Floorplanning

ECE6133

Physical Design Automation of VLSI Systems

Prof. Sung Kyu Lim School of Electrical and Computer Engineering Georgia Institute of Technology

Intel i7 Skylake Floorplan (14nm, 2015)

Floorplanning, Placement, and Pin Assignment

- Partitioning leads to
 - Blocks with well-defined areas and shapes (fixed blocks).
 - Blocks with approximated areas and no particular shapes (flexible blocks).
 - A **netlist** specifying connections between the blocks.
- Objectives
 - Find locations for all blocks.
 - Consider shapes of flexible block, pin locations of all the blocks.

Floorplanning

- Inputs to the floorplanning problem:
 - A set of blocks, fixed or flexible.
 - Pin locations of fixed blocks.
 - A netlist.
- Objectives: Minimize area, reduce wirelength for (critical) nets, maximize routability, determine shapes of flexible blocks

7	5		4
6			
1		2	3

An optimal floorplan, in terms of area

A non–optimal floorplan

Floorplan Design

- *Area:* A=xy
- *Aspect ratio: r* <= *y*/*x* <= *s*
- Rotation:
- Module connectivity

Floorplanning: Terminology

- Rectangular dissection: Subdivision of a given rectangle by a finite # of horizontal and vertical line segments into a finite # of non-overlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Non-slicing floorplan

Solution Representation

- An expression $E = e_1 e_2 \dots e_{2n-1}$, where $e_i \in \{1, 2, \dots, n, H, V\}, 1 \leq i \leq 2n-1$, is a **Polish expression** of length 2n-1 iff
 - 1. every operand j, $1 \le j \le n$, appears exactly once in E;
 - 2. (the balloting property) for every subexpression $E_i = e_1 \dots e_i, 1 \le i \le 2n 1$, #operands > #operators.

- Polish expression ←→ Postorder traversal.
- ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

Solution Representation (cont'd)

• Question: How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression $E = e_1 e_2 \dots e_{2n-1}$ is called **normalized** iff *E* has no consecutive operators of the same type (*H* or *V*).
- Given a **normalized** Polish expression, we can construct a **unique** rectangular slicing structure.

Area Computation

• Wiring cost?

Floorplan Design by Simulated Annealing

- Related work
 - Wong & Liu, "A new algorithm for floorplan design," DAC'86.
 - * Consider slicing floorplans.
 - Wong & Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
 - * Also consider L-shaped modules.
 - Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31–71, Kluwer academic Publishers, 1988.
- Ingredients: solution space, neighborhood structure, cost function, annealing schedule?

Annealing (Wikipedia)

- Annealing (metallurgy)
 - a heat treatment that alters the microstructure of a material, causing changes in properties such as strength, hardness, and ductility
- Simulated annealing
 - a numerical optimization technique for searching for a solution in a space otherwise too large for ordinary search methods to yield results

Simulated Annealing Algorithm

- A random initial solution is available as the input
 - A new solution is generated by making a RANDOM perturbation
 - If the solution improves, the move is always accepted
 - If not, the move is accepted with a probability that decreases with the decrease in a parameter called "annealing temperature" T.

Kirkpatrick, Gelatt, Vecchi, "Optimization by Simulated Annealing". Science, 1983.

- Modi and Gupta (Spring 2013)
 - 5 blocks

before (area = 65)

after (area = 40)

- 30 blocks

before (area = 1075)

after (area = 308)

- Modi and Gupta (Spring 2013)
 - 100 blocks (took 0.5min)

before (area = 7119)

after (area = 1056)

- Modi and Gupta (Spring 2013)
 - 150 blocks (took 8min)

before (area = 14104)

Neighborhood Structure

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
 - M1 (Operand Swap): Swap two adjacent operands.
 - M2 (Chain Invert): Complement some chain ($\overline{V} = H, \overline{H} = V$).
 - M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
 - M1 and M2 moves are OK.
 - Check the M3 moves! Reject "illegal" M3 moves.
- Check M3 moves: Assume that the M_3 move swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.

- N_k : # of operators in the Polish expression $E = e_1 e_2 \dots e_k, 1 \le k \le 2n - 1$.

Cost Function

- $\Phi = A + \lambda W$.
 - A: area of the smallest rectangle
 - W: overall wiring length
 - λ : user-specified parameter

- $W = \sum_{ij} c_{ij} d_{ij}$.
 - c_{ij} : # of connections between blocks *i* and *j*.
 - d_{ij} : center-to-center distance between basic rectangles *i* and *j*.

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most **two paths** of the slicing tree need to be updated for each move.

Incremental Computation of Cost Function (cont'd)

E = 123H4V56VHV

Annealing Schedule

• Initial solution:
$$12V3V \dots nV$$
.
1 2 3 n

- $T_i = r^i T_0, i = 1, 2, 3, ...; r = 0.85.$
- At each temperature, try kn moves (k = 5-10).
- Terminate the annealing process if
 - # of accepted moves < 5%,
 - temperature is low enough, or
 - run out of time.

```
Algorithm: Simulated_Annealing_Floorplanning(P, \epsilon, r, k)
1 begin
2 E \leftarrow 12V3V4V \dots nV; /* initial solution */
3 Best \leftarrow E; T_0 \leftarrow \frac{\Delta_{avg}}{\ln(P)}; M \leftarrow MT \leftarrow uphill \leftarrow 0; N = kn;
4 repeat
5 MT \leftarrow uphill \leftarrow reject \leftarrow 0;
  repeat
6
7
       SelectMove(M);
8
       Case M of
9
       M_1: Select two adjacent operands e_i and e_i; NE \leftarrow Swap(E, e_i, e_i);
       M_2: Select a nonzero length chain C; NE \leftarrow Complement(E,C);
10
11
       M_3: done \leftarrow FALSE;
12
           while not (done) do
13
               Select two adjacent operand e_i and operator e_{i+1};
               if (e_{i-1} \neq e_{i+1}) and (2N_{i+1} < i) then done \leftarrow TRUE;
14
           NE \leftarrow Swap(E, e_i, e_{i+1});
15
       MT \leftarrow MT + 1; \Delta cost \leftarrow cost(NE) - cost(E);
16
       if (\Delta cost < 0) or (Random < e^{\frac{-\Delta cost}{T}})
17
       then
18
           if (\Delta cost > 0) then uphill \leftarrow uphill + 1;
19
20
           E \leftarrow NE;
           if cost(E) < cost(best) then best \leftarrow E;
21
       else reject \leftarrow reject + 1;
22
23 until (uphill > N) or (MT > 2N);
24 T = rT; /* reduce temperature */
25 until (\frac{reject}{MT} > 0.95) or (T < \epsilon) or OutOfTime;
26 end
```

Normalized Polish Expression

Draw slicing floorplan based on:

- Initial PE: $P_1 = 25V1H374VH6V8VH$
- Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)

M1 Move

- Swap module 3 and 7 in $P_1 = 25V1H374VH6V8VH$
 - We get: $P_2 = 25V1H\frac{73}{4}VH6V8VH$
 - Area changed from 11×15 to 13×14

Change on Floorplan

Polish Expression (3/8)

M2 Move

• Complement last chain in $P_2 = 25V1H734VH6V8\underline{VH}$

- We get: $P_3 = 25V1H734VH6V8HV$
- Area changed from 13×14 to 15×11

Change on Floorplan

Polish Expression (5/8)

M3 Move

- Swaps 6 and V in $P_3 = 25V1H734VH\underline{6V}8HV$
 - We get: $P_4 = 25V1H734VHV68HV$
 - Area changed from 15×11 to 15×7

Change on Floorplan

Polish Expression (7/8)

Sequence-Pair Based Floorplanning/Placement

- Murata, et al, ICCAD-95; Nakatake, et al, ICCAD-96; Murata, et al, ISPD-97; Murata and Kuh, ISPD-98; Xu, et al, ISPD-98; Kang and Dai, ISPD-98, ICCAD-98.
- Represent a packing by a pair of module-name sequences (e.g., (*abdecf*, *cbfade*)).
- Correspond all pairs of the sequences to a P-admissible solution space.
- Search in the P-admissible solution space (typically, by simulated annealing).

A floorplan

Loci of module b

Relative Module Positions

- A floorplan is a partition of a chip into **rooms**, each containing at most one block.
- Locus (right-up, left-down, up-left, down-right)
 - 1. Take a non-empty room.
 - 2. Start at the center of the room, walk in two alternating directions to hit the sides of rooms.
 - 3. Continue until to reach a corner of the chip.
- Positive locus: Union of right-up locus and left-down locus.
- Negative locus: Union of up-left locus and down-right locus.

Loci of module b

Positive loci: abdecf

Negative loci: cbfade

Geometrical Information

- No pair of positive (negative) loci cross each other, i.e., loci are linearly ordered.
- Sequence Pair (Γ₊, Γ₋): Γ₊ is a module-name sequence representing the order of positive loci. (Exp: (Γ₊, Γ₋) = (abdecf, cbfade))
- x' is after (before) x in both Γ_+ and $\Gamma_- \Longrightarrow x'$ is right (left) to x.
- x' is after (before) x in Γ₊ and before (after) x in Γ₋ ⇒ x' is below (above) x.

Loci of module b

Positive loci: abdecf

Negative loci: cbfade

(Γ_+, Γ_-) -Packing

- For every sequence pair (Γ_+, Γ_-) , there is a (Γ_+, Γ_-) packing.
- Horizontal constraint graph $G_H(V, E)$ (similarly for $G_V(V, E)$):
 - V: source s, sink t, m vertices for modules.
 - E: (s,x) and (x,t) for each module x, and (x,x') iff x must be left-to x'.
 - Vertex weight: 0 for s and t, width of module x for the other vertices.

Transitive Reduction

- Our HCG/VCG are DAG
 - Longest path from the source in terms of # of hops
 - Then remove the edges not on the longest paths
 - This can be done in linear time! use topological sorting

Optimal (Γ_+, Γ_-) -**Packing**

- **Optimal** (Γ_+, Γ_-) -**Packing** can be obtained in $O(m^2)$ time by applying a longest path algorithm on a vertex-weighted directed acyclic graph.
 - G_H and G_V are independent.
 - The X and Y coordinates of each module are determined as the minimum by assigning the longest path length between s and the vertex of the module in G_H and G_V , respectively.
- The set of all sequence pairs is a P-admissible solution space.

Sequence Pair

- Final chip area?
- Solution space size?
 - Without rotation vs with rotation
- Optimization: Simulated Annealing
 - Initial solution: $\Gamma_+ = \Gamma_-$
 - Swap two modules in Γ_+
 - Swap two modules both in Γ_+ and Γ_-
 - Rotate
- Results: produces highly packed non-slicing floorplans

Annealing Temperature vs. Floorplan Quality

Sequence Pair

- Floorplan (a)
 - $\quad S1: 11 \ 0 \ 7 \ 10 \ 8 \ 4 \ 1 \ 5 \ 12 \ 2 \ 9 \ 13 \ 6 \ 3$
 - $\quad S2: \ 7 \ 10 \ 6 \ 1 \ 11 \ 5 \ 4 \ 0 \ 13 \ 12 \ 9 \ 2 \ 3 \ 8$
- Floorplan (b)
 - $\hspace{0.2cm} S1: \hspace{0.1cm} 8 \hspace{0.1cm} 6 \hspace{0.1cm} 13 \hspace{0.1cm} 3 \hspace{0.1cm} 9 \hspace{0.1cm} 5 \hspace{0.1cm} 2 \hspace{0.1cm} 4 \hspace{0.1cm} 10 \hspace{0.1cm} 0 \hspace{0.1cm} 7 \hspace{0.1cm} 12 \hspace{0.1cm} 1 \hspace{0.1cm} 11$
 - $\quad S2: \ 5 \ 6 \ 2 \ 1 \ 8 \ 9 \ 13 \ 4 \ 12 \ 10 \ 11 \ 0 \ 3 \ 7$
- Floorplan (c)
 - S1: 3 11 6 9 5 4 7 0 10 12 13 1 2 8
 - S2: 1 6 8 12 3 7 5 10 0 9 11 13 4 2

Non Slicing Floorplan

• Sequence Pair + SA by Adam & Todd (class project)

Sequence Pair Representation

- Initial SP: $SP_1 = (17452638, 84725361)$
 - Dimensions: (2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)
 - Based on SP₁ we build the following table:

module	right-of	left-of	above	below
1	Ø	Ø	Ø	$\{2, 3, 4, 5, 6, 7, 8\}$
2	$\{3,6\}$	$\{4, 7\}$	$\{1, 5\}$	$\{8\}$
3	Ø	$\{2, 4, 5, 7\}$	$\{1,6\}$	$\{8\}$
4	$\{2, 3, 5, 6\}$	Ø	$\{1,7\}$	$\{8\}$
5	$\{3,6\}$	$\{4, 7\}$	$\{1\}$	$\{2, 8\}$
6	Ø	$\{2, 4, 5, 7\}$	$\{1\}$	$\{3,8\}$
7	$\{2, 3, 5, 6\}$	Ø	$\{1\}$	$\{4, 8\}$
8	Ø	Ø	$\{1, 2, 3, 4, 5, 6, 7\}$	Ø

Constraint Graphs

- Horizontal constraint graph (HCG)
 - Before and after removing transitive edges

Constraint Graphs (cont)

Vertical constraint graph (VCG)

Sequence Pair Method (3/13)

Computing Chip Width and Height

- Longest source-sink path length in:
 - HCG = chip width, VCG = chip height
 - Node weight = module width/height

Computing Module Location

- Use longest source-module path length in HCG/VCG
 - Lower-left corner location = source to module <u>input</u> path length

Practical Problems in VLSI Physical Design

Sequence Pair Method (5/13)

Final Floorplan

• Dimension: 11×15

Move I

■ Swap 1 and 3 in positive sequence of SP₁

- $SP_1 = (\underline{1}74526\underline{3}8, 84725361)$
- $SP_2 = (\underline{3}74526\underline{1}8, 84725361)$

module	right-of	left-of	above	below
1	Ø	$\{2, 3, 4, 5, 6, 7\}$	Ø	{8}
2	$\{1, 6\}$	$\{4, 7\}$	$\{3,5\}$	$\{8\}$
3	$\{1, 6\}$	Ø	Ø	$\{2, 4, 5, 7, 8\}$
4	$\{1, 2, 5, 6\}$	Ø	$\{3, 7\}$	$\{8\}$
5	$\{1, 6\}$	$\{4, 7\}$	$\{3\}$	$\{2, 8\}$
6	$\{1\}$	$\{2, 3, 4, 5, 7\}$	Ø	$\{8\}$
7	$\{1, 2, 5, 6\}$	Ø	$\{3\}$	$\{4, 8\}$
8	Ø	Ø	$\{1, 2, 3, 4, 5, 6, 7\}$	Ø

Practical Problems in VLSI Physical Design

Sequence Pair Method (8/13)

Constructing Floorplan

• Dimension: 13×14

module	HCV	VCG
1	11	4
2	3	4
3	0	11
4	0	4
5	3	7
6	6	4
7	0	9
8	0	0

Sequence Pair Method (9/13)

Move II

■ Swap 4 and 6 in both sequences of SP₂

- $SP_2 = (37\underline{4}52\underline{6}18, 8\underline{4}7253\underline{6}1)$
- $SP_3 = (37\underline{6}52\underline{4}18, 8\underline{6}7253\underline{4}1)$

module	right-of	left-of	above	below
1	Ø	$\{2, 3, 4, 5, 6, 7\}$	Ø	{8}
2	$\{1, 4\}$	$\{6,7\}$	$\{3,5\}$	$\{8\}$
3	$\{1, 4\}$	Ø	Ø	$\{2, 5, 6, 7, 8\}$
4	$\{1\}$	$\{2, 3, 5, 6, 7\}$	Ø	$\{8\}$
5	$\{1, 4\}$	$\{6,7\}$	$\{3\}$	$\{2, 8\}$
6	$\{1, 2, 4, 5\}$	Ø	$\{3, 7\}$	$\{8\}$
7	$\{1, 2, 4, 5\}$	Ø	$\{3\}$	$\{6, 8\}$
8	Ø	Ø	$\{1, 2, 3, 4, 5, 6, 7\}$	Ø

Constructing Floorplan

• Dimension: 13×12

module	HCV	VCG
1	11	4
2	3	4
3	0	11
4	0	4
5	3	7
6	6	4
7	0	9
8	0	0

Sequence Pair Method (12/13)

Summary

- Impact of the moves:
 - Floorplan dimension changes from 11×15 to 13×14 to 13×12

