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Abstract— In this paper, we present a new hypergraph-
partitioning algorithm that is based on the multilevel paradigm.
In the multilevel paradigm, a sequence of successively
coarser hypergraphs is constructed. A bisection of the smallest
hypergraph is computed and it is used to obtain a bisection of the
original hypergraph by successively projecting and refining the
bisection to the next level finer hypergraph. We have developed
new hypergraph coarsening strategies within the multilevel
framework. We evaluate their performance both in terms of the
size of the hyperedge cut on the bisection, as well as on the run
time for a number of very large scale integration circuits. Our
experiments show that our multilevel hypergraph-partitioning
algorithm produces high-quality partitioning in a relatively small
amount of time. The quality of the partitionings produced by our
scheme are on the average 6%–23% better than those produced
by other state-of-the-art schemes. Furthermore, our partitioning
algorithm is significantly faster, often requiring 4–10 times less
time than that required by the other schemes. Our multilevel
hypergraph-partitioning algorithm scales very well for large
hypergraphs. Hypergraphs with over 100 000 vertices can be
bisected in a few minutes on today’s workstations. Also, on the
large hypergraphs, our scheme outperforms other schemes (in
hyperedge cut) quite consistently with larger margins (9%–30%).

Index Terms—Circuit partitioning, hypergraph partitioning,
multilevel algorithms.

I. INTRODUCTION

H YPERGRAPH partitioning is an important problem with
extensive application to many areas, including very large

scale integration (VLSI) design [1], efficient storage of large
databases on disks [2], and data mining [3]. The problem
is to partition the vertices of a hypergraph intoroughly
equal parts, such that the number of hyperedges connecting
vertices in different parts is minimized. A hypergraph is a
generalization of a graph, where the set of edges is replaced
by a set of hyperedges. A hyperedge extends the notion of an
edge by allowing more than two vertices to be connected by
a hyperedge. Formally, a hypergraph is defined
as a set of vertices and a set of hyperedges , where each
hyperedge is a subset of the vertex set[4], and the size of
a hyperedge is the cardinality of this subset.

Manuscript received April 29, 1997; revised March 23, 1998. This work
was supported under IBM Partnership Award NSF CCR-9423082, by the
Army Research Office under Contract DA/DAAH04-95-1-0538, and by the
Army High Performance Computing Research Center, the Department of the
Army, Army Research Laboratory Cooperative Agreement DAAH04-95-2-
0003/Contract DAAH04-95-C-0008.

G. Karypis, V. Kumar, and S. Shekhar are with the Department of Computer
Science and Engineering, Minneapolis, University of Minnesota, Minneapolis,
MN 55455-0159 USA.

R. Aggarwal is with the Lattice Semiconductor Corporation, Milpitas, CA
95131 USA.

Publisher Item Identifier S 1063-8210(99)00695-2.

During the course of VLSI circuit design and synthesis, it
is important to be able to divide the system specification into
clusters so that the inter-cluster connections are minimized.
This step has many applications including design packaging,
HDL-based synthesis, design optimization, rapid prototyping,
simulation, and testing. In particular, many rapid prototyp-
ing systems use partitioning to map a complex circuit onto
hundreds of interconnected field-programmable gate arrays
(FPGA’s). Such partitioning instances are challenging because
the timing, area, and input/output (I/O) resource utilization
must satisfy hard device-specific constraints. For example, if
the number of signal nets leaving any one of the clusters
is greater than the number of signal p-i-n’s available in the
FPGA, then this cluster cannot be implemented using a single
FPGA. In this case, the circuit needs to be further partitioned,
and thus implemented using multiple FPGA’s. Hypergraphs
can be used to naturally represent a VLSI circuit. The vertices
of the hypergraph can be used to represent the cells of the
circuit, and the hyperedges can be used to represent the nets
connecting these cells. A high quality hypergraph-partitioning
algorithm greatly affects the feasibility, quality, and cost of
the resulting system.

A. Related Work

The problem of computing an optimal bisection of a hy-
pergraph is at least NP-hard [5]. However, because of the
importance of the problem in many application areas, many
heuristic algorithms have been developed. The survey by
Alpert and Khang [1] provides a detailed description and
comparison of such various schemes. In a widely used class of
iterative refinement partitioning algorithms, an initial bisection
is computed (often obtained randomly) and then the partition
is refined by repeatedly moving vertices between the two
parts to reduce the hyperedge cut. These algorithms often
use the Schweikert–Kernighan heuristic [6] (an extension of
the Kernighan–Lin (KL) heuristic [7] for hypergraphs), or the
faster Fiduccia–Mattheyses (FM) [8] refinement heuristic, to
iteratively improve the quality of the partition. In all of these
methods (sometimes also called KLFM schemes), a vertex is
moved (or a vertex pair is swapped) if it produces the greatest
reduction in the edge cuts, which is also called the gain for
moving the vertex. The partition produced by these methods
is often poor, especially for larger hypergraphs. Hence, these
algorithms have been extended in a number of ways [9]–[12].

Krishnamurthy [9] tried to introduce intelligence in the tie-
breaking process from among the many possible moves with
the same high gain. He used aLook Ahead( ) algorithm,
which looks ahead up to -level of gains before making
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a move. PROP [11], introduced by Dutt and Deng, used
a probabilistic gain computation model for deciding which
vertices need to move across the partition line. These schemes
tend to enhance the performance of the basic KLFM family of
refinement algorithms, at the expense of increased run time.
Dutt and Deng [12] proposed two new methods, namely, CLIP
and CDIP, for computing the gains of hyperedges that contain
more than one node on either side of the partition boundary.
CDIP in conjunction with and CLIP in conjunction with
PROP are two schemes that have shown the best results in
their experiments.

Another class of hypergraph-partitioning algorithms
[13]–[16] performs partitioning in two phases. In the
first phase, the hypergraph is coarsened to form a small
hypergraph, and then the FM algorithm is used to bisect
the small hypergraph. In the second phase, these algorithms
use the bisection of this contracted hypergraph to obtain a
bisection of the original hypergraph. Since FM refinement
is done only on the small coarse hypergraph, this step is
usually fast, but the overall performance of such a scheme
depends upon the quality of the coarsening method. In many
schemes, the projected partition is further improved using the
FM refinement scheme [15].

Recently, a new class of partitioning algorithms was devel-
oped [17]–[20] based upon the multilevel paradigm. In these
algorithms, a sequence of successively smaller (coarser) graphs
is constructed. A bisection of the smallest graph is computed.
This bisection is now successively projected to the next-level
finer graph and, at each level, an iterative refinement algorithm
such as KLFM is used to further improve the bisection. The
various phases of multilevel bisection are illustrated in Fig. 1.
Iterative refinement schemes such as KLFM become quite
powerful in this multilevel context for the following reason.
First, the movement of a single node across a partition bound-
ary in a coarse graph can lead to the movement of a large num-
ber of related nodes in the original graph. Second, the refined
partitioning projected to the next level serves as an excellent
initial partitioning for the KL or FM refinement algorithms.
This paradigm was independently studied by Bui and Jones
[17] in the context of computing fill-reducing matrix reorder-
ing, by Hendrickson and Leland [18] in the context of finite-
element mesh-partitioning, and by Hauck and Borriello (called
Optimized KLFM) [20], and by Cong and Smith [19] for hy-
pergraph partitioning. Karypis and Kumar extensively studied
this paradigm in [21] and [22] for the partitioning of graphs.
They presented new graph coarsening schemes for which even
a good bisection of the coarsest graph is a pretty good bisec-
tion of the original graph. This makes the overall multilevel
paradigm even more robust. Furthermore, it allows the use of
simplified variants of KLFM refinement schemes during the
uncoarsening phase, which significantly speeds up the refine-
ment process without compromising overall quality.METIS
[21], a multilevel graph partitioning algorithm based upon this
work, routinely finds substantially better bisections and is often
two orders of magnitude faster than the hitherto state-of-the-art
spectral-based bisection techniques [23], [24] for graphs.

The improved coarsening schemes ofMETIS work only for
graphs and are not directly applicable to hypergraphs. If the

Fig. 1. The various phases of the multilevel graph bisection. During the
coarsening phase, the size of the graph is successively decreased; during the
initial partitioning phase, a bisection of the smaller graph is computed, and
during the uncoarsening and refinement phase, the bisection is successively
refined as it is projected to the larger graphs. During the uncoarsening and
refinement phase, the dashed lines indicate projected partitionings and dark
solid lines indicate partitionings that were produced after refinement.G0 is
the given graph, which is the finest graph.Gi+1 is the next level coarser
graph ofGi, and vice versa,Gi is the next level finer graph ofGi+1. G4
is the coarsest graph.

hypergraph is first converted into a graph (by replacing each
hyperedge by a set of regular edges), thenMETIS [21] can be
used to compute a partitioning of this graph. This technique
was investigated by Alpert and Khang [25] in their algorithm
called GMetis. They converted hypergraphs to graphs by
simply replacing each hyperedge with a clique, and then they
dropped many edges from each clique randomly. They used
METIS to compute a partitioning of each such random graph
and then selected the best of these partitionings. Their results
show that reasonably good partitionings can be obtained in
a reasonable amount of time for a variety of benchmark
problems. In particular, the performance of their resulting
scheme is comparable to other state-of-the art schemes such as
PARABOLI [26], PROP [11], and the multilevel hypergraph
partitioner from Hauck and Borriello [20].

The conversion of a hypergraph into a graph by replacing
each hyperedge with a clique does not result in an equivalent
representation since high-quality partitionings of the resulting
graph do not necessarily lead to high-quality partitionings of
the hypergraph. The standard hyperedge-to-edge conversion
[27] assigns a uniform weight of to each edge in
the clique, where is the of the hyperedge, i.e., the
number of vertices in the hyperedge. However, the fundamen-
tal problem associated with replacing a hyperedge by its clique
is that there exists no scheme to assign weight to the edges
of the clique that can correctly capture the cost of cutting this
hyperedge [28]. This hinders the partitioning refinement algo-
rithm since vertices are moved between partitions depending
on how much this reduces the number of edges they cut in the
converted graph, whereas the real objective is to minimize
the number of hyperedges cut in the original hypergraph.
Furthermore, the hyperedge-to-clique conversion destroys the
natural sparsity of the hypergraph, significantly increasing the
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run time of the partitioning algorithm. Alpert and Khang [25]
solved this problem by dropping many edges of the clique
randomly, but this makes the graph representation even less
accurate. A better approach is to develop coarsening and
refinement schemes that operate directly on the hypergraph.
Note that the multilevel scheme by Hauck and Borriello [20]
operates directly on hypergraphs and, thus, is able to perform
accurate refinement during the uncoarsening phase. However,
all coarsening schemes studied in [20] are edge-oriented; i.e.,
they only merge pairs of nodes to construct coarser graphs.
Hence, despite a powerful refinement scheme (FM with the
use of look-ahead ) during the uncoarsening phase, their
performance is only as good as that of GMetis [25].

B. Our Contributions

In this paper, we present a multilevel hypergraph-
partitioning algorithm hMETIS that operates directly on
the hypergraphs. A key contribution of our work is the
development of new hypergraph coarsening schemes that allow
the multilevel paradigm to provide high-quality partitions
quite consistently. The use of these powerful coarsening
schemes also allows the refinement process to be simplified
considerably (even beyond plain FM refinement), making the
multilevel scheme quite fast. We investigate various algorithms
for the coarsening and uncoarsening phases which operate on
the hypergraphs without converting them into graphs. We
have also developed new multiphase refinement schemes
( - and -cycles) based on the multilevel paradigm. These
schemes take an initial partition as input and try to improve
them using the multilevel scheme. These multiphase schemes
further reduce the run times, as well as improve the solution
quality. We evaluate their performance both in terms of the
size of the hyperedge cut on the bisection, as well as on run
time on a number of VLSI circuits. Our experiments show
that our multilevel hypergraph-partitioning algorithm produces
high-quality partitioning in a relatively small amount of time.
The quality of the partitionings produced by our scheme
are on the average 6%–23% better than those produced by
other state-of-the-art schemes [11], [12], [25], [26], [29].
The difference in quality over other schemes becomes even
greater for larger hypergraphs. Furthermore, our partitioning
algorithm is significantly faster, often requiring 4–10 times
less time than that required by the other schemes. For many
circuits in the well-known ACM/SIGDA benchmark set [30],
our scheme is able to find better partitionings than those
reported in the literature for any other hypergraph-partitioning
algorithm. The remainder of this paper is organized as follows.
Section II describes the different algorithms used in the three
phases of our multilevel hypergraph-partitioning algorithm.
Section III describes a new partitioning refinement algorithm
based on the multilevel paradigm. Section IV compares the
results produced by our algorithm to those produced by earlier
hypergraph-partitioning algorithms.

II. M ULTILEVEL HYPERGRAPHBISECTION

We now present the framework ofhMETIS, in which the
coarsening and refinement scheme work directly with hyper-

edges without using the clique representation to transform
them into edges. We have developed new algorithms for both
the phases, which, in conjunction, are capable of delivering
very good quality solutions.

A. Coarsening Phase

During the coarsening phase, a sequence of successively
smaller hypergraphs are constructed. As in the case of mul-
tilevel graph bisection, the purpose of coarsening is to create
a small hypergraph, such that a good bisection of the small
hypergraph is not significantly worse than the bisection di-
rectly obtained for the original hypergraph. In addition to
that, hypergraph coarsening also helps in successively reducing
the sizes of the hyperedges. That is, after several levels of
coarsening, large hyperedges are contracted to hyperedges that
connect just a few vertices. This is particularly helpful, since
refinement heuristics based on the KLFM family of algorithms
[6]–[8] are very effective in refining small hyperedges, but are
quite ineffective in refining hyperedges with a large number
of vertices belonging to different partitions.

Groups of vertices that are merged together to form single
vertices in the next-level coarse hypergraph can be selected in
different ways. One possibility is to select pairs of vertices with
common hyperedges and to merge them together, as illustrated
in Fig. 2(a). A second possibility is to merge together all the
vertices that belong to a hyperedge, as illustrated in Fig. 2(b).
Finally, a third possibility is to merge together a subset of the
vertices belonging to a hyperedge, as illustrated in Fig. 2(c).
These three different schemes for grouping vertices together
for contraction are described below.

1) Edge Coarsening (EC):The heavy-edge matching
scheme used in the multilevel-graph bisection algorithm can
also be used to obtain successively coarser hypergraphs by
merging the pairs of vertices connected by many hyperedges.
In this EC scheme, a heavy-edge maximal1 matching of
the vertices of the hypergraph is computed as follows. The
vertices are visited in a random order. For each vertex, all
unmatched vertices that belong to hyperedges incident to
are considered, and the one that is connected via the edge
with the largest weight is matched with. The weight of an
edge connecting two verticesand is computed as the sum
of the edge weightsof all the hyperedges that containand

. Each hyperedge of size is assigned an edge-weight of
, and as hyperedges collapse on each other during

coarsening, their edge weights are added up accordingly.
This EC scheme is similar in nature to the schemes that treat

the hypergraph as a graph by replacing each hyperedge with
its clique representation [27]. However, this hypergraph-to-
graph conversion is done implicitly during matching without
forming the actual graph.

2) Hyperedge Coarsening (HEC):Even though the EC
scheme is able to produce successively coarser hypergraphs,
it decreases the hyperedge weight of the coarser graph only
for those pairs of matched vertices that are connected via
a hyperedge of size two. As a result, the total hyperedge

1One can also compute a maximum weight matching [31]; however, that
would have significantly increased the amount of time required by this phase.
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Fig. 2. Various ways of matching the vertices in the hypergraph and the coarsening they induce. (a) In edge-coarsening, connected pairs of vertices are
matched together. (b) In hyperedge-coarsening, all the vertices belonging to a hyperedge are matched together. (c) In MHEC, we match together all the
vertices in a hyperedge, as well as all the groups of vertices belonging to a hyperedge.

weight of successively coarser graphs does not decrease very
fast. In order to ensure that for every group of vertices that
are contracted together, there is a decrease in the hyperedge
weight in the coarser graph, each such group of vertices must
be connected by a hyperedge.

This is the motivation behind the HEC scheme. In this
scheme, an independent set of hyperedges is selected and the
vertices that belong to individual hyperedges are contracted
together. This is implemented as follows. The hyperedges
are initially sorted in a nonincreasing hyperedge-weight order
and the hyperedges of the same weight are sorted in a
nondecreasing hyperedge size order. Then, the hyperedges are
visited in that order, and for each hyperedge that connects
vertices that have not yet been matched, the vertices are
matched together. Thus, this scheme gives preference to the
hyperedges that have large weight and those that are of small
size. After all of the hyperedges have been visited, the groups
of vertices that have been matched are contracted together to
form the next level coarser graph. The vertices that are not
part of any contracted hyperedges are simply copied to the
next level coarser graph.

3) Modified Hyperedge Coarsening (MHEC):The HEC
algorithm is able to significantly reduce the amount of
hyperedge weight that is left exposed in successively coarser
graphs. However, during each coarsening phase, a majority
of the hyperedges do not get contracted because vertices that
belong to them have been contracted via other hyperedges.
This leads to two problems. First, the size of many hyperedges
does not decrease sufficiently, making FM-based refinement
difficult. Second, the weight of the vertices (i.e., the number
of vertices that have been collapsed together) in successively
coarser graphs becomes significantly different, which distorts
the shape of the contracted hypergraph.

To correct this problem, we implemented a MHEC scheme
as follows. After the hyperedges to be contracted have been

selected using the HEC scheme, the list of hyperedges is
traversed again, and for each hyperedge that has not yet
been contracted, the vertices that do not belong to any other
contracted hyperedge are contracted together.

B. Initial Partitioning Phase

During the initial partitioning phase, a bisection of the
coarsest hypergraph is computed, such that it has a small cut,
and satisfies a user-specified balance constraint. The balance
constraint puts an upper bound on the difference between the
relative size of the two partitions. Since this hypergraph has a
very small number of vertices (usually less than 200), the time
to find a partitioning using any of the heuristic algorithms tends
to be small. Note that it is not useful to find an optimal partition
of this coarsest graph, as the initial partition will be sub-
stantially modified during the refinement phase. We used the
following two algorithms for computing the initial partitioning.

The first algorithm simply creates a random bisection such
that each part has roughly equal vertex weight. The second
algorithm starts from a randomly selected vertex and grows a
region around it in a breadth-first fashion [22] until half of the
vertices are in this region. The vertices belonging to the grown
region are then assigned to the first part, and the rest of the
vertices are assigned to the second part. After a partitioning is
constructed using either of these algorithms, the partitioning
is refined using the FM refinement algorithm.

Since both algorithms are randomized, different runs give
solutions of different quality. For this reason, we perform a
small number of initial partitionings. At this point, we can
select the best initial partitioning and project it to the original
hypergraph, as described in Section II-C. However, the parti-
tioning of the coarsest hypergraph that has the smallest cut may
not necessarily be the one that will lead to the smallest cut in
the original hypergraph. It is possible that another partitioning
of the coarsest hypergraph (with a higher cut) will lead to a bet-
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ter partitioning of the original hypergraph after the refinement
is performed during the uncoarsening phase. For this reason,
instead of selecting a single initial partitioning (i.e., the one
with the smallest cut), we propagate all initial partitionings.

Note that propagation of initial partitionings increases
the time during the refinement phase by a factor of. Thus,
by increasing the value of, we can potentially improve the
quality of the final partitioning at the expense of higher run
time. One way to dampen the increase in run time due to
large values of is to drop unpromising partitionings as the
hypergraph is uncoarsened. For example, one possibility is to
propagate only those partitionings whose cuts are within%
of the best partitionings at the current level. If the value ofis
sufficiently large, then all partitionings will be maintained and
propagated in the entire refinement phase. On the other hand,
if the value of is sufficiently small then, on average, only
one partitioning will be maintained, as all other partitionings
will be eliminated at the coarsest level. For moderate values of

, many partitionings may be available at the coarsest graph,
but the number of such available partitionings will decrease
as the graph is uncoarsened. This is useful for two reasons.
First, it is more important to have many alternate partitionings
at the coarser levels, as the size of the cut of a partitioning at
a coarse level is a less accurate reflection of the size of the
cut of the original finest level hypergraph. Second, refinement
is more expensive at the fine levels, as these levels contain
far more nodes than the coarse levels. Hence, by choosing an
appropriate value of , we can benefit from the availability
of many alternate partitionings at the coarser levels and avoid
paying the high cost of refinement at the finer levels by keeping
fewer candidates on average.

In our experiments, as reported in this paper, we find
ten initial partitionings at the coarsest graph, and we drop
all partitionings whose cut is 10% worse than the best cut
at that level. This allows us to both filter out the really
bad partitionings (and thus reduce the amount of time spent
in refinement) and at the same time keep more than just
one promising partitioning (so as to improve the overall
partitioning quality). In our experiments, we have seen that
by keeping ten partitionings, we can reduce the cut on the
average by 3%–4%, whereas the partitioning time increases
only by a factor of two. Computing and propagating more
partitionings does not further reduce the cut significantly. In
our experiments, keeping 20 partitionings further reduces the
cut by a factor less than 0.5%, on the average. Increasing the
value of parameter (from 10% to a higher value such as 20%)
did not significantly improve the quality of the partitionings,
although it did increase the run time.

C. Uncoarsening and Refinement Phase

During the uncoarsening phase, a partitioning of the coarser
hypergraph is successively projected to the next-level finer
hypergraph, and a partitioning refinement algorithm is used
to reduce the cut set (and thus to improve the quality of the
partitioning) without violating the user specified balance con-
straints. Since the next-level finer hypergraph has more degrees
of freedom, such refinement algorithms tend to improve the
solution quality.

We have implemented two different partitioning refinement
algorithms. The first is the FM algorithm [8], which repeatedly
moves vertices between partitions in order to improve the cut.
The second algorithm, called hyperedge refinement (HER),
moves groups of vertices between partitions so that an entire
hyperedge is removed from the cut. These algorithms are
further described in the remainder of this section.

1) FM: The partitioning refinement algorithm by Fiduccia
and Mattheyses [8] is iterative in nature. It starts with an initial
partitioning of the hypergraph. In each iteration, it tries to find
subsets of vertices in each partition, such that moving them to
other partitions improves the quality of the partitioning (i.e.,
the number of hyperedges being cut decreases) and this does
not violate the balance constraint. If such subsets exist, then
the movement is performed and this becomes the partitioning
for the next iteration. The algorithm continues by repeating
the entire process. If it cannot find such a subset, then the
algorithm terminates since the partitioning is at a local minima
and no further improvement can be made by this algorithm.

In particular, for each vertex , the FM algorithm
computes thegain, which is the reduction in the hyperedge
cut achieved by moving to the other partition. Initially all
vertices areunlocked, i.e., they are free to move to the other
partition. The algorithm iteratively selects an unlocked vertex

with the largest gain (subject to balance constraints) and
moves it to the other partition. When a vertexis moved,
it is locked, and the gain of the vertices adjacent toare
updated. After each vertex movement, the algorithm also
records the size of the cut achieved at this point. Note that
the algorithm does not allow locked vertices to be moved
since this may result in thrashing (i.e., repeated movement
of the same vertex). A single pass of the FM algorithm
ends when there are no more unlocked vertices (i.e., all the
vertices have been moved). Then, the recorded cut sizes are
checked, and the point where the minimum cut was achieved
is selected, and all vertices that were moved after that point
are moved back to their original partition. Now, this becomes
the initial partitioning for the next pass of the algorithm.
With the use of appropriate data structures, the complexity
of each pass of the FM algorithm is [8].

For refinement in the context of multilevel schemes, the
initial partitioning obtained from the next level coarser graph is
actually a very good partition. For this reason, we can make a
number of optimizations to the original FM algorithm. The first
optimization limits the maximum number of passes performed
by the FM algorithm to only two. This is because the greatest
reduction in the cut is obtained during the first or second
pass and any subsequent passes only marginally improve
the quality. Our experience has shown that this optimization
significantly improves the run time of FM without affecting
the overall quality of the produced partitionings. The second
optimization aborts each pass of the FM algorithm before
actually moving all the vertices. The motivation behind this is
that only a small fraction of the vertices being moved actually
lead to a reduction in the cut and, after some point, the cut
tends to increase as we move more vertices. When FM is
applied to a random initial partitioning, it is quite likely that
after a long sequence ofbad moves, the algorithm will climb
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Fig. 3. Effect of restricted coarsening. (a) Example hypergraph with a given partitioning with the required balance of 40/60. (b) Possible condensed
version of (a). (c) Another condensed version of a hypergraph.

out of a local minima and reach to a better cut. However, in
the context of a multilevel scheme, a long sequence of cut-
increasing moves rarely leads to a better local minima. For
this reason, we stop each pass of the FM algorithm as soon
as we have performed vertex moves that did not improve
the cut. We choose to be equal to 1% of the number of
vertices in the graph we are refining. This modification to FM,
calledearly-exit FM (FM-EE), does not significantly affect the
quality of the final partitioning, but it dramatically improves
the run time (see Section IV).

2) HER: One of the drawbacks of FM (and other similar
vertex-based refinement schemes) is that it is often unable
to refine hyperedges that have many nodes on both sides
of the partitioning boundary. However, a refinement scheme
that moves all the vertices that belong to a hyperedge can
potentially solve this problem. Our HER works as follows.
It randomly visits all the hyperedges and, for each one that
straddles the bisection, it determines if it can move a subset of
the vertices incident on it, so that this hyperedge will become
completely interior to a partition. In particular, consider a
hyperedge , which straddles the partitioning boundary, and
let and be the vertices of that belong to partition 0
and partition 1, respectively. Our algorithm computes the gain

, which is the reduction in the cut achieved by moving
the vertices in to partition 1, and the gain , which is
the reduction in the cut achieved by moving the vertices in
to partition 0. Now, depending on these gains and subject to
balance constraints, it may move one of the two setsor .
In particular, if is positive and , it moves

, and if is positive and , it moves .

III. M ULTIPHASE REFINEMENT WITH

RESTRICTED COARSENING

Although the multilevel paradigm is quite robust, random-
ization is inherent in all three phases of the algorithm. In
particular, the random choice of vertices to be matched in the
coarsening phase can disallow certain hyperedge cuts, reducing
refinement in the uncoarsening phase. For example, consider
the example hypergraph in Fig. 3(a) and its two possible con-
densed versions [Fig. 3(b) and (c)] with the same partitioning.
The version in Fig. 3(b) is obtained by selecting hyperedges

and to be compressed in the HEC phase and then selecting
pairs of nodes , , and to be compressed in the
modified HEC phase. Similarly, the version shown in Fig. 3(c)
is obtained by selecting hyperedgeto be compressed in
the HEC phase and then selecting pairs of nodes and

to be compressed in the MHEC phase. In the version
of Fig. 3(b), vertex can be moved from partition
to to reduce the hyperedge cuts by 1, but in Fig. 3(c), no
vertex can be moved to reduce the hyperedge cuts.

What this example shows is that, in a multilevel setting, a
given initial partitioning of a hypergraph can be potentially
refined in many different ways depending upon how the
coarsening is performed. Hence, a partitioning produced by
a multilevel partitioning algorithm can be potentially further
refined if the two partitions are again coarsened in a manner
different from the previous coarsening phase (which is easily
done given the random nature of all of the coarsening schemes
described here). The power of iterative refinement at different
coarsening levels can also be used to develop a partitioning
refinement algorithm based on the multilevel paradigm. The
idea behind thismultiphase refinementalgorithm is quite
simple. It consists of two phases, namely a coarsening and an
uncoarsening phase. The uncoarsening phase of the multiphase
refinement algorithm is identical to the uncoarsening phase
of the multilevel hypergraph-partitioning algorithm described
in Section II-C. The coarsening phase, however, is somewhat
different, as it preserves the initial partitioning that is input
to the algorithm. We will refer to this as therestricted
coarseningscheme. Given a hypergraph and a partitioning

, during the coarsening phase, a sequence of successively
coarser hypergraphs and their partitionings is constructed. Let

for , be the sequence of hypergraphs
and partitionings. Given a hypergraph and its partitioning

, restricted coarsening will collapse vertices together that
belong to only one of the two partitions. That is, if and
are the two partitions, we only collapse together vertices that
either belong to partition or partition . The partitioning

of the next level coarser hypergraph is computed
by simply inheriting the partition from . For example, if
a set of vertices , , from partition are collapsed
together to form vertex of , then vertex belong
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to partition as well. By constructing and in
this way, we ensure that the number of hyperedges cut by
the partitioning is identical to the number of hyperedges cut
by in . The set of vertices to be collapsed together in
this restricted coarsening scheme can be selected by using any
of the coarsening schemes described in Section II-A, namely,
edge coarsening, hyperedge coarsening, or modified hyperedge
coarsening. Due to the randomization in the coarsening phase,
successive runs of the multiphase refinement algorithm can
lead to additional reductions in the hyperedge cut. Thus, the
multiphase refinement algorithm can be performed iteratively.
Note that during the refinement phase, we only propagate
a single partitioning; thus, multiphase refinement is quite
fast. In the context of our multilevel hypergraph-partitioning
algorithm, this new multiphase refinement can be used in a
number of ways. In the remainder of this section, we describe
three such approaches.

1) -Cycle: In this scheme, we take the best solution
obtained from the multilevel partitioning algorithm () and
we improve it using multiphase refinement repeatedly. We stop
the multiphase refinement when the solution quality cannot be
improved further. The number of multiphase refinement steps
performed is problem dependent and, in general, it increases as
the size of the hypergraph increases. This is due to the larger
solution space of the large hypergraphs.

2) -Cycle: Our experience with the multilevel partitioning
algorithm has shown that refining multiple solutions is ex-
pensive, especially during the final uncoarsening levels when
the size of the contracted hypergraphs is large. One way to
reduce the high cost of refining multiple solutions during the
final uncoarsening levels is to select the best partitioning at
some point in the uncoarsening phase and further refine only
this best partitioning using multiphase refinement. This is the
idea behind the -cycle refinement. In particular, let be
the coarse hypergraph at the midpoint between(original
hypergraph) and (coarsest hypergraph). Let be the
best partitioning at . We then use ( , ) as
the input to multiphase refinement. Since is relatively
small, as compared to , multiphase refinement converges
in a small number of iterations. By using-cycles, we can
significantly reduce the amount of time spent in the refinement
phase, especially for large hypergraphs. However, the overall
quality can potentially decrease because we may have not
picked up the best overall partitioning at .

3) -Cycle: We can combine both -cycles and -cycles
in the algorithm to obtain high-quality partitioning in a small
amount of time. In this scheme, we use-cycles to partition
the hypergraph followed by the -cycles to further improve
the partition quality. -cycles used in this way are particularly
effective in significantly improving the hyperedge cut.

IV. EXPERIMENTAL RESULTS

We experimentally evaluated the quality of the bisections
produced by our multilevel hypergraph-partitioning algorithm
on a large number of hypergraphs that are part of the widely
used ACM/SIGDA circuit partitioning benchmark suite [30].
The characteristics of these hypergraphs are shown in Table I.

TABLE I
CHARACTERISTICS OF THEVARIOUS HYPERGRAPHSUSED TO EVALUATE

THE MULTILEVEL HYPERGRAPH PARTITIONING ALGORITHMS

We performed all of our experiments on an SGI Challenge
that has MIPS R10000 processors running at 200 MHz, and
all of the reported run times are in seconds. All of the reported
partitioning results were obtained by forcing a 45–55 balance
condition.

As discussed in Sections II-A, II-B, and II-C, there are
many alternatives for each of the three different phases of
a multilevel algorithm. Due to space limitations, we are not
able to provide a comprehensive comparison of the various
parameters. However, this comparison can be found in the full
version of this paper, which is available on the World Wide
Web at: http//www.cs.umn.edu/˜karypis/publications.

In the remainder of this section, we present comparisons of
our scheme with other partitioning schemes available in the
literature.

A. Comparison with Other Partitioning Algorithms

To compare the performance of the bisections produced
by our multilevel hypergraph bisection and multiphase re-
finement algorithms, both in terms of bisection quality and
run time, we created Table II. Table II shows the sizes of the
hyperedge cuts produced by our algorithms(hMETIS) and
those reported by various previously developed hypergraph
bisection algorithms. In particular, Table II contains results
for the following algorithms: PROP [11], and

[12], Optimized KLFM (scheme by Hauck
and Borriello [20]), GMetis [25], PARABOLI [26], and GFM
[32]. Note that for certain circuits, there are missing results
for some of the algorithms. This is because no results were
reported for these circuits. The column labeled “Best” shows
the minimum cut obtained for each circuit by any of the earlier
algorithms. Essentially, this column represents the quality that
would have been obtained if all of the algorithms had been
run and the best partition was selected.

The last four columns of Table II shows the partitionings
produced by our multilevel hypergraph bisection and refine-



76 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

TABLE II
PERFORMANCE OF OURMULTILEVEL HYPERGRAPHBISECTION ALGORITHM (hMETIS) AGAINST VARIOUS PREVIOUSLY DEVELOPED ALGORITHMS

ment algorithms. In particular, the column labeled “hMETIS-
EE ” corresponds to the best partitioning produced from 20
runs of our multilevel algorithm that uses FM-EE during
refinement. Of these 20 runs, ten runs used HEC and ten
runs used MHEC. The column labeled “hMETIS-FM ” cor-
responds to the best partitioning produced from 20 runs when
FM is used during refinement and coarsening is performed
similarly to “hMETIS-EE .” In both of these schemes, we
used random initial partitionings during the initial partitioning
phase.

The column labeledhMETIS-EE corresponds to the
best partitioning produced from ten runs of our multilevel par-
titioning algorithm that uses the -cycle refinement scheme.
These results were obtained using the MHEC and EE-FM
for refinement. Finally, the column labeledhMETIS-FM
corresponds to the best partition produced from 20 runs that
use the -cycles refinement scheme. Out of these runs,
ten used HEC and ten used MHEC for coarsening; and the
refinement was done using FM.

To make the comparison with previous algorithms easier,
we computed the total number of hyperedges cut by each

algorithm, as well as the percentage improvement in the cut
achieved by our algorithms over previous algorithms. This
cut improvement was computed as the average improvement
on a circuit-by-circuit level. Looking at these results, we see
that all four of our algorithms produce partitionings whose
quality is better than that produced by any of the previous
algorithms. In particular,hMETIS-EE is 4.1% better than

, 5.3% better than , 6.2% better
than PROP, 7.8% better than GFM, 9.9% better than Opti-
mized KLFM, 10.0% better than GMetis, and 21.4% better
than PARABOLI. If all of these algorithms are considered
together,hMETIS-EE is still better by 0.3%. Comparing
hMETIS-EE with hMETIS-FM , we see thathMETIS-
FM is about 1.1% better thanhMETIS-EE , and about
1.4% better than all of the previous schemes combined. In
particular,hMETIS-FM was able to improve the best-known
bisections for eight out of the 23 test circuits.

Looking at the quality of the partitionings produced by
the two schemes that use the multilevel hypergraph refine-
ment ( -cycles), we see that these schemes are able to
produce very good results. In particular,hMETIS-FM is
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Fig. 4. The relative performance ofhMETIS-FM20vV compared to rest of the schemes on the large benchmarks (with 10 K or more nodes).

about 2.0% better thanhMETIS-EE and 0.9% better that
hMETIS-FM . hMETIS-FM seems to be the overall best
scheme, producing partitionings whose quality is better than
any of the previous schemes and 2.3% better that the “Best.”

The last sub-table of Table II shows the total amount of
time required by the various partitioning algorithms. These run
times are in seconds on the respective architectures. Because
of the difference in central processing unit (CPU) speed at
the various machines, it is hard to make direct comparisons.
However, we tested our code on Sparc5 and we found that it
requires about four times more time than when it is running
on R10000. Taking into consideration a scaling factor of four,
we see that bothhMETIS-EE and hMETIS-FM require
less time than either PROP, , ,
PARABOLI, or GFM. In particular, hMETIS-EE is
about four times faster than PROP, nine times faster than

and , and much faster than
PARABOLI, GFM and Optimized KLFM. Compared to
GMetis, we see thathMETIS-EE requires roughly the same
time, whereashMETIS-FM is about twice as slow. Note
that GMetis runsMETIS 100 times on each graph, but each of
these runs is substantially faster thanhMETIS, partly because
METIS is a highly optimized code for graphs, and partly
because coarsening and refinement on hypergraphs is more
complex than the refinement schemes used inMETIS for
graphs. However, bothhMETIS-EE and hMETIS-FM
produce bisections that cut substantially fewer hyperedges
than GMetis.

Looking at the amount of time required byhMETIS-
EE and hMETIS-FM , we see that, by using mul-
tiphase refinement, we were in general able to further reduce
the amount of time required by our partitioning algorithms. In
particular,hMETIS-EE requires only 409 s to partition
all 23 circuits, whereashMETIS-FM requires 1513 s.

V. CONCLUSIONS AND FUTURE WORK

As the experiments in Section IV show, the multilevel
paradigm is very successful in producing high-quality hyper-
graph partitionings in a relatively small amount of time. The
multilevel paradigm is successful for the following reasons.
The coarsening phase is able to generate a sequence of
hypergraphs that are good approximations of the original
hypergraph. The initial partitioning algorithm is then able
to find a good partitioning by essentially exploiting global
information of the original hypergraph. Finally, the iterative
refinement at each uncoarsening level is able to significantly
improve the partitioning quality because it moves successively
smaller subsets of vertices between the two partitions. Thus,
in the multilevel paradigm, a good coarsening scheme results
in a coarse graph that provides a global view that permits
computations of a good initial partitioning, and the iterative
refinement performed during the uncoarsening phase provides
a local view to further improve the quality of the partitioning.

The multilevel hypergraph-partitioning algorithm presented
here is quite fast and robust. Even a single run of the algorithm
is able to find reasonably good bisections. With a small number
of runs (e.g., 20), our algorithm is able to find better bisections
than those found by all previously known algorithms for many
of the well-known benchmarks.

Our algorithm scales quite well for large hypergraphs. Due
to the multilevel paradigm, the number of runs required
to obtain high-quality bisections does not increase as the
size of the hypergraph increases. High-quality bisections of
hypergraphs with over 100 000 vertices are obtained in a
few minutes on today’s workstations. Also, since the coars-
ening phase runs in time proportional to the size of the
hypergraph, the run time of the scheme increases linearly
with hypergraph size. Furthermore, the scheme appears to
be more powerful relative to the other schemes for larger
hypergraphs (refer to Fig. 4). Restricting our comparisons to
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only the larger hypergraphs (with 10 K or more nodes) in
the benchmark set, we find thathMETIS-FM performs
29.5%, 15.8%, 11.3%, 20.4%, 14.6%, 16.3%, and 8.4% better
than PROP, , , PARABOLI,
GFM, GMetis, and Optimized KLFM, respectively. Note that
the hypergraph-based multilevel scheme, as presented in this
paper, significantly outperforms the graph-based multilevel
scheme GMetis [25] that usedMETIS [21] to compute bisec-
tions of graph approximations of a hypergraph. The reasons for
this performance difference are as follows. First, hypergraph-
based coarsening causes a much greater reduction of the
exposed hyperedge weight of the coarsest level hypergraph
and, thus, provides much better initial partitions than those
obtained with edge-based coarsening. Second, the refinement
in the hypergraph-based multilevel scheme directly minimizes
the size of the hyperedge cut rather than the edge cut of
the inaccurate graph approximation of the hypergraph. The
power of hMETIS over GMetis is much more visible on the
largest benchmark golem3, on which even the best of 100
different runs produced a cut that is 50% worse than ten runs
of hMETIS-FM . hMETIS also significantly outperforms
Optimized KLFM [20] by Hauck and Borriello even though
they used powerful refinement schemes (FM with [9]).
This is primarily due to the more powerful HEC schemes used
in hMETIS.

It may be possible to improve the quality of the bisection
produced by this algorithm in many ways. Further research
may identify better coarsening schemes that are suitable for
a wider class of hypergraphs. New powerful variants of the
FM refinement schemes have been developed recently by
Dutt et al. [11], [12]. It will be instructive to include such
a refinement scheme during the uncoarsening phase to see if
it makes the multilevel scheme more robust. However, it is
unclear if the added cost of these more powerful refinement
schemes will result in a cost-effective improvement in the
size of the bisection because additional trials of the multilevel
scheme could potentially improve the bisection.
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