## 1-Steiner by Borah/Owens/Irwin

#### Interesting Observation

Our edge-based algorithm is based on connecting a node to the nearest point on the rectangular layout of an edge in the tree and removing the longest edge in the loop thus formed.



Practical Problems in VLSI Physical CAD

# **Gain Computation**

#### Things to do

- 1) Add node p
- 2) Remove edge  $e_1$
- 3) Remove edge  $e_2$
- 4) Add edge connecting p to  $p_1$
- 5) Add edge connecting p to  $p_2$
- 6) Add edge connecting p to  $p_3$ .

#### Thus, the gain is

 $gain = length(e_2) - length(p, p_1)$ 



# **Overall Algorithm**

#### Multi-pass Heuristic

• Entire algorithm can be repeated

Algorithm Edge-based-Steiner()

Begin

1.Compute the rectilinear minimum spanning tree of the set of nodes
2.Compute all possible <node, edge> pairs that give positive gain
3.Sort all the pairs in descending order of gain
4.While (there are pairs with positive gain) do

If (the two edges to be replaced exist in the tree) then
Replace the pair of edges with three new edges and a new node.
End-if

End

## 1-Steiner Routing by Borah/Owens/Irwin

- Perform a single pass of Borah/Owens/Irwin
  - Initial MST has 5 edges with wirelength of 20
  - Need to compute the max-gain (node, edge) pair for each edge in this MST





1-Steiner Algorithm (6/17)

#### Best Pair for (a,c)

We first let  $p_1 = b$  and  $e_1 = (a, c)$ . Next, we compute the shortest Manhattan distance between  $p_1$  and a "rectilinear layout" of  $e_1$ , which is 2 in this case. The node p is the nearest point on this rectilinear layout of  $e_1$  to  $p_1$ . Next, we look for  $e_2$ , the longest edge on  $p_1$ -to-apath, which is  $e_2 = (b, c)$ . Thus,

 $gain\{b,(a,c)\} = length(e_2) - length(p,p_1) = 4 - 2 = 2$ 



## Best Pair for (*b*,*c*)

• Three nodes can pair up with (b,c)

$$\begin{split} gain\{a,(b,c)\} &= length(a,c) - length(p,a) = 4 - 2 = 2\\ gain\{d,(b,c)\} &= length(b,d) - length(p,d) = 5 - 4 = 1\\ gain\{e,(b,c)\} &= length(c,e) - length(p,e) = 4 - 3 = 1 \end{split}$$



#### Best Pair for (b,c) (cont)

- All three pairs have the same gain
  - Break ties randomly



### Best Pair for (*b*,*d*)

- Two nodes can pair up with (*b*,*d*)
  - both pairs have the same gain



#### Best Pair for (*c*,*e*)

• Three nodes can pair up with (c,e)



#### Best Pair for (*c*,*e*) (cont)





1-Steiner Algorithm (12/17)

### Best Pair for (*e*,*f*)

#### • Can merge with *c* only





## Summary

- Max-gain pair table
  - Sort based on gain value

| pair            | gain | $e_1$ | $e_2$  |
|-----------------|------|-------|--------|
| $\{b, (a, c)\}$ | 2    | (a,c) | (b, c) |
| $\{a, (b, c)\}$ | 2    | (b,c) | (a,c)  |
| $\{c, (b, d)\}$ | 1    | (b,d) | (b,c)  |
| $\{b, (c, e)\}$ | 1    | (c,e) | (b, c) |
| $\{c, (e, f)\}$ | 1    | (e,f) | (c, e) |





1-Steiner Algorithm (14/17)

#### First 1-Steiner Point Insertion

- Choose  $\{b, (a,c)\}$  (max-gain pair)
  - Mark  $e_1 = (a,c), e_2 = (b,c)$
  - Skip {a, (b,c)}, {c, (b,d)}, {b, (c,e)} since their  $e_1/e_2$  are already marked
  - Wirelength reduces from 20 to 18



#### Second 1-Steiner Point Insertion

- Choose {*c*, (*e*,*f*)} (last one remaining)
  - Wirelength reduces from 18 to 17





1-Steiner Algorithm (16/17)