
Floorplanning
ECE6133

Physical Design Automation of VLSI Systems

Prof. Sung Kyu Lim
School of Electrical and Computer Engineering

Georgia Institute of Technology

Intel i7 Skylake Floorplan (14nm, 2015)

Floorplanning, Placement, and Pin Assignment

• Partitioning leads to

– Blocks with well-defined areas and shapes (fixed blocks).

– Blocks with approximated areas and no particular shapes (flexible
blocks).

– A netlist specifying connections between the blocks.

• Objectives

– Find locations for all blocks.

– Consider shapes of flexible block, pin locations of all the blocks.

Partitioning RoutingFloorplanning/Placement
 (/Pin assignment)

Blocks w/ areas
 (shapes)

netlist

Block locations

netlist

Floorplanning

• Inputs to the floorplanning problem:

– A set of blocks, fixed or flexible.

– Pin locations of fixed blocks.

– A netlist.

• Objectives: Minimize area, reduce wirelength for (critical) nets, max-
imize routability, determine shapes of flexible blocks

7 5

4

2

1

6

3

A non−optimal floorplanAn optimal floorplan,
 in terms of area

1

6

7 5

2

4

3

Floorplan Design

x

y

Aspect ratio: r <= y/x <= s

Rotation:

Area: A=xy

Modules:

Module connectivity

3

2

5

3 6

5
2

1

a b

c d

e f

a

b
c

d

e

f

g

Floorplanning: Terminology

• Rectangular dissection: Subdivision of a given rectangle by a finite #
of horizontal and vertical line segments into a finite # of non-overlapping
rectangles.

• Slicing structure: a rectangular dissection that can be obtained by
repetitively subdividing rectangles horizontally or vertically.

• Slicing tree: A binary tree, where each internal node represents a vertical
cut line or horizontal cut line, and each leaf a basic rectangle.

• Skewed slicing tree: One in which no node and its right child are the
same.

1
3

4 5

6 7
2

H

V

H

H

V V

12 3

4 56 7

1
3

4 5

6 72

A slicing tree (skewed)

H

V

H

HV

V

12

3

4 5

6 7

Another slicing tree
 (non−skewed)Non−slicing floorplan Slicing floorplan

Solution Representation
• An expression E = e1e2 . . . e2n−1, where ei ∈ {1,2, . . . , n,H, V },1 ≤ i ≤

2n− 1, is a Polish expression of length 2n− 1 iff

1. every operand j, 1 ≤ j ≤ n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 . . . ei,1 ≤

i ≤ 2n− 1, #operands > #operators.

1 6 H 3 5 V 2 H V 7 4 H V

of operands = 4 = 7
of operators = 2 = 5

• Polish expression ←→ Postorder traversal.
• ijH: rectangle i on bottom of j; ijV : rectangle i on the left of j.

7 5
4

2
1

6

3

V

H H

V V

H 2 7 5

3 4

1 6
E = 16H2V75VH34HV

E = 16+2*75*+34+*
Postorder traversal of a tree!

Solution Representation (cont’d)

V
V

H

1 4

1

4
3

2
2 3

E = 123H4VV

V

H

V

3

1

2

4

E = 123HV4V
 non−skewed! skewed!

H

H

....... HH

V

V

....... VV

Non−skewed
 cases

• Question: How to eliminate ambiguous representation?

Normalized Polish Expression

• A Polish expression E = e1e2 . . . e2n−1 is called normalized iff E has no
consecutive operators of the same type (H or V).

• Given a normalized Polish expression, we can construct a unique rect-
angular slicing structure.

7 5
4

2
1

6

3

V

H H

V V

H 2 7 5

3 4

1 6

E = 16H2V75VH34HV
A normalized Polish expression

Area Computation

{ (5,5) (9,4) }

{ (3,2) }

{ (3,5) (6,,4) }{ (2,5) (3,4) }

{ (2,3) (3,2) } { (2,2) }

{ (1,3) (3,1) } { (2,3) (3,2) }

{ (1,2) (2,1) } { (2,2) }

V

HH

V

1 2

3 4

5 6

{ (6,2) (3,3) }

V

1

2 5

3

6

4

2

3

2 1 2

V

HH

V

1 2

3 4

5 6

V

u1 u2

v w

max{u1, u2}

v+w

u1 u2

v w
u1

u2

max{v, w}

u1+u2

• Wiring cost?

Floorplan Design by Simulated Annealing

• Related work

– Wong & Liu, “A new algorithm for floorplan design,” DAC’86.

∗ Consider slicing floorplans.

– Wong & Liu, “Floorplan design for rectangular and L-shaped mod-
ules,” ICCAD’87.

∗ Also consider L-shaped modules.

– Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31–71,
Kluwer academic Publishers, 1988.

• Ingredients: solution space, neighborhood structure, cost function, an-
nealing schedule?

• Annealing (metallurgy)
– a heat treatment that alters the microstructure of a material, causing

changes in properties such as strength, hardness, and ductility
• Simulated annealing

– a numerical optimization technique for searching for a solution in a space
otherwise too large for ordinary search methods to yield results

Annealing (Wikipedia)

• A random initial solution is available as the input
– A new solution is generated by making a RANDOM perturbation
– If the solution improves, the move is always accepted
– If not, the move is accepted with a probability that decreases with the

decrease in a parameter called “annealing temperature” T.

Simulated Annealing Algorithm

Kirkpatrick, Gelatt, Vecchi,
"Optimization by
Simulated Annealing".
Science, 1983.

1

• Modi and Gupta (Spring 2013)
– 5 blocks

– 30 blocks

Slicing Floorplanning Examples

before (area = 1075) after (area = 308)

before (area = 65) after (area = 40)

2

• Modi and Gupta (Spring 2013)
– 100 blocks (took 0.5min)

Slicing Floorplanning Examples

before (area = 7119) after (area = 1056)

3

• Modi and Gupta (Spring 2013)
– 150 blocks (took 8min)

Slicing Floorplanning Examples

before (area = 14104) after (area = 1554)

4
Slicing Floorplanning Examples

Neighborhood Structure

• Chain: HVHVH . . . or V HV HV . . .

1 6 H 3 5 V 2 H V 7 4 H V

chain

• Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands;
5 and V are adjacent operand and operator.

• 3 types of moves:

– M1 (Operand Swap): Swap two adjacent operands.

– M2 (Chain Invert): Complement some chain (V = H,H = V).

– M3 (Operator/Operand Swap): Swap two adjacent operand and
operator.

Effects of Perturbation

1

2

3

4

2

4

3

1 2
4

3

1

2

4

3

1

12V4H3V

M1 M2 M3

12V3H4V 12H3H4V 12H34HV

• Question: The balloting property holds during the moves?

– M1 and M2 moves are OK.

– Check the M3 moves! Reject “illegal” M3 moves.

• Check M3 moves: Assume that the M3 move swaps the operand ei
with the operator ei+1, 1 ≤ i ≤ k−1. Then, the swap will not violate the
balloting property iff 2Ni+1 < i.

– Nk: # of operators in the Polish expression E = e1e2 . . . ek,1 ≤ k ≤ 2n− 1.

Cost Function
• Φ = A+ λW .

– A: area of the smallest rectangle

– W : overall wiring length

– λ: user-specified parameter

1

2

3

4

2

4

3

1 2
4

3

1

2

4

3

1
M1 M2 M3

A: 12H34HV

• W =
∑

ij cijdij.

– cij: # of connections between blocks i and j.

– dij: center-to-center distance between basic rectangles i and j.

Incremental Computation of Cost Function

• Each move leads to only a minor modification of the Polish expression.

• At most two paths of the slicing tree need to be updated for each move.

V

HH

V
1 2

3 4
5 6

V

V

HH

V

1 2

3
6

V

E = 12H34V56VHV

M1

E = 12H35V46VHV

5
4

Incremental Computation of Cost Function

(cont’d)

HH

V
1 2

3 4

5 6

V

H

1 2

3
6

V

E = 12H34V56VHV

V

HH

V
1 2

3 4

5 6

V

V

H

V

6

V

1

2 3E = 12H34V56VHV

M2

M3

V

E = 12H34V56HVH

H

V

H

H

5
4

E = 123H4V56VHV

4
5

Annealing Schedule

• Initial solution: 12V 3V . . . nV .

1 2 3 n

• Ti = riT0, i = 1,2,3, . . .; r = 0.85.

• At each temperature, try kn moves (k = 5–10).

• Terminate the annealing process if

– # of accepted moves < 5%,

– temperature is low enough, or

– run out of time.

Algorithm: Simulated Annealing Floorplanning(P, ε, r, k)
1 begin
2 E ← 12V 3V 4V . . . nV ; /* initial solution */

3 Best← E; T0 ← ∆avg

ln(P)
; M ←MT ← uphill← 0; N = kn;

4 repeat
5 MT ← uphill← reject← 0;
6 repeat
7 SelectMove(M);
8 Case M of
9 M1: Select two adjacent operands ei and ej; NE ← Swap(E, ei, ej);
10 M2: Select a nonzero length chain C; NE ← Complement(E,C);
11 M3: done← FALSE;
12 while not (done) do
13 Select two adjacent operand ei and operator ei+1;
14 if (ei−1 6= ei+1) and (2Ni+1 < i) then done← TRUE;
15 NE ← Swap(E, ei, ei+1);
16 MT ←MT + 1; ∆cost← cost(NE)− cost(E);

17 if (∆cost ≤ 0) or (Random < e
−∆cost

T)
18 then
19 if (∆cost > 0) then uphill← uphill + 1;
20 E ← NE;
21 if cost(E) < cost(best) then best← E;
22 else reject← reject+ 1;
23 until (uphill > N) or (MT > 2N);
24 T = rT; /* reduce temperature */

25 until (reject
MT

> 0.95) or (T < ε) or OutOfT ime;
26 end

Practical Problems in VLSI Physical Design Polish Expression (1/8)

Draw slicing floorplan based on:
Initial PE: P1 = 25V1H374VH6V8VH
Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)

Normalized Polish Expression

Practical Problems in VLSI Physical Design Polish Expression (2/8)

M1 Move
Swap module 3 and 7 in P1 = 25V1H374VH6V8VH

We get: P2 = 25V1H734VH6V8VH
Area changed from 11 × 15 to 13 × 14

Practical Problems in VLSI Physical Design Polish Expression (3/8)

Change on Floorplan

Practical Problems in VLSI Physical Design Polish Expression (4/8)

M2 Move
Complement last chain in P2 = 25V1H734VH6V8VH

We get: P3 = 25V1H734VH6V8HV
Area changed from 13 × 14 to 15 × 11

Practical Problems in VLSI Physical Design Polish Expression (5/8)

Change on Floorplan

Practical Problems in VLSI Physical Design Polish Expression (6/8)

M3 Move
Swaps 6 and V in P3 = 25V1H734VH6V8HV

We get: P4 = 25V1H734VHV68HV
Area changed from 15 × 11 to 15 × 7

Practical Problems in VLSI Physical Design Polish Expression (7/8)

Change on Floorplan

Sequence-Pair Based Floorplanning/Placement

• Murata, et al, ICCAD-95; Nakatake, et al, ICCAD-96; Murata, et al,
ISPD-97; Murata and Kuh, ISPD-98; Xu, et al, ISPD-98; Kang and Dai,
ISPD-98, ICCAD-98.

• Represent a packing by a pair of module-name sequences (e.g., (abdecf, cbfade)).

• Correspond all pairs of the sequences to a P-admissible solution space.

• Search in the P-admissible solution space (typically, by simulated anneal-
ing).

b

c

d e

f

a

b

c

d e

f

a

c

d e

f

a

b

Loci of module bA floorplan

Relative Module Positions
• A floorplan is a partition of a chip into rooms, each containing at most

one block.

• Locus (right-up, left-down, up-left, down-right)

1. Take a non-empty room.

2. Start at the center of the room, walk in two alternating directions to
hit the sides of rooms.

3. Continue until to reach a corner of the chip.

• Positive locus: Union of right-up locus and left-down locus.

• Negative locus: Union of up-left locus and down-right locus.

b

d e

fc

a

b

d e

fc

a

Positive loci: abdecf Negative loci: cbfade

c

d e

f

a

b

Loci of module b

Geometrical Information

• No pair of positive (negative) loci cross each other, i.e., loci are linearly
ordered.

• Sequence Pair (Γ+,Γ−): Γ+ is a module-name sequence representing
the order of positive loci. (Exp: (Γ+,Γ−) = (abdecf, cbfade))

• x′ is after (before) x in both Γ+ and Γ− =⇒ x′ is right (left) to x.

• x′ is after (before) x in Γ+ and before (after) x in Γ− =⇒ x′ is below
(above) x.

b

d e

fc

a

b

d e

fc

a

Positive loci: abdecf Negative loci: cbfade

c

d e

f

a

b

Loci of module b

(Γ+,Γ−)-Packing

• For every sequence pair (Γ+,Γ−), there is a (Γ+,Γ−) packing.

• Horizontal constraint graph GH(V,E) (similarly for GV (V,E)):

– V : source s, sink t, m vertices for modules.

– E: (s, x) and (x, t) for each module x, and (x, x′) iff x must be left-to
x′.

– Vertex weight: 0 for s and t, width of module x for the other
vertices.

b

d e

f
c

a

b

d e

f
c

a

Horizontal constraint graph
(Transitive edges are not shown)

b

d e

f
c

a

Vertical constraint graph
(Transitive edges are not shown)

Packing for sequence pair:
 (abdecf, cbfade)

s t

s

t

• Our HCG/VCG are DAG
– Longest path from the source in terms of # of hops
– Then remove the edges not on the longest paths
– This can be done in linear time! use topological sorting

Transitive Reduction

a

b c

d

e

a

b c

d

e

Optimal (Γ+,Γ−)-Packing

• Optimal (Γ+,Γ−)-Packing can be obtained in O(m2) time by applying
a longest path algorithm on a vertex-weighted directed acyclic graph.

– GH and GV are independent.

– The X and Y coordinates of each module are determined as the
minimum by assigning the longest path length between s and the
vertex of the module in GH and GV , respectively.

• The set of all sequence pairs is a P-admissible solution space.

b

d e

f
c

a

b

d e

f
c

a

Horizontal constraint graph
(Transitive edges are not shown)

b

d e

f
c

a

Vertical constraint graph
(Transitive edges are not shown)

Packing for sequence pair:
 (abdecf, cbfade)

s t

s

t

Sequence Pair

• Final chip area?
• Solution space size?

– Without rotation vs with rotation

• Optimization: Simulated Annealing
– Initial solution: Γ+ = Γ-

– Swap two modules in Γ+

– Swap two modules both in Γ+ and Γ-

– Rotate

• Results: produces highly packed non-slicing floorplans

Annealing Temperature vs. Floorplan Quality

(c) temperature: 20
area: 7260120

3549

2696

3111

4174

(a) temperature: 2000
area: 12985314

(b) temperature: 1000
area: 9568104

2814

2580

-26.3%

-44.1%

m0

m1

m2

m3

m4

m5

m6m7
m10

m13

m8

m11
m12 m9

m8

m8

m3
m3 m9

m9

m13 m13 m2

m2 m1 m1m6

m6
m7

m5

m11
m4

• Floorplan (a)
– S1: 11 0 7 10 8 4 1 5 12 2 9 13 6 3
– S2: 7 10 6 1 11 5 4 0 13 12 9 2 3 8

• Floorplan (b)
– S1: 8 6 13 3 9 5 2 4 10 0 7 12 1 11
– S2: 5 6 2 1 8 9 13 4 12 10 11 0 3 7

• Floorplan (c)
– S1: 3 11 6 9 5 4 7 0 10 12 13 1 2 8
– S2: 1 6 8 12 3 7 5 10 0 9 11 13 4 2

Sequence Pair

Non Slicing Floorplan
• Sequence Pair + SA by Adam & Todd (class project)

Practical Problems in VLSI Physical Design Sequence Pair Method (1/13)

Initial SP: SP1 = (17452638, 84725361)
Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)
Based on SP1 we build the following table:

Sequence Pair Representation

Practical Problems in VLSI Physical Design Sequence Pair Method (2/13)

Constraint Graphs
Horizontal constraint graph (HCG)

Before and after removing transitive edges

Practical Problems in VLSI Physical Design Sequence Pair Method (3/13)

Constraint Graphs (cont)
Vertical constraint graph (VCG)

Practical Problems in VLSI Physical Design Sequence Pair Method (4/13)

Computing Chip Width and Height
Longest source-sink path length in:

HCG = chip width, VCG = chip height
Node weight = module width/height

Practical Problems in VLSI Physical Design Sequence Pair Method (5/13)

Computing Module Location
Use longest source-module path length in HCG/VCG

Lower-left corner location = source to module input path length

Practical Problems in VLSI Physical Design Sequence Pair Method (6/13)

Final Floorplan
Dimension: 11 × 15

Practical Problems in VLSI Physical Design Sequence Pair Method (7/13)

Move I
Swap 1 and 3 in positive sequence of SP1

SP1 = (17452638, 84725361)
SP2 = (37452618, 84725361)

Practical Problems in VLSI Physical Design Sequence Pair Method (8/13)

Constraint Graphs

Practical Problems in VLSI Physical Design Sequence Pair Method (9/13)

Constructing Floorplan
Dimension: 13 × 14

Practical Problems in VLSI Physical Design Sequence Pair Method (10/13)

Move II
Swap 4 and 6 in both sequences of SP2

SP2 = (37452618, 84725361)
SP3 = (37652418, 86725341)

Practical Problems in VLSI Physical Design Sequence Pair Method (11/13)

Constraint Graphs

Practical Problems in VLSI Physical Design Sequence Pair Method (12/13)

Constructing Floorplan
Dimension: 13 × 12

Practical Problems in VLSI Physical Design Sequence Pair Method (13/13)

Summary
Impact of the moves:

Floorplan dimension changes from 11 × 15 to 13 × 14 to 13 × 12

	aaa.pdf
	Intel i7 Skylake Floorplan (14nm, 2015)

	i7-floorplan.pdf
	Intel i7 Skylake Floorplan (14nm, 2015)
	Annealing (Wikipedia)

	polish-ex.pdf
	Slicing Floorplanning Examples
	Slicing Floorplanning Examples
	Slicing Floorplanning Examples
	Slicing Floorplanning Examples

