ECE 3060 VLSI and Advanced Digital Design

Lecture 5

Complex Gates

Example: NAND Gate (Vertical)

Example: NAND Gate (Horizontal)

Other Gates

- And Or Invert (AOI)
- Or And Invert (OAI)
- XOR
- XNOR

Complex Gates

- The gate "function" does not need to be primitive, or symmetric
- Any f(x) may be implemented
- Algorithm:
 - 1. put f(x) in form with only AND, OR, and literals (use DeMorgans).
 - 2. compute f using generalized DeMorgan's Theorem
 - 3. construct complimentary networks using transistors in series for AND, and transistors in parallel for OR
- Note: There are many correct networks due to commutivity

Euler Paths

- Mapping CMOS Circuits to Graphs
 - Circuit Nodes Map to Graph Vertices
 - Transistors Map to Graph Edges
 - Complementary Circuit Networks Map to Dual Graphs

Euler Paths

- Finding Euler Paths
 - Find All Euler Paths
 - Find an n and a p Euler Path with Identical Labeling
 - If No Identical Labeling, Break the Path Minimally

Describing an Euler Path

- While an ordered list of edges only suffice to denote an Euler path, a complete description is an ordered list of nodes and edges
- For example: Path = {V_{dd}, A, I₁, B, Out, C, V_{dd}}
- This form is useful for layout purposes

Euler Path to Layout

Map Euler Paths to CMOS Layout

- Place Busses
- Place Transistors
- Complete Wiring

Standard Cell Layout

 In general, when laying out standard cells or other custom gate designs, there may not exist a Euler Path

$\overline{(AB+CD)E}$

- Standard cells for a particular process (e.g., .35u HP CMOS) need not follow lamda spacing rules
- There are companies whose sole purpose is the creation and maintenance of standard cell libraries
- Custom layout is very time-intensive and laborious for large chips; therefore, custom layout is typically done only for critical paths
- Read Chapters 3, 4 and 7 of Wolf

[•] e.g.,

Complex Gate vs Network of Gates

• Complex gate implementation of F = ab + c + d

Complex Gate vs Network of Gates

• Network of NAND2/INV implementation

