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Outline

• Binary Decision Diagrams (BDDs)
• Ordered (OBDDs) and Reduced Ordered (ROBDDs)
• Tautology check
• Containment check
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History

• Efficient representation of logic functions
• Proposed by Lee and Akers

• Popularized by Bryant (canonical form)

• Used for Boolean manipulation
• Applicable to other domains

• Set and relation representation

• Formal verification

• Simulation, finite-system analysis, ...
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Definitions

• Directed Acyclic Graph (DAG)
• vertex set V

• edge set E (each edge has a head and tail => a direction)

• no cycles exist in G(V,E)

• Binary Decision Diagram (BDD)
• tree or rooted DAG where each vertex denotes a binary decision

• Example: F a b+( )c=
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Definition of OBDD

• Ordered Binary Decision Diagram (OBDD)
• the tree (or rooted DAG) can be levelized, so that each level

corresponds to a variable

• Implementation: each non-leaf vertex v has

• a pointer index( ) to a variable

• two children low(v) and high(v)

• Each leaf vertex v has a value (0 or 1)
• Ordering:

• index(v) < index(low(v))

• index(v) < index(high(v))

v
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Properties of an OBDD

• Each OBDD with root  defines a function :

• if  is a leaf with value( ) = 1, then

• if  is a leaf with value( ) = 0, then

• if  is not a leaf and , then

• OBDDs are not unique therefore a function may have
many OBDDs

• The size of an OBDD depends on the variable order

v f v

v v f v 1=

v v f v 0=

v index v( ) i= f v xi f low v( )⋅ xi f high v( )⋅+=
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Cofactor and Boolean expansion

• Function  )

• Definition: cofactor of with respect to :

• Definition: cofactor of  with respect to :

• Theorem: Let . Then

f x1 x2 … xi … xn ), , , , ,(

f xi

f xi
f x1 x2 … 1 … xn ), , , , ,(=

f xi

f xi
f x1 x2 … 0 … xn ), , , , ,(=

f :Bn B→
f x1 x2 … xi … xn ), , , , ,( xi f xi

⋅ xi f xi
⋅+=
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Example

• Function
• Cofactors:

 and

• Expansion:

f ab bc ac+ +=

f a b c+= f
a

bc=

f a f
a

⋅ a f a⋅+ abc a b c+( )+= =
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ROBDDs

• Reduced Ordered Binary Decision Diagrams have no
redundant subtrees:

• no vertex with low( ) = high( )

• no pair { , } with isomorphic subgraphs rooted in  and

• Reduction can be achieved in time polynomial with
respect to the number of vertices

• However the number of vertices may be exponential in
the number of input variables

• ROBDDs can be such by construction
• An ROBDD is a canonical form
• Example: OBDD (c) on slide 4

v v

u v u v
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Features

• Canonical form allows us to
• verify logic equivalence in constant time

• check for tautology and perform logic operations in time
proportional to the graph size

• Drawback:
• ROBDD graph size depends heavily on variable order

• ROBDD size bounds
• Multiplier:

• exponential size

• Adders:
• exponential to linear size

• Sparse logic:
• good heuristics exist to keep size small



ECE 3060 Lecture 11–11

Tabular representation of ROBDDs

• Represent multi-rooted graphs
• multiple-output functions

• multiple-level logic forms

• Unique table
• one row per vertex

• identifier

• key: (variable, left child, right child)
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Example: Unique Table

Identifier
Key

Variable Left Child Right Child

6 d 1 4

5 a 4 3

4 b 1 2

3 c 1 2



ECE 3060 Lecture 11–13

Tautology Checking

• Check if a function is always TRUE
• Recursive method:

• expand about a variable appearing both complemented (in an
implicant) and uncomplemented (in another implicant)

• if all cofactors are TRUE then the function is a tautology

• if any cofactor is not a tautology (i.e., not TRUE), then the function
is not a tautology

• A function is a tautology iff all of it’s cofactors are tau-
tologies

• A function is a tautology iff all of the leaves of it’s BDD
are TRUE

• This can be accomplished by traversing the BDD
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Containment Checking

• Theorem: A cover contains an implicant iff is a

tautology.
• Consequence: containment can be verified by comput-

ing the cofactor and checking if it is a tautology.
• In general, how do we compute a cofactor?

F α Fα
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Cofactor Computation

• An arbitrary cofactor of  can be computed from a
BDD of .

• Suppose we have an ROBDD for  and we wish to

compute , where .

• First we note that  so we compute the

cofactor with respect to a product of literals by consid-
ering the literals one at a time.

• Consider the cofactor wrt : For each node at index ,

trim the BDD by removing the edge associated with ,

and move the edge associated with  to the parent.
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Example

• Consider

• Construct an ROBDD for

• Is  contained in ?

• Is  contained in ?

• Is  contained in ?

F abc abc ab bc+ + +=

F

a F

b F

c F
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Other Uses of BDDs

• Further uses of BDDs
• Can efficiently calculate complement

• Can efficiently calculate union, intersection
• Equivalence checking

f x1 x2 … xi … xn ), , , , ,( xi f xi
⋅ xi f xi

⋅+=
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Summary: BDDs

• Used mainly in multiple-level logic minimization
• Also used in formal verification
• Very efficient algorithms:

• most manipulations (tautology check, complementation, etc.) can
be done in time polynomial in the size of the BDD


