IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999 69

Multilevel Hypergraph Partitioning:
Applications in VLS| Domain

George Karypis, Rajat Aggarwal, Vipin Kumasenior Member, IEEEand Shashi Shekhagenior Member, IEEE

Abstract—In this paper, we present a new hypergraph- During the course of VLSI circuit design and synthesis, it
partitioning algorithm that is based on the multilevel paradigm. s important to be able to divide the system specification into
In the multilevel paradigm, a sequence of successiVely o) siars 5o that the inter-cluster connections are minimized.

coarser hypergraphs is constructed. A bisection of the smallest This step h licati includina desi Kagi
hypergraph is computed and it is used to obtain a bisection of the IS Stép has many applications Including design packaging,

original hypergraph by successively projecting and refining the HDL-based synthesis, design optimization, rapid prototyping,
bisection to the next level finer hypergraph. We have developed simulation, and testing. In particular, many rapid prototyp-
new hypergraph coarsening strategies within the multilevel jng systems use partitioning to map a complex circuit onto
framework. We evaluate their performance both in terms of the |, hdreds of interconnected field-programmable gate arrays

size of the hyperedge cut on the bisection, as well as on the run , e .
time for a number of very large scale integration circuits. Our (FPGA’S). Such partitioning instances are challenging because

experiments show that our multilevel hypergraph-partitioning the timing, area, and input/output (I/O) resource utilization
algorithm produces high-quality partitioning in a relatively small must satisfy hard device-specific constraints. For example, if
amount of time. The quality of the partitionings produced by our the number of signal nets leaving any one of the clusters
scheme are on the average 6%—23% better than those produced is greater than the number of signal p-i-n’s available in the

by other state-of-the-art schemes. Furthermore, our partitioning
algorithm is significantly faster, often requiring 410 times less ~CGA then this cluster cannot be implemented using a single
time than that required by the other schemes. Our multilevel FPGA. In this case, the circuit needs to be further partitioned,
hypergraph-partitioning algorithm scales very well for large and thus implemented using multiple FPGA’s. Hypergraphs
hypergraphs. Hypergraphs with over 100000 vertices can be can be used to naturally represent a VLSI circuit. The vertices
bisected in a few minutes on today’s workstations. Also, on the of the hypergraph can be used to represent the cells of the
large hypergraphs, our scheme outperforms other schemes (in ~. . he h h
hyperedge cut) quite consistently with larger margins (9%-30%). Circuit, and the hyperedges can be used to represent the nets

connecting these cells. A high quality hypergraph-partitioning
algorithm greatly affects the feasibility, quality, and cost of
the resulting system.

Index Terms—Circuit partitioning, hypergraph partitioning,
multilevel algorithms.

[. INTRODUCTION A. Related Work

YPERGRAPH partitioning is an important problem with The problem of computing an optimal bisection of a hy-

extensive application to many areas, including very largergraph is at least NP-hard [5]. However, because of the
scale integration (VLSI) design [1], efficient storage of largénportance of the problem in many application areas, many
databases on disks [2], and data mining [3]. The problefguristic algorithms have been developed. The survey by
is to partition the vertices of a hypergraph intoroughly Alpert and Khang [1] provides a detailed description and
equal parts, such that the number of hyperedges connect@gnparison of such various schemes. In a widely used class of
vertices in different parts is minimized. A hypergraph is Herative refinement partitioning algorithman initial bisection
generalization of a graph, where the set of edges is replad@¢omputed (often obtained randomly) and then the partition
by a set of hyperedges. A hyperedge extends the notion ofignrefined by repeatedly moving vertices between the two
edge by allowing more than two vertices to be connected B@ts to reduce the hyperedge cut. These algorithms often
a hyperedge. Formally, a hypergrafih= (V, E") is defined Uuse the Schweikert—Kernighan heuristic [6] (an extension of
as a set of vertice®” and a set of hyperedgds”, where each the Kernighan—Lin (KL) heuristic [7] for hypergraphs), or the
hyperedge is a subset of the vertex ¥ef4], and the size of faster Fiduccia—Mattheyses (FM) [8] refinement heuristic, to

a hyperedge is the cardinality of this subset. iteratively improve the quality of the partition. In all of these
methods (sometimes also called KLFM schemes), a vertex is

Manuscript received Aprll 29, 1997; revised March 23, 1998. This Worh'loved (Or a vertex palr |S swapped) |f |t produces the greatest
was supported under IBM Partnership Award NSF CCR-9423082, by the

Army Research Office under Contract DA/DAAHO04-95-1-0538, and by thEeduction in the edge cuts, which is also called the gain for
Army High Performance Computing Research Center, the Department of f0ving the vertex. The partition produced by these methods

Army, Army Research Laboratory Cooperative Agreement DAAH04-95-35 often poor, especially for larger hypergraphs. Hence, these
0003/Contract DAAH04-95-C-0008. ith h b tended i b f 91-[12
G. Karypis, V. Kumar, and S. Shekhar are with the Department of Compul@lgor' ms have been extended in a number of ways [9]-{12].

Science and Engineering, Minneapolis, University of Minnesota, Minneapolis, Krishnamurthy [9] tried to introduce intelligence in the tie-

MN 55455-0159 USA. , _ o breaking process from among the many possible moves with
R. Aggarwal is with the Lattice Semiconductor Corporation, Milpitas, C’%h high . dLaok Ah A | ith

95131 USA. e same high gain. He usedLaok A eqc{L) algorit m,
Publisher Item Identifier S 1063-8210(99)00695-2. which looks ahead up to-level of gains before making

1063-8210/99$10.001 1999 IEEE

70 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

T T
Go > 6 :
N N
P
T

a move. PROP [11], introduced by Dutt and Deng, used Multilevel Graph Bisection
a probabilistic gain computation model for deciding which

vertices need to move across the partition line. These schemps/
tend to enhance the performance of the basic KLFM family of_
refinement algorithms, at the expense of increased run time.
Dutt and Deng [12] proposed two new methods, namely, CLIP

and CDIP, for computing the gains of hyperedges that contairg (
more than one node on either side of the partition boundaryf:»

CDIP in conjunction withLA3 and CLIP in conjunction with %
PROP are two schemes that have shown the best results &
their experiments.

Another class of hypergraph-partitioning algorithms
[13]-[16] performs partitioning in two phases. In the o -
first phase, the hypergraph is coarsened to form a small (f P (IP
hypergraph, and then the FM algorithm is used to bisect - '
the small hypergraph. In the second phase, these algorithms "ﬂ(jj
use the bisection of this contracted hypergraph to obtain a Inffcl Priioning Phase
bisection of the original hypergraph. Since FM refinemento- 1. 'The various ph_ases of the mul_tilevel graph bisection. During_the
. . coarsening phase, the size of the graph is successively decreased; during the
is done only on the small coarse hypergraph, this step intial partitioning phase, a bisection of the smaller graph is computed, and
usually fast, but the overall performance of such a schem@ing the uncoarsening and refinement phase, the bisection is successively
depends upon the quality of the coarsening method. In mavéz;hed as it is projected to the larger graphs. During the uncoarsening and

. efinement phase, the dashed lines indicate projected partitionings and dark
schemes, the projected partition is further improved using t id lines indicate partitionings that were produced after refinen@gtis
FM refinement scheme [15]. the given graph, which is the finest gragfi;1; is the next level coarser

Recently, a new class of partitioning algorithms was develaph of G, and vice versa(z; is the next level finer graph af; . G4
oped [17]-[20] based upon the multilevel paradigm. In theésethe coarsest graph.
algorithms, a sequence of successively smaller (coarser) grapysergraph is first converted into a graph (by replacing each
is constructed. A bisection of the smallest graph is computdtyperedge by a set of regular edges), tMETIS [21] can be
This bisection is now successively projected to the next-levéded to compute a partitioning of this graph. This technique
finer graph and, at each level, an iterative refinement algoritiwas investigated by Alpert and Khang [25] in their algorithm
such as KLFM is used to further improve the bisection. Thealled GMetis. They converted hypergraphs to graphs by
various phases of multilevel bisection are illustrated in Fig. $imply replacing each hyperedge with a clique, and then they
Iterative refinement schemes such as KLFM become quieopped many edges from each clique randomly. They used
powerful in this multilevel context for the following reasonMETIS to compute a partitioning of each such random graph
First, the movement of a single node across a partition bourithd then selected the best of these partitionings. Their results
ary in a coarse graph can lead to the movement of a large nushew that reasonably good partitionings can be obtained in
ber of related nodes in the original graph. Second, the refingdreasonable amount of time for a variety of benchmark
partitioning projected to the next level serves as an excellgsbblems. In particular, the performance of their resulting
initial partitioning for the KL or FM refinement algorithms. scheme is comparable to other state-of-the art schemes such as
This paradigm was independently studied by Bui and JoneARABOLI [26], PROP [11], and the multilevel hypergraph
[17] in the context of computing fill-reducing matrix reorderpartitioner from Hauck and Borriello [20].
ing, by Hendrickson and Leland [18] in the context of finite- The conversion of a hypergraph into a graph by replacing
element mesh-partitioning, and by Hauck and Borriello (calleshch hyperedge with a clique does not result in an equivalent
Optimized KLFM) [20], and by Cong and Smith [19] for hy-representation since high-quality partitionings of the resulting
pergraph partitioning. Karypis and Kumar extensively studiegtaph do not necessarily lead to high-quality partitionings of
this paradigm in [21] and [22] for the partitioning of graphsthe hypergraph. The standard hyperedge-to-edge conversion
They presented new graph coarsening schemes for which e{&mn assigns a uniform weight af/(|e| — 1) to each edge in
a good bisection of the coarsest graph is a pretty good biséite clique, wherde| is the size of the hyperedge, i.e., the
tion of the original graph. This makes the overall multilevehumber of vertices in the hyperedge. However, the fundamen-
paradigm even more robust. Furthermore, it allows the usetaf problem associated with replacing a hyperedge by its clique
simplified variants of KLFM refinement schemes during this that there exists no scheme to assign weight to the edges
uncoarsening phase, which significantly speeds up the refinéthe clique that can correctly capture the cost of cutting this
ment process without compromising overall qual®ETIS hyperedge [28]. This hinders the partitioning refinement algo-
[21], a multilevel graph partitioning algorithm based upon thisthm since vertices are moved between partitions depending
work, routinely finds substantially better bisections and is oftean how much this reduces the number of edges they cut in the
two orders of magnitude faster than the hitherto state-of-the-adnverted graph, whereas the real objective is to minimize
spectral-based bisection techniques [23], [24] for graphs. the number of hyperedges cut in the original hypergraph.

The improved coarsening schemedWETIS work only for Furthermore, the hyperedge-to-clique conversion destroys the
graphs and are not directly applicable to hypergraphs. If thatural sparsity of the hypergraph, significantly increasing the

refined partition

projected par1|1|qu/ —
@;\\ : />

)

(o) G

—_—

8sDU4 juswauyey pup Buussioooun

KARYPIS et al. MULTILEVEL HYPERGRAPH PARTITIONING: APPLICATIONS IN VLS| DOMAIN 71

run time of the partitioning algorithm. Alpert and Khang [25kdges without using the clique representation to transform
solved this problem by dropping many edges of the cliqubem into edges. We have developed new algorithms for both
randomly, but this makes the graph representation even I&ss phases, which, in conjunction, are capable of delivering
accurate. A better approach is to develop coarsening arety good quality solutions.

refinement schemes that operate directly on the hypergraph.

Note that the multilevel scheme by Hauck and Borriello [204 coarsening Phase

operates directly on hypergraphs and, thus, is able to perfor . . :
accurate refinement during the uncoarsening phase. Howevgbu”ng the coarsening phase, a sequence of successively
all coarsening schemes studied in [20] are edge-oriented; i; _,aller hypergraphs are constructed. As in th_e case of mul-
they only merge pairs of nodes to construct coarser grapH _veI graph bisection, the purpose of coarsening is to create

Hence, despite a powerful refinement scheme (FM with tﬁesmall hypergraph, such that a good bisection of the small

use of look-ahead.As) during the uncoarsening phase, theipyﬁ?rgr%‘ih s dn?t significa'm.tly IWr? rse thanhth:a bisCiZ(;tt_ion tdi'
performance is only as good as that of GMetis [25]. rectly oblained for the orginal hypergrapn. In adaition to
that, hypergraph coarsening also helps in successively reducing

the sizes of the hyperedges. That is, after several levels of
coarsening, large hyperedges are contracted to hyperedges that
In this paper, we present a multilevel hypergrapleonnect just a few vertices. This is particularly helpful, since
partitioning algorithm hMETIS that operates directly on refinement heuristics based on the KLFM family of algorithms
the hypergraphs. A key contribution of our work is thg6]-[8] are very effective in refining small hyperedges, but are
development of new hypergraph coarsening schemes that allquite ineffective in refining hyperedges with a large number
the multilevel paradigm to provide high-quality partitionsf vertices belonging to different partitions.
quite consistently. The use of these powerful coarseningGroups of vertices that are merged together to form single
schemes also allows the refinement process to be simplifigsttices in the next-level coarse hypergraph can be selected in
considerably (even beyond plain FM refinement), making thfifferent ways. One possibility is to select pairs of vertices with
multilevel scheme quite fast. We investigate various algorithne@mmon hyperedges and to merge them together, as illustrated
for the coarsening and uncoarsening phases which operatérofig. 2(a). A second possibility is to merge together all the
the hypergraphs without converting them into graphs. Wertices that belong to a hyperedge, as illustrated in Fig. 2(b).
have also developed new multiphase refinement schenmsally, a third possibility is to merge together a subset of the
(v- and V-cycles) based on the multilevel paradigm. Thesgertices belonging to a hyperedge, as illustrated in Fig. 2(c).
schemes take an initial partition as input and try to improvehese three different schemes for grouping vertices together
them using the multilevel scheme. These multiphase scheni@scontraction are described below.
further reduce the run times, as well as improve the solution1) Edge Coarsening (EC)The heavy-edge matching
quality. We evaluate their performance both in terms of thecheme used in the multilevel-graph bisection algorithm can
size of the hyperedge cut on the bisection, as well as on ralgo be used to obtain successively coarser hypergraphs by
time on a number of VLSI circuits. Our experiments shownerging the pairs of vertices connected by many hyperedges.
that our multilevel hypergraph-partitioning algorithm producei this EC scheme, a heavy-edge maximalatching of
high-quality partitioning in a relatively small amount of timethe vertices of the hypergraph is computed as follows. The
The quality of the partitionings produced by our schemgertices are visited in a random order. For each vetteall
are on the average 6%—23% better than those producedupynatched vertices that belong to hyperedges incident to
other state-of-the-art schemes [11], [12], [25], [26], [29are considered, and the one that is connected via the edge
The difference in quality over other schemes becomes euwgih the largest weight is matched with The weight of an
greater for larger hypergraphs. Furthermore, our partitionikglge connecting two verticesand is computed as the sum
algorithm is significantly faster, often requiring 4-10 timesf the edge weightf all the hyperedges that containand
less time than that required by the other schemes. For manyEach hyperedge of size |¢| is assigned an edge-weight of
circuits in the well-known ACM/SIGDA benchmark set [30],1/(|e| — 1), and as hyperedges collapse on each other during
our scheme is able to find better partitionings than thogearsening, their edge weights are added up accordingly.
reported in the literature for any other hypergraph-partitioning This EC scheme is similar in nature to the schemes that treat
algorithm. The remainder of this paper is organized as followe hypergraph as a graph by replacing each hyperedge with
Section Il describes the different algorithms used in the thr&e clique representation [27]. However, this hypergraph-to-
phases of our multilevel hypergraph-partitioning algorithryraph conversion is done implicitly during matching without
Section Il describes a new partitioning refinement algorithfiorming the actual graph.
based on the multilevel paradigm. Section IV compares the2) Hyperedge Coarsening (HECEven though the EC
results produced by our algorithm to those produced by earligheme is able to produce successively coarser hypergraphs,

B. Our Contributions

hypergraph-partitioning algorithms. it decreases the hyperedge weight of the coarser graph only
for those pairs of matched vertices that are connected via
II. MULTILEVEL HYPERGRAPH BISECTION a hyperedge of size two. As a result, the total hyperedge

We nQW present.the framework hMETlS: n WhIC.h the 10ne can also compute a maximum weight matching [31]; however, that
coarsening and refinement scheme work directly with hypeteuld have significantly increased the amount of time required by this phase.

72 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

(c) Modified Hyperedge Coarsening

Fig. 2. Various ways of matching the vertices in the hypergraph and the coarsening they induce. (a) In edge-coarsening, connected pairs @ vertices ar
matched together. (b) In hyperedge-coarsening, all the vertices belonging to a hyperedge are matched together. (c) In MHEC, we match together all the
vertices in a hyperedge, as well as all the groups of vertices belonging to a hyperedge.

weight of successively coarser graphs does not decrease wected using the HEC scheme, the list of hyperedges is
fast. In order to ensure that for every group of vertices thativersed again, and for each hyperedge that has not yet
are contracted together, there is a decrease in the hypereldgen contracted, the vertices that do not belong to any other
weight in the coarser graph, each such group of vertices mashtracted hyperedge are contracted together.
be connected by a hyperedge. - o

This is the motivation behind the HEC scheme. In thi§- Initial Partitioning Phase
scheme, an independent set of hyperedges is selected and tiuring the initial partitioning phase, a bisection of the
vertices that belong to individual hyperedges are contractegarsest hypergraph is computed, such that it has a small cut,
together. This is implemented as follows. The hyperedgead satisfies a user-specified balance constraint. The balance
are initially sorted in a nonincreasing hyperedge-weight ordevnstraint puts an upper bound on the difference between the
and the hyperedges of the same weight are sorted inrefative size of the two partitions. Since this hypergraph has a
nondecreasing hyperedge size order. Then, the hyperedgessarg small number of vertices (usually less than 200), the time
visited in that order, and for each hyperedge that connedtsfind a partitioning using any of the heuristic algorithms tends
vertices that have not yet been matched, the vertices @wéhe small. Note that it is not useful to find an optimal partition
matched together. Thus, this scheme gives preference to dfethis coarsest graph, as the initial partition will be sub-
hyperedges that have large weight and those that are of snsadntially modified during the refinement phase. We used the
size. After all of the hyperedges have been visited, the groufa$lowing two algorithms for computing the initial partitioning.
of vertices that have been matched are contracted together t@he first algorithm simply creates a random bisection such
form the next level coarser graph. The vertices that are rtbat each part has roughly equal vertex weight. The second
part of any contracted hyperedges are simply copied to thkjorithm starts from a randomly selected vertex and grows a
next level coarser graph. region around it in a breadth-first fashion [22] until half of the

3) Modified Hyperedge Coarsening (MHECThe HEC vertices are in this region. The vertices belonging to the grown
algorithm is able to significantly reduce the amount afegion are then assigned to the first part, and the rest of the
hyperedge weight that is left exposed in successively coarsertices are assigned to the second part. After a partitioning is
graphs. However, during each coarsening phase, a majottnstructed using either of these algorithms, the partitioning
of the hyperedges do not get contracted because vertices thatfined using the FM refinement algorithm.
belong to them have been contracted via other hyperedgesSince both algorithms are randomized, different runs give
This leads to two problems. First, the size of many hyperedgssiutions of different quality. For this reason, we perform a
does not decrease sufficiently, making FM-based refinemeantall number of initial partitionings. At this point, we can
difficult. Second, the weight of the vertices (i.e., the numbeelect the best initial partitioning and project it to the original
of vertices that have been collapsed together) in successivieyypergraph, as described in Section II-C. However, the parti-
coarser graphs becomes significantly different, which distotiening of the coarsest hypergraph that has the smallest cut may
the shape of the contracted hypergraph. not necessarily be the one that will lead to the smallest cut in

To correct this problem, we implemented a MHEC schentbe original hypergraph. It is possible that another partitioning
as follows. After the hyperedges to be contracted have begfithe coarsest hypergraph (with a higher cut) will lead to a bet-

KARYPIS et al. MULTILEVEL HYPERGRAPH PARTITIONING: APPLICATIONS IN VLS| DOMAIN 73

ter partitioning of the original hypergraph after the refinement We have implemented two different partitioning refinement
is performed during the uncoarsening phase. For this reasalgorithms. The first is the FM algorithm [8], which repeatedly
instead of selecting a single initial partitioning (i.e., the onmoves vertices between partitions in order to improve the cut.
with the smallest cut), we propagate all initial partitionings. The second algorithm, called hyperedge refinement (HER),
Note that propagation of initial partitionings increases moves groups of vertices between partitions so that an entire
the time during the refinement phase by a factor.ofhus, hyperedge is removed from the cut. These algorithms are
by increasing the value af we can potentially improve the further described in the remainder of this section.
quality of the final partitioning at the expense of higher run 1) FM: The partitioning refinement algorithm by Fiduccia
time. One way to dampen the increase in run time due &amd Mattheyses [8] is iterative in nature. It starts with an initial
large values ofi is to drop unpromising partitionings as thepartitioning of the hypergraph. In each iteration, it tries to find
hypergraph is uncoarsened. For example, one possibility issigbsets of vertices in each partition, such that moving them to
propagate only those partitionings whose cuts are wittditn other partitions improves the quality of the partitioning (i.e.,
of the best partitionings at the current level. If the valueé the number of hyperedges being cut decreases) and this does
sufficiently large, then all partitionings will be maintained andot violate the balance constraint. If such subsets exist, then
propagated in the entire refinement phase. On the other haihé, movement is performed and this becomes the partitioning
if the value ofz is sufficiently small then, on average, onlyfor the next iteration. The algorithm continues by repeating
one partitioning will be maintained, as all other partitioningthe entire process. If it cannot find such a subset, then the
will be eliminated at the coarsest level. For moderate valuesagorithm terminates since the partitioning is at a local minima
z, many partitionings may be available at the coarsest gramd no further improvement can be made by this algorithm.
but the number of such available partitionings will decreaseln particular, for each vertexv, the FM algorithm
as the graph is uncoarsened. This is useful for two reasoasmputes thegain, which is the reduction in the hyperedge
First, it is more important to have many alternate partitioningsut achieved by moving to the other partition. Initially all
at the coarser levels, as the size of the cut of a partitioningwartices areunlocked i.e., they are free to move to the other
a coarse level is a less accurate reflection of the size of {b&rtition. The algorithm iteratively selects an unlocked vertex
cut of the original finest level hypergraph. Second, refinementwith the largest gain (subject to balance constraints) and
is more expensive at the fine levels, as these levels contaioves it to the other partition. When a vertexis moved,
far more nodes than the coarse levels. Hence, by choosingitais locked and the gain of the vertices adjacenttoare
appropriate value of, we can benefit from the availability updated. After each vertex movement, the algorithm also
of many alternate partitionings at the coarser levels and ave#tords the size of the cut achieved at this point. Note that
paying the high cost of refinement at the finer levels by keepitige algorithm does not allow locked vertices to be moved
fewer candidates on average. since this may result in thrashing (i.e., repeated movement
In our experiments, as reported in this paper, we firof the same vertex). A single pass of the FM algorithm
ten initial partitionings at the coarsest graph, and we dremds when there are no more unlocked vertices (i.e., all the
all partitionings whose cut is 10% worse than the best cugrtices have been moved). Then, the recorded cut sizes are
at that level. This allows us to both filter out the reallychecked, and the point where the minimum cut was achieved
bad partitionings (and thus reduce the amount of time spéstselected, and all vertices that were moved after that point
in refinement) and at the same time keep more than juse moved back to their original partition. Now, this becomes
one promising partitioning (so as to improve the overathe initial partitioning for the next pass of the algorithm.
partitioning quality). In our experiments, we have seen thg¥ith the use of appropriate data structures, the complexity
by keeping ten partitionings, we can reduce the cut on tbé each pass of the FM algorithm &(|E"|) [8].
average by 3%-4%, whereas the partitioning time increasesor refinement in the context of multilevel schemes, the
only by a factor of two. Computing and propagating moritial partitioning obtained from the next level coarser graph is
partitionings does not further reduce the cut significantly. lactually a very good partition. For this reason, we can make a
our experiments, keeping 20 partitionings further reduces thember of optimizations to the original FM algorithm. The first
cut by a factor less than 0.5%, on the average. Increasing tgimization limits the maximum number of passes performed
value of parameter (from 10% to a higher value such as 20%py the FM algorithm to only two. This is because the greatest
did not significantly improve the quality of the partitioningsreduction in the cut is obtained during the first or second
although it did increase the run time. pass and any subsequent passes only marginally improve
the quality. Our experience has shown that this optimization
significantly improves the run time of FM without affecting
During the uncoarsening phase, a partitioning of the coardbe overall quality of the produced partitionings. The second
hypergraph is successively projected to the next-level fineptimization aborts each pass of the FM algorithm before
hypergraph, and a partitioning refinement algorithm is usedtually moving all the vertices. The motivation behind this is
to reduce the cut set (and thus to improve the quality of tlieat only a small fraction of the vertices being moved actually
partitioning) without violating the user specified balance cohead to a reduction in the cut and, after some point, the cut
straints. Since the next-level finer hypergraph has more degrémsds to increase as we move more vertices. When FM is
of freedom, such refinement algorithms tend to improve tlapplied to a random initial partitioning, it is quite likely that
solution quality. after a long sequence bdfid moves, the algorithm will climb

C. Uncoarsening and Refinement Phase

74 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

oUu
-0

b
'
b
i
i
i
I
i
t
!
i
i
i

i
b
t
'
I
i
i

(a) (b} (c)

Fig. 3. Effect of restricted coarsening(a) Example hypergraph with a given partitioning with the required balance of 40/60. (b) Possible condensed
version of (a). (c) Another condensed version of a hypergraph.

out of a local minima and reach to a better cut. However, andb to be compressed in the HEC phase and then selecting
the context of a multilevel scheme, a long sequence of cyiairs of nodeg4, 5), (6, 7), and(8,9) to be compressed in the
increasing moves rarely leads to a better local minima. Forodified HEC phase. Similarly, the version shown in Fig. 3(c)
this reason, we stop each pass of the FM algorithm as sdsnobtained by selecting hyperedgeto be compressed in
as we have performedl vertex moves that did not improvethe HEC phase and then selecting pairs of nod@e§) and
the cut. We choosé to be equal to 1% of the number of(8,9) to be compressed in the MHEC phase. In the version
vertices in the graph we are refining. This modification to FMyf Fig. 3(b), vertexA(4,5) can be moved from partitiody
calledearly-exit FM (FM-EE), does not significantly affect theto P, to reduce the hyperedge cuts by 1, but in Fig. 3(c), no
quality of the final partitioning, but it dramatically improvesvertex can be moved to reduce the hyperedge cuts.
the run time (see Section 1V). What this example shows is that, in a multilevel setting, a
2) HER: One of the drawbacks of FM (and other similagiven initial partitioning of a hypergraph can be potentially
vertex-based refinement schemes) is that it is often unabéfined in many different ways depending upon how the
to refine hyperedges that have many nodes on both sidesrsening is performed. Hence, a partitioning produced by
of the partitioning boundary. However, a refinement schenaemultilevel partitioning algorithm can be potentially further
that moves all the vertices that belong to a hyperedge cagfined if the two partitions are again coarsened in a manner
potentially solve this problem. Our HER works as followsdifferent from the previous coarsening phase (which is easily
It randomly visits all the hyperedges and, for each one tha@bne given the random nature of all of the coarsening schemes
straddles the bisection, it determines if it can move a subsetdefscribed here). The power of iterative refinement at different
the vertices incident on it, so that this hyperedge will beconmarsening levels can also be used to develop a partitioning
completely interior to a partition. In particular, consider aefinement algorithm based on the multilevel paradigm. The
hyperedgee, which straddles the partitioning boundary, anitlea behind thismultiphase refinementalgorithm is quite
let V? and V! be the vertices ot that belong to partition 0 simple. It consists of two phases, namely a coarsening and an
and partition 1, respectively. Our algorithm computes the gaimcoarsening phase. The uncoarsening phase of the multiphase
go—1, Which is the reduction in the cut achieved by movingefinement algorithm is identical to the uncoarsening phase
the vertices inV’? to partition 1, and the gaip; .o, which is of the multilevel hypergraph-partitioning algorithm described
the reduction in the cut achieved by moving the verticegin in Section 1I-C. The coarsening phase, however, is somewhat
to partition 0. Now, depending on these gains and subjectdifferent, as it preserves the initial partitioning that is input
balance constraints, it may move one of the two $&ter V!. to the algorithm. We will refer to this as theestricted
In particular, if go_1 is positive andgo_1 > g1—0, it Moves coarseningscheme. Given a hypergragh and a partitioning
V2, and if g1 is positive andg; ¢ > go1, it movesV!. P, during the coarsening phase, a sequence of successively
coarser hypergraphs and their partitionings is constructed. Let
(H;, P,)fori=1, 2, ---, m, be the sequence of hypergraphs
and partitionings. Given a hypergragh and its partitioning
Although the multilevel paradigm is quite robust, random#;, restricted coarsening will collapse vertices together that
ization is inherent in all three phases of the algorithm. Ibelong to only one of the two partitions. That is,Afand B
particular, the random choice of vertices to be matched in thee the two partitions, we only collapse together vertices that
coarsening phase can disallow certain hyperedge cuts, redudaitger belong to partitiord or partition B. The partitioning
refinement in the uncoarsening phase. For example, considkr; of the next level coarser hypergragh ., is computed
the example hypergraph in Fig. 3(a) and its two possible cooy simply inheriting the partition fronH;. For example, if
densed versions [Fig. 3(b) and (c)] with the same partitioning.set of verticeqv, v2, v} from partition A are collapsed
The version in Fig. 3(b) is obtained by selecting hyperedgedogether to form vertex:; of H;,;, then vertexu; belong

I1l. M ULTIPHASE REFINEMENT WITH
RESTRICTED COARSENING

KARYPIS et al. MULTILEVEL HYPERGRAPH PARTITIONING: APPLICATIONS IN VLS| DOMAIN 75

to partition A as well. By constructingd;; and F;y; in TABLE |

this way, we ensure that the number of hyperedges cut by CHARACTERISTICS OF THEV ARIOUS HYPERGRAPHSUSED TO EVALUATE
S .. . THE MULTILEVEL HYPERGRAPH PARTITIONING ALGORITHMS

the partitioning is identical to the number of hyperedges cut

by P, in H;. The set of vertices to be collapsed together in E;’;Chma’k No. (’f"emgg‘; No. thypered%;
this restricted coarsening scheme can be selected by using any p! 833 902
of the coarsening schemes described in Section II-A, namely, bm1 882 903
edge coarsening, hyperedge coarsening, or modified hyperedge " o o8
coarsening. Due to the randomization in the coarsening phase, 2 1663 1720
successive runs of the multiphase refinement algorithm can t6 1752 1541
lead to additional reductions in the hyperedge cut. Thus, the i ;_23? ggg
multiphase refinement algorithm can be performed iteratively. 19ks 2844 3282
Note that during the refinement phase, we only propagate p2 3014 3029
a single partitioning; thus, multiphase refinement is quite ;?fiid gg?ﬁ 231‘2‘
fast. In the context of our multilevel hypergraph-patrtitioning 513207 8772 8651
algorithm, this new multiphase refinement can be used in a ;‘;jf:t?yz }ggg igi?g
number of ways. In the remainder of this section, we describe industry3 15406 21923
three such approaches. $35932 18148 17828
1) V-Cycle: In this scheme, we take the best solution :3255;“ e o
obtained from the multilevel partitioning algorithn®y) and 38417 23849 23843
we improve it using multiphase refinement repeatedly. We stop avq large 25178 25384
golem3 103048 144949

the multiphase refinement when the solution quality cannot be
improved further. The number of multiphase refinement steps
performed is problem dependent and, in general, it increased/¥s performed all of our experiments on an SGI Challenge
the size of the hypergraph increases. This is due to the lar¢fedt has MIPS R10000 processors running at 200 MHz, and
solution space of the large hypergraphs. all of the reported run times are in seconds. All of the reported
2) v-Cycle: Our experience with the multilevel partitioningPartitioning results were obtained by forcing a 45-55 balance
algorithm has shown that refining multiple solutions is excondition.
pensive, especially during the final uncoarsening levels whenAs discussed in Sections II-A, 1I-B, and II-C, there are
the size of the contracted hypergraphs is large. One way &Ny alternatives for each of the three different phases of
reduce the high cost of refining multiple solutions during th@ multilevel algorithm. Due to space limitations, we are not
final uncoarsening levels is to select the best partitioning @le to provide a comprehensive comparison of the various
some point in the uncoarsening phase and further refine oﬁ@,rametel’s. However, this Comparison can be found in the full
this best partitioning using multiphase refinement. This is tf@rsion of this paper, which is available on the World Wide
idea behind the-cycle refinement. In particular, Iéf,, , be Web at: http//www.cs.umn.edu/karypis/publications.
the coarse hypergraph at the midpoint betwégn (original In the remainder of this section, we present comparisons of
hypergraph) andd,,, (coarsest hypergraph). Lé,, » be the our scheme with other partitioning schemes available in the
best partitioning atH,, ». We then use K,,/», P,./») as literature.
the input to multiphase refinement. Sinég,, /, is relatively . . o .
small, as compared tdl,,, multiphase refinement converged\. Comparison with Other Partitioning Algorithms
in a small number of iterations. By usingcycles, we can To compare the performance of the bisections produced
significantly reduce the amount of time spent in the refineme our multilevel hypergraph bisection and multiphase re-
phase, especially for large hypergraphs. However, the ovefiidlement algorithms, both in terms of bisection quality and
quality can potentially decrease because we may have Agh time, we created Table Il. Table Il shows the sizes of the
picked up the best overall partitioning &t,, .. hyperedge cuts produced by our algorithETIS) and
3) vV-Cycle: We can combine botW -cycles and-cycles those reported by various previously developed hypergraph
in the algorithm to obtain high-quality partitioning in a smalbjsection algorithms. In particular, Table Il contains results
amount of time. In this scheme, we useycles to partition for the following algorithms: PROP [11[;DIP — LA3; and
the hypergraph followed by the-cycles to further improve CLIP — PROP, [12], Optimized KLFM (scheme by Hauck
the partition qualityV'-cycles used in this way are particularlyand Borriello [20]), GMetis [25], PARABOLI [26], and GFM
effective in significantly improving the hyperedge cut. [32]. Note that for certain circuits, there are missing results
for some of the algorithms. This is because no results were
reported for these circuits. The column labeled “Best” shows
the minimum cut obtained for each circuit by any of the earlier
We experimentally evaluated the quality of the bisectioragorithms. Essentially, this column represents the quality that
produced by our multilevel hypergraph-partitioning algorithrwvould have been obtained if all of the algorithms had been
on a large number of hypergraphs that are part of the widelyn and the best partition was selected.
used ACM/SIGDA circuit partitioning benchmark suite [30]. The last four columns of Table Il shows the partitionings
The characteristics of these hypergraphs are shown in Tableroduced by our multilevel hypergraph bisection and refine-

IV. EXPERIMENTAL RESULTS

76 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

TABLE I
PERFORMANCE OF OURMULTILEVEL HYPERGRAPH BISECTION ALGORITHM (hMETIS) AGAINST VARIOUS PREVIOUSLY DEVELOPED ALGORITHMS

Benchmark | PROP [CDIP- CLIP- PARABOLI GFM GMetis Opt. Best | DMENS- | AMENS- | hMENS- [hMENS-

LA3; | PROP KLFM EEy FMy EEigyv | FMagyy
balu 27 27 27 41 27 27 - 27 27 27 27 27
pl 47 47 51 53 47 47 - 47 52 50 49 49
bml 50 47 47 - - 48 - 47 51 51 51 51
4 52 48 52 - - 49 - 48 51 51 48 48
3 59 57 57 - - 62 - 57 58 58 59 58
2 90 89 87 - - 95 - 87 91 88 92 88
t6 76 60 60 - - 94 - 60 62 60 63 60
struct 33 36 33 40 41 33 - 33 33 33 33 33
tS 79 74 77 - - 104 - 74 71 7 71 71
19ks 105 104 104 - - 106 - 104 107 106 106 105
p2 143 151 152 146 139 142 - 139 148 145 148 145
§9234 41 44 42 74 41 43 45 41 40 40 40 40
biomed 83 83 84 135 84 102 - 83 83 83 83 83
$13207 75 69 71 91 66 74 62 62 55 55 61 53
515850 65 59 56 91 63 53 46 46 42 42 42 42
industry2 220 182 192 193 211 177 - 177 174 167 169 168
industry3 - 243 243 267 241 243 - 241 255 254 252 241
$35932 - 73 42 62 41 57 46 41 42 42 42 42
538584 - 47 51 55 47 53 52 47 47 47 48 48
avg.small - 139 144 224 - 144 - 139 136 130 128 127
838417 - 74 65 49 81 69 - 49 52 51 54 50
avq.large - 137 143 139 - 145 - 137 129 127 134 127
golem3 - - - 1629 - 2111 - 1629 1447 1445 1425 1424
Sum of Hyperedge-cuts
5 circuits 251 237 226 226 233 225
13 circuits 1129 1033 1050 1036 1048 1021
16 circuits 1245 1132 1145 1127 1142 i121
16 circuits 3289 2938 2762 2738 2735 2699
22 circuits 1890 1880 1786 1806 1778 1800 1756
23 circuits 4078 3415 3253 3223 3225 3180
hMENS Quality improvement
EEy 6.2% 5.3% 4.1% 21.4% 7.8% 10.0% 9.9% 0.3%
FMy 7.2% 6.4% 5.2% 22.4% 8.7% 11.0% 9.9% 1.4% 1.1%
EE 0uy 6.4% 5.4% 1% 213% 7.5% i0i% | 76% | 03% | 01% 1.2%
FMaouv 7.9% 73% 6.1% 231% 9.4% 119% | 101% | 23% 2.0% 0.9% 2.0%
Runtime Comparison. The times are in seconds on the specified machines
Sparc5 | Sparc5 Sparc5 Dec3000 Sparcl0 Sparc5 Sparc SGI SGI SGI SGI
S00AXP IPX R10000 R10000 R10000 R1000C
5 circuits 5606 95 125 62 180
13 circuits 46376 283 390 173 508
16 circuits 2383 158 224 103 303
16 circuits 37570 874 1593 382 1442
22 circuits 15850 16206 445 637 249 733
23 circuits 3357 913 1654 409 1513

ment algorithms. In particular, the column labelddMETIS- algorithm, as well as the percentage improvement in the cut
EE;q” corresponds to the best partitioning produced from 2&chieved by our algorithms over previous algorithms. This
runs of our multilevel algorithm that uses FM-EE duringut improvement was computed as the average improvement
refinement. Of these 20 runs, ten runs used HEC and tem a circuit-by-circuit level. Looking at these results, we see
runs used MHEC. The column labeledMETIS-FMso” cor- that all four of our algorithms produce partitionings whose
responds to the best partitioning produced from 20 runs wheuality is better than that produced by any of the previous
FM is used during refinement and coarsening is performathorithms. In particularhMETIS-EE 5 is 4.1% better than
similarly to “hMETIS-EE »,.” In both of these schemes, weCLIP — PROP, 5.3% better tha@DIP — LA, 6.2% better
used random initial partitionings during the initial partitioninghan PROP, 7.8% better than GFM, 9.9% better than Opti-
phase. mized KLFM, 10.0% better than GMetis, and 21.4% better
The column labelecdhMETIS-EE 14,1 corresponds to the than PARABOLI. If all of these algorithms are considered
best partitioning produced from ten runs of our multilevel patogether, h METIS-EE 5 is still better by 0.3%. Comparing
titioning algorithm that uses thel -cycle refinement scheme.hMETIS-EE 55 with hMETIS-FMoo, we see thahMETIS-
These results were obtained using the MHEC and EE-FRMy is about 1.1% better thahMETIS-EE 59, and about
for refinement. Finally, the column label&METIS-FMyg,,v 1.4% better than all of the previous schemes combined. In
corresponds to the best partition produced from 20 runs thggrticular, hMETIS-FMo was able to improve the best-known
use thewV-cycles refinement scheme. Out of these runbijsections for eight out of the 23 test circuits.
ten used HEC and ten used MHEC for coarsening; and theLooking at the quality of the partitionings produced by
refinement was done using FM. the two schemes that use the multilevel hypergraph refine-
To make the comparison with previous algorithms easienent @V -cycles), we see that these schemes are able to
we computed the total number of hyperedges cut by eapfoduce very good results. In particulaMETIS-FMsq,v is

KARYPIS et al. MULTILEVEL HYPERGRAPH PARTITIONING: APPLICATIONS IN VLS| DOMAIN v

=3 CDIP-LA3 CLIP-PROP PARABOLI GMetis

pt. KLFM —— hMETIS (baseline)

Relative Hyperedge Cut

>
&
(éb‘o
&

Fig. 4. The relative performance BMETIS-FMy,,vv compared to rest of the schemes on the large benchmarks (with 10 K or more nodes).

about 2.0% better thahMETIS-EE 5o and 0.9% better that V. CONCLUSIONS AND FUTURE WORK
hMETIS-FMzo. hMETIS-FMao,v- seems to be the overallbest ag the experiments in Section IV show, the multilevel

scheme, producing partitionings whose quality is better th@aradigm is very successful in producing high-quality hyper-
any of the previous schemes and 2.3% better that the “Besjraph partitionings in a relatively small amount of time. The
The last sub-table of Table Il shows the total amount @hultilevel paradigm is successful for the following reasons.
time required by the various partitioning algorithms. These rurhe coarsening phase is able to generate a sequence of
times are in seconds on the respective architectures. Becawasergraphs that are good approximations of the original
of the difference in central processing unit (CPU) speed laypergraph. The initial partitioning algorithm is then able
the various machines, it is hard to make direct comparisons. find a good partitioning by essentially exploiting global
However, we tested our code on Sparc5 and we found thatnformation of the original hypergraph. Finally, the iterative
requires about four times more time than when it is runningfinement at each uncoarsening level is able to significantly
on R10000. Taking into consideration a scaling factor of foulnprove the partitioning quality because it moves successively
we see that botlMETIS-EE 5o and hMETIS-FM, require Smaller subsets of vertices between the two partitions. Thus,
less time than either PROR,DIP — LA ;, CLIP — PROP;, in the multilevel paradigm, a good coarsening scheme results
PARABOLI, or GFM. In particular, \METIS-EE,, is IN @ coarse graph that provides a global view that permits
about four times faster than PROP, nine times faster th@@mputations of a good initial partitioning, and the iterative
CDIP — LA, and CLIP — PROP,, and much faster than refinement performed during the uncoarsening phase provides
PARABOLI, GFM and Optimized KLFM. Compared to@ local vievx_/ to further improve th(_a_qu_ality of th_e partitioning.
GMetis, we see thatMETIS-EE s, requires roughly the same Th(_a mu_ItlleveI hypergraph—partltlonl_ng algorithm presen_ted
time, whereashMETIS-FMo is about twice as slow. Note _here is qw_te fast and robust. Evc—_zn a ;mgle run of the algorithm
that GMetis runaVIETIS 100 times on each graph, but each oF able to find reasonably good bisections. With a small number

these runs is substantially faster tHaETIS, partly because ?r:;ﬁ?ﬁégegfoir?()j S u;ﬁlgzs::)r:}s'f izlgvﬁ g?do?ifrt,tri;bfgfgfnns
METIS is a highly optimized code for graphs, and partl yaip y 9 y

) ! art¥%t the well-known benchmarks.
because coarsening gnd refinement on hypergraphs IS MOrg, algorithm scales quite well for large hypergraphs. Due
complex than the refinement schemes usedVilBTIS for , yhe multilevel paradigm, the number of runs required
graphs. However, bothMETIS-EE o and hMETIS-FMz0 ¢4 optain high-quality bisections does not increase as the
produce blgect|ons that cut substantially fewer hyperedg§se of the hypergraph increases. High-quality bisections of
than GMetis. hypergraphs with over 100000 vertices are obtained in a
Looking at the amount of time required BYMETIS- few minutes on today’s workstations. Also, since the coars-
EEo,v and hMETIS-FMz.1, we see that, by using mul-ening phase runs in time proportional to the size of the
tiphase refinement, we were in general able to further reduggpergraph, the run time of the scheme increases linearly
the amount of time required by our partitioning algorithms. lwith hypergraph size. Furthermore, the scheme appears to
particular, n\METIS-EE 14, requires only 409 s to partition be more powerful relative to the other schemes for larger
all 23 circuits, whereaBMETIS-FMsq, requires 1513 s. hypergraphs (refer to Fig. 4). Restricting our comparisons to

78 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

[15]

ing and sparse matrix ordering system,” Dept. Computer Sci., Univ.
Minnesota, Tech. Rep. 97-061, 1997.

G. Karypis and V. Kumar, “A fast and highly quality multilevel scheme
for partitioning irregular graphs SIAM J. Sci. Computtp be published.

A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices
with eigenvectors of graphsSIAM J. Matrix Analysis Applicatyol.

11, no. 3, pp. 430-452, 1990.

S. T. Barnard and H. D. Simon, “A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems,” in
Proc. 6th SIAM Conf. Parallel Processing Sci. Computia§93, pp.
711-718.

C. Alpert and A. Kahng, “A hybrid multilevel/genetic approach for cir-
cuit partitioning,” in Proc. 5th ACM/SIGDA Physical Design Workshop,
1996, pp. 100-105.

B. M. Riess, K. Doll, and F. M. Johannes, “Partitioning very large
circuits using analytical placement techniques,” Rroc. ACM/IEEE
Design Automation Conf1994, pp. 646—651.

T. Lengauer, Combinatorial Optimization: Networks and Matroids.
New York: Holt, Rinehart and Winston, 1976.

E. Ihler, D. Wagner, and F. Wagner, “Modeling hypergraphs by graphs
with the same mincut propertiesiitfo. Process. Lett.yol. 45, no. 4,

pp. 171-175, Mar. 1993.

J. Li, J. Lillis, and C. K. Cheng, “Linear decomposition algorithm for
VLSI design applications,” inProc. IEEE Int. Conf. Computer-Aided
Design, 1995, pp. 223-228.

F. Brglez, “ACM/SIGDA design automation benchmarks: Catalyst or
anathema?,1EEE Design & Testyol. 10, no. 3, pp. 87-91, 1993.

only the larger hypergraphs (with 10 K or more nodes) in4] C. Berge, Graphs and Hypergraphs.Amsterdam, The Netherlands:
the benchmark set, we find thaMETIS-FMao,y performs 5 l\E/Ilsg\nggrg?a%d D. S. Johnso@pmputers and Instractability: A Guide
0 0 0 0 0 0 0 C e :
29.5%, 15.8%, 11.3%, 20.4%, 14.6%, 16.3%, and 8.4% bettér] to the Theory of NP-CompletenessSan Francisco, CA: Freeman, 1979.
than PROP,CDIP — LAy, CLIP — PROP;, PARABOLI, [6] D. G. Schweikert and B. W. Kernighan, “A proper model for the par-
GFM, GMetis, and Optimized KLFM, respectively. Note that t(i:tior;inggc;fzelectrigil (éigcuits," inProc. ACM/IEEE Design Automation
_ . . . Conf,, , pp. 57-62.

the hype_rgrgph based multilevel scheme, as presented.m t B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
paper, significantly outperforms the graph-based multilevel = partitioning graphs,”Bell Syst. Tech. Jyol. 49, no. 2, pp. 291307,
scheme GMetis [25] that use@dETIS [21] to compute bisec- | é97,3- Fduccia and R. M. Math N A .
: ; : . M. Fiduccia an . M. Mattheyses, “A linear time heuristic for
thns of graph appr(_JX|mat|0ns ofa hypergraph_. The reasons f([)E? improving network partitions,” irProc. 19th IEEE Design Automation
this performance difference are as follows. First, hypergraph- conf., 1982, pp. 175-181.
based coarsening causes a much greater reduction of tl9¢ B. Krishnamurthy, “An improved min-cut algorithm for partitioning
exposed hyperedge weight of the coarsest level hypergraph \1’5')-83"1 networks,” IEEE Trans. Computyol. C-33, pp. 438-446, May
and,. thus, .prowdes much better 'r"“al partitions than.th()?{ﬁ)] Y. Saab, “A fast and robust network bisection algorithtEEE Trans.
obtained with edge-based coarsening. Second, the refinement Comput.,vol. 44, pp. 903-913, July 1995. o
in the hypergraph-based multilevel scheme directly minimizést] S- Dutt and W. Deng, "A probability-based approach to VLSI circuit
h . f the h d t rather th th d t partitioning,” in Proc. ACM/IEEE Design Automation Cont996.
the _5'29 0 € hyperedge C_U r?— er than the eage cu [95] —_, “VLSI circuit partitioning by cluster-removal using iterative
the inaccurate graph approximation of the hypergraph. The improvement techniques,” iRroc. Physical Design Workshop996.
power of hMETIS over GMetis is much more visible on thel13] T Bui et al, Improvmg the [_Jerfo_rmance qf the” Kernighan-Lin and
largest benchmark golem3. on which even the best of 100 simulated annealing graph bisection algorithm,” Rnoc. ACM/IEEE
a_ 9 9 ! . Design Automation Conf1989, pp. 775-778.
different runs produced a cut that is 50% worse than ten rung] L. Hagen and A. Kahng, “A new approach to effective circuit clus-
of hMETIS-FMyg,v. hMETIS also significantly outperforms 292”2”94;;” Proc. IEEE Int. Conf. Computer-Aided Desigh992, pp.
Optimized KLFM [20] t.)y Hauck and Borriello even though H. Shin énd C. Kim, “A simple yet effective technique for partitioning,”
they used powerful refinement schemes (FM withs [9]). IEEE Trans. VLSI Systyol. 1, pp. 380—-386, Sept. 1993.
This is primarily due to the more powerful HEC schemes usétf] C. J. Alpedrt, Low. Hahgen, fli_nd A.B. Kahn?, “Algene_ragrémework for
: vertex orderings, with applications to netlist clusterintFEE Trans.
in hMETIS. VLSI Syst.vol. 4, pp. 240-246, June 1996.

It may be possible to improve the quality of the bisectiopi7] T. Bui and C. Jones, “A heuristic for reducing fill in sparse matrix
produced by this algorithm in many ways. Further research factorization,” in6th SIAM Conf. Parallel Processing Sci. Computing,

e . - 1993, pp. 445-452.
may. identify better coarsening schemes that are. suitable [] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
a wider class of hypergraphs. New powerful variants of the ~ graphs,” sandia Nat. Labs., Tech. Rep. SAND93-1301, 1993.
FM refinement schemes have been developed recently [b9f J. Cong and M. L. Smith, “A parallel bottom-up clustering algorithm
Dutt et al [11], [12]. It will be instructive to include such with appllcatloqs to circuit partitioning in VLSI design,” ifProc.
fi t sch duri th . h t it ACM/IEEE Design Automation Confl993, pp. 755-760.

a relinement scheme during the uncoarsening pnase 10 Se@ull s. Hauck and G. Borriello, “An evaluation of bipartitioning technique,”
it makes the multilevel scheme more robust. However, it is in Proc. Chapel Hill Conf. Advanced Res. VL$895. N
unclear if the added cost of these more powerful refinemeAtl G- Karypis and V. Kumar, METIS 3.0: Unstructured graph partition-
schemes will result in a cost-effective improvement in the
size of the bisection because additional trials of the multilevgil?)
scheme could potentially improve the bisection.

[23]

[24]

ACKNOWLEDGMENT

Access to computing facilities was provided by AHPCR@s5]
and the Minnesota Supercomputer Institute. The algorithms
described in this paper are part of th®ETIS hypergraph- 26]
partitioning package available via the World Wide Web at
URL: http://www.cs.umn.edu/ metis. 27

[28]

REFERENCES [29]
[1] C.J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning,”

Integr. VLSI J.vol. 19, no. 1-2, pp. 1-81, 1995. [30]
[2] S. Shekhar and D. R. Liu, “Partitioning similarity graphs: A framework

(3]

for declustering problems,Inf. Syst. J.vol. 21, no. 4, pp. 475-496, [31]
1996.

B. Mobasher, N. Jain, E. H. Han, and J. Srivastava, “Web mining: Patte[82]
discovery from world wide web transactions,” Dept. Comput. Sci., Univ.
Minnesota, Minneapolis, MN, Tech. Rep. TR-96-050, 1996.

C. H. Papadimitriou and K. SteiglitzCombinatorial Optimization.
Englewood Cliffs, NJ: Prentice-Hall, 1982.

J. Li, J. Lillis, and C. Cheng, “Linear decomposition algorithm for VLSI
design applications,” ifProc. IEEE Int. Conf. Computer-Aided Design,
1995, pp. 223-228.

KARYPIS et al. MULTILEVEL HYPERGRAPH PARTITIONING: APPLICATIONS IN VLS| DOMAIN

George Karypis received the Ph.D. degree in com-
puter science from the University of Minnesota,
Minneapolis.

He is currently an Assistant Professor in the
Department of Computer Science and Engineet
ing, University of Minnesota. He has co-authored
several journal articles and conference papers c
these topics anthtroduction to Parallel Computing
(Reading, MA: Addison-Wesley, 1994). His currentzM

rithm design, applications of parallel processing ir

research interests spans the areas of parallel alg#s%

79

Shashi Shekhar(S’86-M'89-SM'96) received the
B.Tech. degree in computer science from the Indian
Institute of Technology, Kanpur, India, in 1985,
and the M.S. degree in business administration and
the Ph.D. degree in computer science from the
University of California at Berkeley, Berkeley, CA,

in 1989.

He is currently an Associate Professor in the De-
partment of Computer Science and Engineering, and
an active member of the Army High Performance
Computing Research Center, as well as the Center

scientific computing and optimization, sparse matrix computations, and déa Transportation Studies, University of Minnesota, Minneapolis, MN. His

mining. His research has resulted in the development of software libraries fesearch interests include databases, geographic information systems (GIS’s),
serial and parallel unstructured graph partitioning (METIS and ParMETIS9nd intelligent transportation systems. He has published over 100 research
and for parallel Cholesky factorization (PSPASES). papers in refereed journals, conferences, workshops, and edited books. He
was program co-chair of the 1996 ACM International Workshop on Advances
in GIS.
Dr. Shekhar is a senior member of the IEEE Computer Society, and a
member of the ACM and AAAI. He is an editorial board member of the
Rajat Aggarwal received the B.Tech. degree in IEEE TRANSACTIONS ONKNOWLEDGE AND DATA ENGINEERING, and of the IEEE

electrical engineering from the Indian Institute of
Technology, New Delhi, India, in 1995, and the
M.Sc. degree in computer science from the Uni-
versity of Minnesota, Minneapolis, MN, in 1997.

He is currently with the Lattice Semiconductor
Corporation, Milpitas, CA, where he is involved
in the development of logic optimization, map-
ping, and placement algorithms for the CPLD’s and
FPGA's.

Vipin Kumar (S'78-M'82-SM'91) received the
Ph.D. degree in computer science from the Univer-
sity of Maryland at College Park.

He is currently a Professor in the Department
of Computer Science and Engineering, University
of Minnesota, Minneapolis, MN. His current re-
search interests include parallel computing, parallel
algorithms for scientific computing problems, and
data mining. His research has resulted in the devel-
opment of highly efficient parallel algorithms and
software for sparse matrix factorization (PSPASES),
graph partitioning, (METIS and ParMETIS), and dense hierarchical solvers.
His research in performance analysis resulted in the development of the
isoefficiency metric for analyzing the scalability of parallel algorithms. He
has authored over 100 research papers and coauthdreduction to Parallel
Computing(Reading, MA: Addison-Wesley, 1994). He has presented over 50
invited talks at various conferences, workshops, national labs, and has served
as chair/co-chair for many conferences/workshops in the area of parallel
computing and high-performance data mining. He serves on the editorial
boards ofParallel Computingand theJournal of Parallel and Distributed
Computing

Dr. Kumar is a member of the Society of Industrial and Applied Math-
ematics (SIAM) and the Association for Computing Machinery (ACM). He
serves on the editorial board of the IEERANSACTIONS ON PARALLEL AND
DisTRIBUTED SysTEMs. He has also served on the editorial board of IEEE
TRANSACTIONS OF DATA AND KNOWLEDGE ENGINEERING (1993-1997).

Computer Society Computer Science and Engineering Practice Board.

