x_i \cdot \overline{f_{\overline{x_i}}}$$

- Can efficiently calculate union, intersection
- Equivalence checking

Summary: BDDs

- Used mainly in multiple-level logic minimization
- Also used in formal verification
- Very efficient algorithms:
 - most manipulations (tautology check, complementation, etc.) can be done in time polynomial in the size of the BDD