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Floorplanning, Placement, and Pin Assignment

• Partitioning leads to

– Blocks with well-defined areas and shapes (fixed blocks).

– Blocks with approximated areas and no particular shapes (flexible
blocks).

– A netlist specifying connections between the blocks.

• Objectives

– Find locations for all blocks.

– Consider shapes of flexible block, pin locations of all the blocks.

Partitioning RoutingFloorplanning/Placement
       (/Pin assignment)

Blocks w/ areas
  (shapes)
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Floorplanning

• Inputs to the floorplanning problem:

– A set of blocks, fixed or flexible.

– Pin locations of fixed blocks.

– A netlist.

• Objectives: Minimize area, reduce wirelength for (critical) nets, max-
imize routability, determine shapes of flexible blocks
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Floorplan Design
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Aspect ratio: r <= y/x <= s

Rotation: 

Area: A=xy

Modules: 
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Floorplanning: Terminology

• Rectangular dissection: Subdivision of a given rectangle by a finite #
of horizontal and vertical line segments into a finite # of non-overlapping
rectangles.

• Slicing structure: a rectangular dissection that can be obtained by
repetitively subdividing rectangles horizontally or vertically.

• Slicing tree: A binary tree, where each internal node represents a vertical
cut line or horizontal cut line, and each leaf a basic rectangle.

• Skewed slicing tree: One in which no node and its right child are the
same.

1
3

4 5

6 7
2

H

V

H

H

V V

12 3

4 56 7

1
3

4 5

6 72

A slicing tree (skewed)

H

V

H

HV

V

12

3

4 5

6 7

Another slicing tree 
    (non−skewed)Non−slicing floorplan Slicing floorplan



Solution Representation
• An expression E = e1e2 . . . e2n−1, where ei ∈ {1,2, . . . , n,H, V },1 ≤ i ≤

2n− 1, is a Polish expression of length 2n− 1 iff

1. every operand j, 1 ≤ j ≤ n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 . . . ei,1 ≤

i ≤ 2n− 1, #operands > #operators.

1  6  H  3  5  V  2  H  V  7  4  H  V 

# of operands = 4    ....... = 7
# of operators = 2    ....... = 5

• Polish expression ←→ Postorder traversal.
• ijH: rectangle i on bottom of j; ijV : rectangle i on the left of j.
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Solution Representation (cont’d)
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• Question: How to eliminate ambiguous representation?



Normalized Polish Expression

• A Polish expression E = e1e2 . . . e2n−1 is called normalized iff E has no
consecutive operators of the same type (H or V ).

• Given a normalized Polish expression, we can construct a unique rect-
angular slicing structure.
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Area Computation

{  (5,5)  (9,4)  }

{  (3,2)  }
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Floorplan Design by Simulated Annealing

• Related work

– Wong & Liu, “A new algorithm for floorplan design,” DAC’86.

∗ Consider slicing floorplans.

– Wong & Liu, “Floorplan design for rectangular and L-shaped mod-
ules,” ICCAD’87.

∗ Also consider L-shaped modules.

– Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31–71,
Kluwer academic Publishers, 1988.

• Ingredients: solution space, neighborhood structure, cost function, an-
nealing schedule?



• Annealing (metallurgy)
– a heat treatment that alters the microstructure of a material, causing 

changes in properties such as strength, hardness, and ductility
• Simulated annealing

– a numerical optimization technique for searching for a solution in a space 
otherwise too large for ordinary search methods to yield results

Annealing (Wikipedia)



• A random initial solution is available as the input
– A new solution is generated by making a RANDOM perturbation
– If the solution improves, the move is always accepted
– If not, the move is accepted with a probability that decreases with the 

decrease in a parameter called “annealing temperature” T.

Simulated Annealing Algorithm

Kirkpatrick, Gelatt, Vecchi, 
"Optimization by 
Simulated Annealing". 
Science, 1983.



1

• Modi and Gupta (Spring 2013)
– 5 blocks

– 30 blocks

Slicing Floorplanning Examples

before (area = 1075) after (area = 308)

before (area = 65) after (area = 40)



2

• Modi and Gupta (Spring 2013)
– 100 blocks (took 0.5min)

Slicing Floorplanning Examples

before (area = 7119) after (area = 1056)
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• Modi and Gupta (Spring 2013)
– 150 blocks (took 8min)

Slicing Floorplanning Examples

before (area = 14104) after (area = 1554)
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Slicing Floorplanning Examples






Neighborhood Structure

• Chain: HVHVH . . . or V HV HV . . .

1  6  H  3  5  V  2  H  V  7  4  H  V

chain

• Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands;
5 and V are adjacent operand and operator.

• 3 types of moves:

– M1 (Operand Swap): Swap two adjacent operands.

– M2 (Chain Invert): Complement some chain (V = H,H = V ).

– M3 (Operator/Operand Swap): Swap two adjacent operand and
operator.



Effects of Perturbation
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• Question: The balloting property holds during the moves?

– M1 and M2 moves are OK.

– Check the M3 moves! Reject “illegal” M3 moves.

• Check M3 moves: Assume that the M3 move swaps the operand ei
with the operator ei+1, 1 ≤ i ≤ k−1. Then, the swap will not violate the
balloting property iff 2Ni+1 < i.

– Nk: # of operators in the Polish expression E = e1e2 . . . ek,1 ≤ k ≤ 2n− 1.



Cost Function
• Φ = A+ λW .

– A: area of the smallest rectangle

– W : overall wiring length

– λ: user-specified parameter
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• W =
∑

ij cijdij.

– cij: # of connections between blocks i and j.

– dij: center-to-center distance between basic rectangles i and j.



Incremental Computation of Cost Function

• Each move leads to only a minor modification of the Polish expression.

• At most two paths of the slicing tree need to be updated for each move.
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Incremental Computation of Cost Function

(cont’d)
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Annealing Schedule

• Initial solution: 12V 3V . . . nV .

1 2 3 n

• Ti = riT0, i = 1,2,3, . . .; r = 0.85.

• At each temperature, try kn moves (k = 5–10).

• Terminate the annealing process if

– # of accepted moves < 5%,

– temperature is low enough, or

– run out of time.



Algorithm: Simulated Annealing Floorplanning(P, ε, r, k)
1 begin
2 E ← 12V 3V 4V . . . nV ; /* initial solution */

3 Best← E; T0 ← ∆avg

ln(P )
; M ←MT ← uphill← 0; N = kn;

4 repeat
5 MT ← uphill← reject← 0;
6 repeat
7 SelectMove(M);
8 Case M of
9 M1: Select two adjacent operands ei and ej; NE ← Swap(E, ei, ej);
10 M2: Select a nonzero length chain C; NE ← Complement(E,C);
11 M3: done← FALSE;
12 while not (done) do
13 Select two adjacent operand ei and operator ei+1;
14 if (ei−1 6= ei+1) and (2Ni+1 < i) then done← TRUE;
15 NE ← Swap(E, ei, ei+1);
16 MT ←MT + 1; ∆cost← cost(NE)− cost(E);

17 if (∆cost ≤ 0) or (Random < e
−∆cost

T )
18 then
19 if (∆cost > 0) then uphill← uphill + 1;
20 E ← NE;
21 if cost(E) < cost(best) then best← E;
22 else reject← reject+ 1;
23 until (uphill > N) or (MT > 2N);
24 T = rT; /* reduce temperature */

25 until (reject
MT

> 0.95) or (T < ε) or OutOfT ime;
26 end



Practical Problems in VLSI Physical Design Polish Expression (1/8)

Draw slicing floorplan based on:
Initial PE: P1 = 25V1H374VH6V8VH
Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)

Normalized Polish Expression



Practical Problems in VLSI Physical Design Polish Expression (2/8)

M1 Move
Swap module 3 and 7 in P1 = 25V1H374VH6V8VH

We get: P2 = 25V1H734VH6V8VH
Area changed from 11 × 15 to 13 × 14



Practical Problems in VLSI Physical Design Polish Expression (3/8)

Change on Floorplan



Practical Problems in VLSI Physical Design Polish Expression (4/8)

M2 Move
Complement last chain in P2 = 25V1H734VH6V8VH

We get: P3 = 25V1H734VH6V8HV
Area changed from 13 × 14 to 15 × 11



Practical Problems in VLSI Physical Design Polish Expression (5/8)

Change on Floorplan



Practical Problems in VLSI Physical Design Polish Expression (6/8)

M3 Move
Swaps 6 and V in P3 = 25V1H734VH6V8HV

We get: P4 = 25V1H734VHV68HV
Area changed from 15 × 11 to 15 × 7



Practical Problems in VLSI Physical Design Polish Expression (7/8)

Change on Floorplan



Sequence-Pair Based Floorplanning/Placement

• Murata, et al, ICCAD-95; Nakatake, et al, ICCAD-96; Murata, et al,
ISPD-97; Murata and Kuh, ISPD-98; Xu, et al, ISPD-98; Kang and Dai,
ISPD-98, ICCAD-98.

• Represent a packing by a pair of module-name sequences (e.g., (abdecf, cbfade)).

• Correspond all pairs of the sequences to a P-admissible solution space.

• Search in the P-admissible solution space (typically, by simulated anneal-
ing).
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Relative Module Positions
• A floorplan is a partition of a chip into rooms, each containing at most

one block.

• Locus (right-up, left-down, up-left, down-right)

1. Take a non-empty room.

2. Start at the center of the room, walk in two alternating directions to
hit the sides of rooms.

3. Continue until to reach a corner of the chip.

• Positive locus: Union of right-up locus and left-down locus.

• Negative locus: Union of up-left locus and down-right locus.
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Geometrical Information

• No pair of positive (negative) loci cross each other, i.e., loci are linearly
ordered.

• Sequence Pair (Γ+,Γ−): Γ+ is a module-name sequence representing
the order of positive loci. (Exp: (Γ+,Γ−) = (abdecf, cbfade))

• x′ is after (before) x in both Γ+ and Γ− =⇒ x′ is right (left) to x.

• x′ is after (before) x in Γ+ and before (after) x in Γ− =⇒ x′ is below
(above) x.
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(Γ+,Γ−)-Packing

• For every sequence pair (Γ+,Γ−), there is a (Γ+,Γ−) packing.

• Horizontal constraint graph GH(V,E) (similarly for GV (V,E)):

– V : source s, sink t, m vertices for modules.

– E: (s, x) and (x, t) for each module x, and (x, x′) iff x must be left-to
x′.

– Vertex weight: 0 for s and t, width of module x for the other
vertices.
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• Our HCG/VCG are DAG
– Longest path from the source in terms of # of hops 
– Then remove the edges not on the longest paths
– This can be done in linear time! use topological sorting

Transitive Reduction
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Optimal (Γ+,Γ−)-Packing

• Optimal (Γ+,Γ−)-Packing can be obtained in O(m2) time by applying
a longest path algorithm on a vertex-weighted directed acyclic graph.

– GH and GV are independent.

– The X and Y coordinates of each module are determined as the
minimum by assigning the longest path length between s and the
vertex of the module in GH and GV , respectively.

• The set of all sequence pairs is a P-admissible solution space.
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Sequence Pair

• Final chip area?
• Solution space size?

– Without rotation vs with rotation

• Optimization: Simulated Annealing
– Initial solution: Γ+ = Γ-

– Swap two modules in Γ+

– Swap two modules both in Γ+ and Γ-

– Rotate

• Results: produces highly packed non-slicing floorplans



Annealing Temperature vs. Floorplan Quality
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• Floorplan (a)
– S1: 11 0 7 10 8 4 1 5 12 2 9 13 6 3
– S2: 7 10 6 1 11 5 4 0 13 12 9 2 3 8

• Floorplan (b)
– S1: 8 6 13 3 9 5 2 4 10 0 7 12 1 11
– S2: 5 6 2 1 8 9 13 4 12 10 11 0 3 7

• Floorplan (c)
– S1: 3 11 6 9 5 4 7 0 10 12 13 1 2 8
– S2: 1 6 8 12 3 7 5 10 0 9 11 13 4 2

Sequence Pair



Non Slicing Floorplan
• Sequence Pair + SA by Adam & Todd (class project)



Practical Problems in VLSI Physical Design Sequence Pair Method (1/13)

Initial SP: SP1 = (17452638, 84725361)
Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)
Based on SP1 we build the following table: 

Sequence Pair Representation



Practical Problems in VLSI Physical Design Sequence Pair Method (2/13)

Constraint Graphs
Horizontal constraint graph (HCG)

Before and after removing transitive edges



Practical Problems in VLSI Physical Design Sequence Pair Method (3/13)

Constraint Graphs (cont)
Vertical constraint graph (VCG)



Practical Problems in VLSI Physical Design Sequence Pair Method (4/13)

Computing Chip Width and Height
Longest source-sink path length in:

HCG = chip width, VCG = chip height
Node weight = module width/height



Practical Problems in VLSI Physical Design Sequence Pair Method (5/13)

Computing Module Location
Use longest source-module path length in HCG/VCG

Lower-left corner location = source to module input path length 



Practical Problems in VLSI Physical Design Sequence Pair Method (6/13)

Final Floorplan
Dimension: 11 × 15



Practical Problems in VLSI Physical Design Sequence Pair Method (7/13)

Move I
Swap 1 and 3 in positive sequence of SP1

SP1 = (17452638, 84725361)
SP2 = (37452618, 84725361)



Practical Problems in VLSI Physical Design Sequence Pair Method (8/13)

Constraint Graphs



Practical Problems in VLSI Physical Design Sequence Pair Method (9/13)

Constructing Floorplan
Dimension: 13 × 14



Practical Problems in VLSI Physical Design Sequence Pair Method (10/13)

Move II
Swap 4 and 6 in both sequences of SP2

SP2 = (37452618, 84725361)
SP3 = (37652418, 86725341)



Practical Problems in VLSI Physical Design Sequence Pair Method (11/13)

Constraint Graphs



Practical Problems in VLSI Physical Design Sequence Pair Method (12/13)

Constructing Floorplan
Dimension: 13 × 12



Practical Problems in VLSI Physical Design Sequence Pair Method (13/13)

Summary
Impact of the moves:

Floorplan dimension changes from 11 × 15 to 13 × 14 to 13 × 12 
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